Introducción a la Programación Lineal

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la Programación Lineal"

Transcripción

1 UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla siguiente proporciona los datos básicos del problema Producto Componente Materia prima, M Materia prima, M Utilidad por toneladas (miles de $) Pinturas para Pinturas para eteriores interiores Disponibilidad diaria máima (toneladas) 4 6 Una encuesta de mercado indica que: la demanda diaria de pintura para interiores no puede ser mayor que tonelada más que la pintura para eteriores. También, que la demanda máima diaria de pintura para interiores es de toneladas. Reddy desea determinar la mezcla óptima (la mejor) de productos para eteriores y para interiores que maimice la utilidad diaria total.

2 El modelo de programación lineal, como en cualquier modelo de investigación de operaciones, tiene tres componentes básicos: Las variables de decisión que se trata de determinar El objetivo (la meta) que se trata de optimizar Las restricciones que se deben satisfacer Definimos las variables: =toneladas producidas diariamente, de pintura para eteriores =toneladas producidas diariamente, de pintura para interiores Para formar la función objetivo, la empresa desea aumentar sus utilidades todo lo posible. Si Z representa la utilidad diaria total (en miles de dólares), el objetivo de la empresa se epresa así: Maimizar Z=5 +4 A continuación se definen las restricciones que limitan el uso de las materias primas y la demanda: (uso de la materia prima para ambas pinturas)=(disponibilidad máima de materia prima) Según los datos del problema: Uso de la materia prima M, por día = 6 +4 toneladas Uso de la materia prima M, por día = + toneladas Ya que la disponibilidad de las materias primas M y M se limita a 4 y 6 toneladas, respectivamente, las restricciones correspondientes se epresan: (materia prima M) + 6 (materia prima M)

3 La primera restricción de la demanda indica que la diferencia entre la producción diaria de pinturas para interiores y eteriores, -, no debe ser mayor que tonelada, y eso se traduce en: -. La segunda restricción de la demanda estipula que la demanda máima diaria de pintura para interiores se limita a toneladas, y eso se traduce como:. Una restricción implícita (o que se sobreentiende ) es que las variables y no pueden asumir valores negativos. Las restricciones de no negatividad: 0 y 0. El modelo de Reddy Mikks completo es: Maimizar: Z = Sujeto a: , 0

4 EJEMPLOS INICIALES DE PROGRAMACION LINEAL. Una firma industrial elabora dos productos, en las cuales entran cuatro componentes en cada uno. Hay una determinada disponibilidad de cada componente y un beneficio por cada producto. Se desea hallar la cantidad de cada artículo que deba fabricarse, con el fin de maimizar los beneficios. El siguiente cuadro resume los coeficientes de transformación. O sea la cantidad de cada componente que entra en cada producto. Producto Componente A B C D Beneficios US$Unidad P P 4 Disponibilidad (kilogramos) Solución

5 = Nº de Unidades de Producto P = Nº de Unidades de Producto P Dado que y pueden tomar distintos valores reciben el nombre de "variables". Analizando ahora el componente A del cuadro de coeficientes de transformación se tiene: Si en una unidad del Producto P entra Kg. Del componente A, en unidades de P entrarán. [ ] Kg de componente Unidad de P ( Unidades de P ) y para el producto P : [ ] Kg de componente Unidad de P ( Unidades de P ) Dado que la restricción impuesta dice que la disponibilidad del componente A es de Kg es evidente que la suma de las epresiones anteriores deberá ser menor, a lo sumo igual a Es decir Kg constituye el máimo disponible de la componente A. Entonces eliminando las unidades de medida, se epresan en forma matemática de la siguiente forma: Aplicando el mismo análisis a los componentes B, C, y D, se tendrán las siguientes inecuaciones:

6 Ahora bien, si el producto P genera un beneficio de US$4 por unidad, unidades producirá un beneficio de US$ 4 y para el producto P, serán soles de beneficio. El beneficio total puede epresarse entonces como suma de los beneficios que deja cada producto. Entonces: Z = 4 + Pero lo que nosotros queremos es que este beneficio no sólo sea grande, sino que sea el mayor de todos; en una palabra, que sea máimo. Entonces el programa lineal correspondiente es: Sujeto a: Z = , 0. La Compañía "PROLANSA" produce tornillos y clavos. La materia prima para los tornillos cuesta US$,00 por unidad, mientras que la materia prima para cada clavo cuesta US$,50. un clavo requiere dos horas de mano de obra en el departamento Nº y tres horas en el departamento Nº, mientras que un

7 tornillo requiere cuatro horas en el departamento Nº y dos horas en el departamento Nº. El jornal por hora en cada departamento es de US$,00. Si ambos productos se venden a US$8,00, y el número de horas de mano de obra disponibles por semana en los departamentos es de 60 y 80 respectivamente, epresar el problema propuesto como un programa lineal, tal que maimicen las utilidades. Solución = Nº de tornillos/semana = Nº de clavos/semana Utilidad = venta - costo Costo de los tornillos = 6 + US$US$ /Unid. = US$ Unid + US$ /Unid. = US$4 /Unid. = US$4 /Unid. Utilidad = 8-4 = US$4 /Unid. Costo de los clavos = 5 +,5 = US$,5 /Unid. = US$,5 /Unid. Utilidad = 8,5 = US$5,50 /Unid. Por lo tanto el programa lineal es: Sujeto a: Ma Z = 4 + 5, ,

8 . Un fabricante produce tres modelos (I, II y III) de un cierto producto, y usa dos tipos de materia prima (A y B), de los cuales se tienen disponibles 000 y 000 unidades respectivamente. Los requisitos de materia prima por unidad de los modelos son: MATERIA PRIMA A B REQUISITOS POR UNIDAD DE MODELO DADA I II III El tiempo de mano de obra por cada unidad del modelo I es dos veces el modelo II y tres veces el modelo III. La fuerza laboral completa de la fábrica pudo producir el equivalente de 700 unidades del modelo I. Una encuesta de mercado indica que la demanda mínima de los tres modelos es 00, 50 y 50 unidades respectivamente. Sin embargo, las relaciones del número de unidades producidas deben ser iguales a : : 5. Supongamos que los beneficios por unidad de los modelos I, II y III son 0, 0 y 50 unidades monetarias. Formule el problema como un modelo de Programación lineal a fin de determinar el número de unidades de cada producto que maimiza el beneficio. Solución = Cantidad de Producción del Modelo I = Cantidad de Producción del Modelo II = Cantidad de Producción del Modelo III Función Objetivo

9 Ma Z = 0 + Sujeto a: ) Con respecto a Materia Prima ) Con respecto a la Demanda Mínima ) Relación de las unidades producidas =, =, 5 = 5 4) Condición Laboral ) Condiciones de no negatividad 0, 0, 0 4. Para una cafetería que trabaja 4 horas se requiere las siguientes meseras: HORAS DEL DIA NÚMERO MÍNIMO DE MESERAS - 6 4

10 Cada mesera trabaja 8 horas consecutivas por día. El objeto es encontrar el número más pequeño requerido para cumplir los requisitos anteriores. Formule el problema como un modelo de Programación Lineal. Solución = Cantidad de meseras que ingresan en el turno i i =,6 Función Objetivo Sujeto a: Min Z = Turno : Turno : + 8 Turno : + 0 Turno 4: Turno 5: Turno 6: i =,, 6 i Turno horas

11 Considere una Compañía que debe elaborar dos productos en determinