PRÁCTICA LABORATORIO N 4 MAQUINA DE ATWOOD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA LABORATORIO N 4 MAQUINA DE ATWOOD"

Transcripción

1 PRÁCTICA LABORATORIO N 4 MAQUINA DE ATWOOD GRUPO N 5 CRISTHIAN CAMILO CELEITA HERNÁNDEZ CODIGO Nº MIGUEL EDISON GOMEZ OCHOA CODIGO Nº Lic. SANDRA L. RAMOS D. Docente CURSO: CINEMÁTICA Y DINÁMICA NEWTONIANA UNIVERSIDAD DE LOS LLANOS FACULTAD DE CIENCIAS HUMANAS Y DE EDUCACIÓN LICENCIATURA EN MATEMÁTICAS Y FÍSICA CUARTO SEMESTRE VILLAVICENCIO - ABRIL 2011

2 MAQUINA DE ATWOOD INTRODUCCIÓN En la vida cotidiana vemos que la tierra ejerce una atracción sobre todo lo que está encima de ella. Y que los cuerpos más grandes tienen más atracción que los pequeños. Al colocar dos masas diferentes en una polea unidas por un hilo inextensible vemos que la mayor ejerce una fuerza sobre la menor y además que las dos sufren una aceleración una hacia el suelo y la otra se aleja del suelo con aceleraciones iguales. A esto se le denominó maquina de Atwood. En el año 1784, el físico inglés George Atwood ideó este modelo cuyo propósito era efectuar medidas de precisión de la aceleración debida a la gravedad y estudiar la relación entre las magnitudes de fuerza, masa y aceleración. En este método supondremos inicialmente que la masa de la polea es muy pequeña comparada con la de los cuerpos que componen el sistema y que gira libre sin rozamiento. Igualmente, supondremos despreciable el rozamiento de las masas con el aire. Objetivo general - Estimar el valor numérico de la aceleración de la gravedad utilizando la máquina de Atwood Objetivos específicos - Por medio de instrumento y de la teoría de error verificar el valor numérico de la aceleración de la gravedad. - Representar y analizar gráficos. - Encontrar la incertidumbre de la medición de la gravedad y la aceleración. Marco teórico. La máquina de Atwood es un dispositivo mecánico que se utilizó para medir la aceleración de la gravedad. El dispositivo consiste en una polea que tenga muy poco rozamiento y un momento de inercia muy pequeño. 1 Las ecuaciones empleadas, que aquí no se demuestran (consultar guía de trabajo), son las siguientes 2 : La aceleración del sistema viene dada por: Y g Donde m 1 y m 2 son las masas en cada uno de los extremos de la cuerda de la máquina de Atwood y g la gravedad. Las claves del experimento son los conceptos de fuerza, masa y aceleración, lo que nos conduce irrevocablemente a las Leyes de Newton, concretamente a la segunda como es sabido por todos en ella se relacionan precisamente los conceptos que nos interesan, dándonos un buen punto de partida para estudiar la aceleración de un cuerpo a partir de su masa. 3 Y de donde se desprenden las siguientes ecuaciones. M 2 g T 2 = m 2 a y T 1 M 1 g = m 1 a 4 DESARROLLO EXPERIMENTAL Materiales necesarios para realizar la práctica 5 : Dos masas de 100g y una de 10g, Polea, Hilo inextensible, Regla, Cronómetro, Tornillo de nuez Ibit 4 Guía de física entregada para realizar el laboratorio 5 Ver anexo N 1

3 Procedimiento. para la realizacion de la practica se llevaron a cabo los siguientes pasos Paso: 1. Se fija a la pared el tornillo de nuez, 2.Seguido se fija la polea al tornillo de nuez, 3.Se adjunta el hilo inextensible y de masa despreciable a la polea, 4.Ya después se colocan las masas en el sistema ya establecido, de (100 gr) dejando a ambos lados del sistema en equilibrio, 5.Para empezar a adjuntar las respectivas masas para dar inicio a la toma de datos y registro de los mismos, 6.El sistema maquina de Atwood se fija a una altura de 1,8 m desde el punto donde está la polea al suelo, 7.Cada masa queda a una altura de 80 cm con respecto del suelo. Es decir en este punto el sistema se encuentra en equilibrio, 8.Luego empezamos a variar las masas del sistema para empezar a corroborar lo visto en la guía y ver si se reflejan los datos que se esperaban antes de dar inicio a la práctica, 9. Damos inicio a la variación de las masas, respectivamente, empezamos variando una de las masas, una variación de 10 gr y se registran los datos, tomando 8 registros de cada uno de los intervalos de tiempo, 10.Luego se repite la práctica pero con variación de 20 gr e igual se registran los datos experimentales, 11Luego se procede a realizar el informe de la práctica, 12.se realizo todo el procedimiento teórico de la guía para hallar resultados y corroborar los datos experimentales. Resultados. A continuación se presentan los datos recolectados durante la práctica de laboratorio. Cada masa hacía un recorrido de 0,8m, el hilo tenía una longitud de 1,8m. DATOS EXPERIMENTALES m1 = 100g y m2 + m3= 110 M 1 =100g M 2 =100g M 3=10g m1 = 100g y m2 + m3= 120 M 1 =100g M 2 =100g M 3=10g x(m) t(s) Promedio x(m) t(s) Promedio x(m) t(s) Promedio x(m) t(s) Promedio 1,16 2,74 0,48 1,29 1,40 2,67 0,47 1,25 0,095 1,28 1,25 0,495 2,70 2,70 0,095 0,49 0,48 0,495 1,30 1,28 1,15 2,70 0,49 1,27 1,24 2,67 0,48 1,27 1,67 2,82 0,75 1,40 1,69 2,87 0,74 1,41 0,195 1,75 1,73 0,595 2,88 2,86 0,195 0,80 0,74 0,595 1,45 1,42 1,78 2,87 0,73 1,41 1,74 2,87 0,70 1,45 2,21 3,18 0,97 1,62 2,37 3,23 0,99 1,63 0,295 2,24 2,26 0,695 3,13 3,19 0,295 0,95 0,97 0,695 1,56 1,60 2,18 3,19 0,96 1,62 2,30 3,22 0,97 1,58 2,65 3,32 1,03 1,70 2,44 3,48 1,05 1,71 0,395 2,55 2,55 0,795 3,48 3,41 0,395 1,09 1,07 0,795 1,72 1,71 2,49 3,38 1,08 1,70 2,60 3,41 1,11 1,70

4 desplazamiento (x) desplazamiento (x) Desplazamiento (Metros) Ahora procedemos a graficar la tabla anterior para lo que tenemos: 1 0,8 0,6 0,4 0,2 0,8 0,6 Gráfica De Datos Experimentales y = 0,3252x 1,6828 R² = 0,9974 0,4 y = 0,0586x 2,1217 R² = 0,9919 0,2 Masa de 110 g 0 Masa de 120g Tiempo (segundos) 0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00 Debido a que la gráfica es una semiparabola se procede a linealizar para hallar la ecuación. Se sabe que la gráfica es de la forma x = at 2, entonces para hallar la ecuación basta con graficar tiempo al cuadro contra el desplazamiento la grafica será una recta y su pendiente es a con lo que completamos la ecuación, a continuación la tabla de linealización y su gráfica para la masa de 110g. 1 Linea De Tendencia y = 0,0711x - 0,0296 R² = 0,988 0 Tiempo al cuadrado 0,00 2,00 4,00 6,00 8,00 10,00 12,00 14,00 La pendiente de la recta anterior será a por lo que tenemos que a= 0,08 es decir que la ecuación de la función posición será x=0,08t 2. Para determinar la velocidad y aceleración del sistema derivamos está función por lo que nos quedará. Y la aceleración será es decir la velocidad en cualquier punto es de v=0,16t m/s y la aceleración del sistema es a=0,16m/s 2. A continuación el mismo proceso anterior pero para la masa de 120g: 1 0,5 Linea De Tendencia y = 0,2558x + 0,0611 R² = 0, tiempo al cuadrado 0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 La pendiente de esta recta es 0,27 por lo que la función desplazamiento queda x=0,27t 2. Al derivar esta función obtenemos la velocidad y la aceleración. Por lo que da lo siguiente. Y la aceleración será es decir la velocidad en cualquier punto es de v=0,53t m/s y la aceleración del sistema es a=0,53m/s 2.

5 Al reemplazar esto datos en la ecuación g obtenemos la gravedad por lo tenemos lo siguiente: Para la masa 110g; g = 3,36 m/s 2, Para la masa 120g; g = 5,83 m/s 2 Errores: Para la masa se obtiene un intervalo de incertidumbre de (masa ±5x10-4) kg. O 0,5%. Para el desplazamiento de obtiene un intervalo de incertidumbre de (x ± 5x10-3 )m o 0,5%. Para el tiempo en la masa de 110g se obtuvo un error absoluto de 0,44s y un error porcentual de 2,14%. Para el tiempo en la masa de 120g se obtuvo un error absoluto de 0,017s y un error porcentual de 1,6%. Para velocidad se tiene una incertidumbre de (v ± (v*2,64%))m/s. Para la aceleración de masa 110g se tiene una incertidumbre de (0,16 ± 7,6x10-3 )m/s 2. Para la aceleración de masa 120g se tiene una incertidumbre de (0,53 ± 2,5x10-2 )m/s 2. Para la gravedad de masa 110g se tiene una incertidumbre de (3,36 ± 0,16)m/s 2. Para la gravedad de masa 120g se tiene una incertidumbre de (5,83 ± 0,28)m/s 2 Análisis. En nuestro sistema los datos dieron una gráfica curva por lo que se dijo que tenía la forma x=at 2 lo que se hace necesario linealizar. Se eleva los tiempos al cuadrado y se grafica con el desplazamiento esto nos da una recta que, su pendiente, será a=x/t 2 y de esta forma tenemos la ecuación posición. Ahora bien como son dos masas diferentes entonces tendremos dos ecuaciones pero, al derivar esa ecuación encontramos la velocidad de cada una y al volver a derivar encontramos la aceleración de cada sistema esto da los siguientes valores. v 1= 0,16t m/s v 2 =0,53t m/s a 1 =0,16m/s 2 a 2 =0,53m/s 2. Teniendo las anteriores aceleraciones del sistema se procede a hallar la gravedad con la siguiente ecuación g con lo que tenemos; g 1 = 3,36 m/s 2 y g 2 = 5,83 m/s 2. Aquí vemos que las gravedades son muy distintas a la que debería ser. Para Uníllanos la gravedad está establecida por los estudiantes de física como 9,6m/s 2 cosa que difiere mucho de los datos nuestros. Esto se debe a que el sistema pudo tener mucha fricción, además tuvimos se tuvo demasiada incomodidad por que el sistema quedo muy bajo y esto provocaba que la toma de datos se alterará. De otra parte el hilo no era total mente inextensible por lo que esto también altero el sistema y la polea tenia cierto defecto en su eje cosa que hacía que el movimiento no fuera uniforme. Sin embargo los errores cometidos según la teoría de errores fue bajito para el tiempo es de t 1 =2,14% y t 2 =1,6%. Por último se concluye según el análisis que los datos tomados no son confiables. Preguntas generadoras - Enunciar cada una de las leyes de Newton y explicarlas. Son acerca del movimiento la primera es la inercia, segunda es fuerza y aceleración y la tercera es la de acción y reacción. - En qué consiste la máquina de Atwood?. En hallar o identificar la velocidad adquirida al diferenciar las masas las cuales están unidas por un hilo inextensible y pendiendo de una polea. Esta es una fuerza común en muchas maquinas industriales. - Qué tipo de movimiento experimenta la máquina de Atwood? Explique. Experimenta un movimiento uniformemente acelerado ya que al diferenciar las masas se experimenta un movimiento como el de caída libre adquiriendo más velocidad y aceleración por la atracción de la gravedad. - Cuáles son los elementos que deben tenerse en cuenta para garantizar que el experimento se realice bajo el modelo previsto?

6 Que el hilo sea inextensible, que las masas no choquen unas con otras, que la polea no tenga fricción. - Cuáles son las variables a considerar para analizar la máquina de Atwood y cómo deben medirse? Las variables son: masa, tiempo y distancia del suelo. - Qué parámetro físico se dispone a determinar usted en el desarrollo de sta práctica de laboratorio? cuáles son los parámetros que se deben medir para poder realizar esa determinación? Determinar la aceleración de la gravedad, además identificar las fuerzas que actúan en la maquia de Atwood y las tensiones de la cuerda. El parámetro que se debe medir es la distancia recorrida del cuerpo colgando y el intervalo de tiempo en el que lo recorre. - en cuanto se aleja el experimento real del modelo que se está realizando? Se alejan en poco, lo único es que los instrumentos estén funcionando correctamente y tratar de evitar la fricción máxima posible, de otra parte tratar de control la percepción humana ya que esta hace que el modelo experimental varié del original. - Cómo podrían calcularse, al menos globalmente las fricciones? Cómo es posible que se desprecie la fricción entre el hilo y la polea si la vida demuestra que si no hubiese fricción entre estos dos elementos entonces la polea no giraría? Se podría calcular teniendo en cuenta hacia donde actúa el movimiento que fuerza se le opone a él este sería una fricción global. Entre el hilo y la polea debe haber fricción lo que no debe haber fricción es en el movimiento de la polea con eje, esta si es la fricción que debe ignorar. - Cuáles deben ser las medidas de seguridad y precauciones que deben tenerse en cuenta para que para realizar este experimento? Por una lado que la cuerda que se use sea inextensible y que tenga un peso tan pequeño que se pueda ignorar, además que la polea gire sin ninguna dificulta y pueda hacer giros completos sin ningún problema, además que sea totalmente redondo para que no se altere el sistema. - Cuáles son los errores evitables y cuales los sistemáticos que se deben presentar en este experimento? Los errores evitables son aquellos como que la cuerda no pegue contra otro cuerpo, que no haya ninguna fuerza interviniendo en el sistema de tal forma que lo pueda alterar. Los errores sistemáticos son aquellos inevitables y entre ellos tenemos la toma de medidas. Conclusiones. - El valor que se estimo para la aceleración de la gravedad es g 1 = 3,36 m/s 2 y g 2 = 5,83 m/s 2 cosa que según el análisis hecho los datos tomados no son confiables y por lo tanto estas aceleraciones de gravedad no son aceptables. - Para los datos obtenidos se hizo una grafica de posición la cual responde a las siguientes funciones: x 1 =0,08t 2, x 2 =0,27t 2 luego como dio una curva fue necesario hacer linealización, por lo cual, esta linealizaciones, nos ayudaron a encontrar las funciones anteriores, luego estas funciones se derivaron para hallar velocidades y aceleraciones, para finalmente obtener el valor de la gravedad. - Los valores que nos dieron de gravedad fueron muy bajos debido a los errores cometidos en la toma de datos. Los intervalos para la gravedad y la aceleración de los sistemas fueron. a 1 =(3,36 ± 0,16)m/s 2 Y a 2 =(0,53 ± 2,5x10-2 )m/s 2. g 1 =(5,83 ± 0,28)m/s 2 Y g 2 =(5,83 ± 0,28)m/s 2 Bibliografía - www. wikipedia.com la enciclopedia libre - Investiguemos 10. Física editorial voluntad. - Fidel Rodríguez Puerta. Física Interactiva I. Edición Universidad de los Llanos Resnick-Halliday. Toma I. Mecánica. Ediciones reverté.

7 ANEXOS N 1 - Dos masas de 100g y una de 10g: Durante la práctica se tuvo a favor un juego de masas para colocar en el sistema maquina de Atwood. El material que compone las masas es cobre. Son de forma cilíndrica y cuentan con un gancho a sus extremos que es del mismo material. Específicamente en esta práctica solo se utilizo cuatro masa dos de 100g, una de 10g y una masa de 20g. - Polea. Es una polea de pasta con color amarillo. Se utiliza para que las masas recorran las distancias establecidas, es decir la masas penden de esta polea por medio de un hilo. - Hilo inextensible. Este hilo es de longitud de 1,8m, a los extremos del mismo se colocan las masas y el hilo coloca encima de la polea. Es inextensible para que no altere el sistema. - Regla. Es una regla de madera de un metro de longitud, es utilizada para medir la distancia que recorre las masas. - Cronómetro Analógico: este dispositivo es usado para medir el tiempo de duran las masas para recorrer los intervalos establecidos. - Tornillo de nuez. Es un instrumento metálico que tiene una concavidad de la cual sale una varilla. La concavidad facilita la adición a la pared y la varilla facilita la fijación de la polea.

LABORATORIO DE MECÁNICA MOVIMIENTO DE PROYECTILES

LABORATORIO DE MECÁNICA MOVIMIENTO DE PROYECTILES No 3 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar el movimiento de proyectiles. 2. Identificar los valores para cada

Más detalles

EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON

EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON INTRODUCCIÓN La segunda ley de Newton relaciona la fuerza total y la aceleración. Una fuerza neta ejercida sobre un objeto lo acelerará, es decir, cambiará su velocidad.

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR

INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

EL RESORTE ELÁSTICO DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE: MÉTODO ESTÁTICO

EL RESORTE ELÁSTICO DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE: MÉTODO ESTÁTICO 1 EL RESORTE ELÁSTICO DETERMINACIÓN DE LA CONSTANTE ELÁSTICA DE UN MUELLE: MÉTODO ESTÁTICO 1. Comprobar la ley de Hooke y determinar la constante elástica de un resorte por el método estático. 2. Analizar

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía dinámica. En general, los problemas de dinámica se resuelven aplicando 3 pasos: 1º Dibuje un diagrama de cuerpo libre para cada cuerpo involucrado en el sistema. Es decir, identifique todas las fuerzas

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

DINÁMICA DE ROTACIÓN DE UN SÓLIDO

DINÁMICA DE ROTACIÓN DE UN SÓLIDO Laboratorio de Física General Primer Curso (Mecánica) DINÁMICA DE ROTACIÓN DE UN SÓLIDO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la ley de la dinámica de rotación de un sólido rígido alrededor

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA I

UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA I UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGÍA I. DATOS DE IDENTIFICACIÓN PLAN GLOBAL LABORATORIO DE FÍSICA BÁSICA I Nombre de la materia: Laboratorio de Física Básica I Código: 2006085

Más detalles

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA FISICA I (FIS- 100) ASIGNATURA:. Física I SIGLA Y CODIGO:... FIS 100 CURSO:.. Primer Semestre PREREQUISITOS: Ninguno HORAS SEMANAS:... 4 Teóricas y 4

Más detalles

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF.

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF. GRUPO # 4 to Cs PRACTICA DE LABORATORIO # 3 Movimientos horizontales OBJETIVO GENERAL: Analizar mediante graficas los diferentes Tipos de Movimientos horizontales OBJETIVOS ESPECIFICOS: Estudiar los conceptos

Más detalles

María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999

María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 En el presente trabajo nos proponemos estimar el valor de la aceleración de la

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

EXPERIMENTO A TRAVÉS DEL SISTEMA DE POLEAS. (Aplicando las Leyes de Newton)

EXPERIMENTO A TRAVÉS DEL SISTEMA DE POLEAS. (Aplicando las Leyes de Newton) República bolivariana de Venezuela Ministerio del poder popular para la educación universitaria Universidad nacional experimental de los llanos occidentales Ezequiel Zamora Guasdualito Distrito Alto Apure

Más detalles

Movimiento rectilíneo uniformemente acelerado

Movimiento rectilíneo uniformemente acelerado Movimiento rectilíneo uniormemente acelerado Objetivo General El alumno estudiará el movimiento rectilíneo uniormemente acelerado Objetivos particulares 1. Determinar experimentalmente la relación entre

Más detalles

Fuerzas de Rozamiento

Fuerzas de Rozamiento Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina romibaldi@hotmail.com Viale, Tatiana tatianaviale@hotmail.com Objetivos Estudio de las fuerzas

Más detalles

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

LABORATORIO DE MECANICA INERCIA ROTACIONAL

LABORATORIO DE MECANICA INERCIA ROTACIONAL No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.

Más detalles

SEGUNDA LEY DE NEWTON. MÁQUINA DE ATWOOD (SISTEMA DE FOTOCOMPUERTA Y POLEA).

SEGUNDA LEY DE NEWTON. MÁQUINA DE ATWOOD (SISTEMA DE FOTOCOMPUERTA Y POLEA). SEGUNDA LEY DE NEWTON. MÁQUINA DE ATWOOD (SISTEMA DE FOTOCOMPUERTA Y POLEA). Physics Labs with Computers. PASCO. Actividad Práctica 10. Teacher s Guide Volumen 1. Pág. 89. Student Workbook Volumen 1. Pág.

Más detalles

Péndulo en Plano Inclinado

Péndulo en Plano Inclinado Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: banfa@sion.com - Matías Benitez: matiasbenitez@fibertel.com.ar y Victoria Crawley: v_crawley@hotmail.com Resumen El

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 1 Estática y Cinemática A ENTREGAR POR EL ALUMNO

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 1 Estática y Cinemática A ENTREGAR POR EL ALUMNO LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA A ENTREGAR POR EL ALUMNO Ing. RONIO GUAYCOCHEA Ing. MARCO DE NARDI Lic. FABRIZIO FRASINELLI Ing. ESTEBAN LEDROZ AÑO 2014 1 ESTÁTICA CUESTIONARIO 1. Que es una magnitud

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión.

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. EL GIRÓSCOPO 1. OBJETIVOS Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. 2. FUNDAMENTO TEÓRICO. Un giróscopo es un disco en rotación construido

Más detalles

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA FUERZA CENRÍPEA OBJEIVO Estudiar los efectos de la fuerza centrípeta en un objeto que describe una trayectoria circular, al variar la masa del objeto, y el radio del círculo que describe en su movimiento.

Más detalles

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Desplazamiento, rapidez, velocidad y aceleración Pero un movimiento (un cambio

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Dependencia de la aceleración de un cuerpo en caída libre con su masa

Dependencia de la aceleración de un cuerpo en caída libre con su masa Dependencia de la aceleración de un cuerpo en caída libre con su masa Ramón Ramirez 1 y Guillermo Kondratiuk 2 E. E. T. N 4 Profesor Jorge A. Sábato, Florencio Varela, Buenos Aires 1 rar14@uolsinectis.com.ar

Más detalles

Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos.

Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos. Taller de lectura 3 : Cinemática Cinemática, es el estudio del movimiento sin atender a sus causas. Se entiende por movimiento, el cambio de posición de una partícula con relación al tiempo y a un punto

Más detalles

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA

LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA No 5 LABORATORIO DE MECÁNICA FRICCIÓN ESTÁTICA Y DINÁMICA DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos OBJETIVOS Objetivo general. El propósito de esta

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO

LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO No 4 LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO MOVIMIENTO PARABOLICO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BASICAS Objetivos Encontrar la velocidad inicial

Más detalles

GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL

GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO AREA DE TECNOLOGIA DEPARTAMENTO DE FÍSICA Y MATEMATICA COORDINACION DE LABORATORIOS DE FÍSICA GUÍAS DE LOS LABORATORIO

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación.

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS COEFICIENTE DE FRICCIÓN 1. OBJETIVO Estudio

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

F 0 + F 1 C) ( F 0 + F 1 )/2 D) F 0 E) 0 F 0 M fig. 18 F 1 6. Un avión y un auto deportivo están moviéndose con MRU, en la misma dirección. Respecto de las fuerzas que se ejercen sobre estos cuerpos es

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

MEDIDA DE g. EL PÉNDULO FÍSICO

MEDIDA DE g. EL PÉNDULO FÍSICO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3. NOMBRE CURSO: Segundo FECHA: 27 DE JUNIO AL 8 DE JULIO

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3. NOMBRE CURSO: Segundo FECHA: 27 DE JUNIO AL 8 DE JULIO INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3 Tema: Gráficas del Movimiento Uniformemente Acelerado (MRUA) Objetivos de Aprendizaje: - Interpretar gráficos del MRUA -Calcular

Más detalles

COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS

COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS Adaptación del Experimento Nº 4 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 51-54. Autorizado por el Autor. Materiales: Mesa de

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

Síntesis Examen Final

Síntesis Examen Final Síntesis Examen Final Presentación El siguiente material permitirá repasar los contenidos que se evaluarán en el Examen Final de la Asignatura que estudiamos durante el primer semestre y/o revisamos en

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

Guías de Prácticas de Laboratorio

Guías de Prácticas de Laboratorio Guías de Prácticas de Laboratorio Laboratorio de: (5) FÍSICA CALOR Y ONDAS Número de Páginas: (2) 6 Identificación: (1) Revisión No.: (3) 0 Fecha Emisión: (4) 2011/08/31 Titulo de la Práctica de Laboratorio:

Más detalles

LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE

LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE LABORATORIO Nº 1 MOVIMIENTO EN CAÍDA LIBRE I. LOGROS Determinar experimentalmente el valor de la aceleración de la gravedad. Analizar el movimiento de un cuerpo mediante el Software Logger Pro. Identificar

Más detalles

Práctica 2 sobre mediciones de velocidad promedio y aceleración.

Práctica 2 sobre mediciones de velocidad promedio y aceleración. Práctica 2 sobre mediciones de velocidad promedio y aceleración. Daniela Isabel Aranda Cabrera, Hector Jesus Carrillo Reveles, Jose Maria Barbosa Alvarado, Marco Antonio Carmona Torres 1 Universidad de

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN FUERZAS CONCURRENTES Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN En este laboratorio lo que se hizo inicialmente fue tomar diferentes masas y ponerlas en la mesa de fuerzas de esa manera precisar

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES DETERMINACIÓN DE LA CONSTANTE UNIERSAL DE LOS GASES La ley general de los gases relaciona la presión P, el volumen, la temperatura T, el número de moles n, y la constante universal de los gases R, como

Más detalles

ESTUDIO DE UN MODELO NO LINEAL EL CASO DEL PÉNDULO SIMPLE II. OBJETIVOS. Al finalizar esta práctica, el alumno será capaz de:

ESTUDIO DE UN MODELO NO LINEAL EL CASO DEL PÉNDULO SIMPLE II. OBJETIVOS. Al finalizar esta práctica, el alumno será capaz de: ESTUDIO DE UN MODELO NO LINEAL EL CASO DEL PÉNDULO SIMPLE II Abraham Vilchis Uribe. OBJETIVOS. Al finalizar esta práctica, el alumno será capaz de: Encontrar la relación que existe entre la longitud L,

Más detalles

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica. Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre

Más detalles

FÍSICA EXPERIMENTAL I. Péndulo Simple. Mediciones de Período para amplitudes mayores a 7. 11/11/2013

FÍSICA EXPERIMENTAL I. Péndulo Simple. Mediciones de Período para amplitudes mayores a 7. 11/11/2013 FÍSICA EXPERIMENTAL I Péndulo Simple Mediciones de Período para amplitudes mayores a 7. 11/11/2013 Autores: Grigera Paladino, Agustina (agrigerapaladino@yahoo.com.ar) Lestani, Simón Exequiel (saimon_l_f@hotmail.com)

Más detalles

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física. martes, 19 de marzo de 13

FÍSICA MECÁNICA. Dino E. Risso Carlos K. Ríos Departamento de Física.  martes, 19 de marzo de 13 FÍSICA MECÁNICA Dino E. Risso Carlos K. Ríos Departamento de Física http://maxwell.ciencias.ubiobio.cl/~drisso/wiki/ ANALISIS DIMENSIONAL Es una técnica para analizar las expresiones matemáticas de un

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

METODO DE LA BOLSA DE GATOS

METODO DE LA BOLSA DE GATOS - 1 - METODO DE LA BOLSA DE GATOS Este método sirve para calcular la aceleración de un sistema sin tener que hacer los diagramas de cuerpo libre. Este método dice lo siguiente : La aceleración de un sistema

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Serie de Dinámica MOVIMIENTO RECTILÍNEO

Serie de Dinámica MOVIMIENTO RECTILÍNEO Serie de Dinámica MOVIMIENTO RECTILÍNEO 1. En un ascensor en movimiento se pesa un cuerpo de 5 kg con una balanza de resorte. La balanza indica 5.1 kg. Halle la aceleración del ascensor. 2. Los pesos de

Más detalles

ASOCIACIÓN DE POLEAS

ASOCIACIÓN DE POLEAS ASOCIACIÓN DE POLEAS Dos objetos de masas m 1 y m 2 cuelgan de un conjunto de poleas combinadas de dos formas distintas (asociación A y B). Calcula en qué condiciones el conjunto se encuentra en equilibrio.calcula

Más detalles

Magnitud experimental Fr (N)

Magnitud experimental Fr (N) Universidad de Antofagasta Facultad de Ciencias Básicas Departamento de Física Asignatura: Biofísica Carrera: Medicina Objetivos: Comprobar que las fuerzas obedecen a la operación de adición de vectores.

Más detalles

Movimiento rectilíneo uniforme y uniformemente variado. Introducción

Movimiento rectilíneo uniforme y uniformemente variado. Introducción Movimiento rectilíneo uniforme y uniformemente variado Introducción La cinemática es parte de la mecánica que se encarga del estudio del movimiento sin importarle las causas que lo producen. En este caso

Más detalles

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS Fuerza que ejerce el cenicero sobre el libro (Fuerza Normal): N 1 Fuerza que ejerce la mesa sobre el libro (Fuerza Normal): N 2 Fuerza de atracción que ejerce el planeta tierra sobre el libro (Peso del

Más detalles

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS?

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS? EQUIVALENCIAS 1 kgf = 9.8 N 1 kp = 1 kgf 1 kp = 9.8 N 1 dina = 1x10-5 N 1 lbf = 4.44 N 1 pdl = 0.1382 N Kgf = kilogramos fuerza kp = kilopondio N = Newton dina = dina lbf = libra fuerza pdl = poundal CONVERSIONES:

Más detalles

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 III. Péndulo simple

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Cálculo aproximado de la carga específica del electrón Fundamento

Cálculo aproximado de la carga específica del electrón Fundamento Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta

Más detalles

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado.

El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. Departamento de Física Aplicada Universidad de Cantabria 3 Diciembre 013 Resumen

Más detalles

No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos

No 10 LABORATORIO DE ELECTROMAGNETISMO CARGA Y DESCARGA DE CONDENSADORES. Objetivos No 10 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Determinar la constante de tiempo RC, utilizando valores calculados

Más detalles

INFORME PRÁCTICANUMERO DOS MEDIDA DEL COEFICIENTE DE ROZAMIENTO DE DOS SUPERFICIES

INFORME PRÁCTICANUMERO DOS MEDIDA DEL COEFICIENTE DE ROZAMIENTO DE DOS SUPERFICIES INFORME PRÁCTICANUMERO DOS MEDIDA DEL COEFICIENTE DE ROZAMIENTO DE DOS SUPERFICIES GRUPO: Nº 7 INTEGRANTES: MAGALY GÓMEZ CHÁVEZ 1410022727 MARÍA DEL ROSARIO BARRETO SALINAS 141002806 MECANICA UNIVERSIDAD

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

Estática. Principios Generales

Estática. Principios Generales Estática 1 Principios Generales Objetivos Cantidades básicas e idealizaciones de la mecánica Leyes de Newton de movimiento y gravitación SI sistema de unidades y uso de prefijos Cálculo numérico Consejos

Más detalles

CINEMÁTICA GUÍA DE LABORATORIO # 3 CAÍDA LIBRE. Contenido. Introducción Marco Teórico Actividades Motivadoras Materiales...

CINEMÁTICA GUÍA DE LABORATORIO # 3 CAÍDA LIBRE. Contenido. Introducción Marco Teórico Actividades Motivadoras Materiales... aaaaa Aaaaa CINEMÁTICA CAÍDA LIBRE 2 CINEMÁTICA GUÍA DE LABORATORIO # 3 CAÍDA LIBRE Contenido Introducción... 3 Marco Teórico... 4 Actividades Motivadoras... 5 Materiales... 6 Procedimiento... 7 Análisis

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO

ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO ADAPTACIÓN CURRICULAR TEMA 9 CIENCIAS NATURALES 2º ESO 1ª) Qué es el movimiento? Es el cambio de posición que experimenta un cuerpo, al transcurrir el tiempo, respecto de un sistema de referencia que consideramos

Más detalles

Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 2006 Domitila González PENDULO FÍSICO

Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 2006 Domitila González PENDULO FÍSICO Laboratorio de Física Universitaria 1. Péndulo Físico. Pimavera 006 PENDULO FÍSICO Autor: M. en C. Patiño Fecha: Primaverao 006 OBJETIVOS Encontrar la relación que existe entre la longitud L, y El periodo

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

Práctica de Óptica Geométrica

Práctica de Óptica Geométrica Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2

Más detalles

C.P.F.P.A. San Francisco de Asís. Dolores. EJERCICIOS 2ª EVALUACIÓN. FÍSICA

C.P.F.P.A. San Francisco de Asís. Dolores. EJERCICIOS 2ª EVALUACIÓN. FÍSICA EJERCICIOS 2ª EVALUACIÓN. FÍSICA 1. Un tren de alta velocidad (AVE) viaja durante media hora con una velocidad constante de 252 Km/h. A continuación reduce su velocidad hasta pararse en 14 s. a) Describe

Más detalles

DPTO. DE DE FÍSICA ÁREA. y Tiro

DPTO. DE DE FÍSICA ÁREA. y Tiro UNIVERSIDAD AUTÓNOMA CHAPINGO DPTO. DE PREPARATORIA AGRÍCOLA ÁREA DE FÍSICA Caída Libre y Tiro Vertical Guillermo Becerra Córdova E-mail: gllrmbecerra@yahoo.com 1 TEORÍA La Cinemática es la ciencia de

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles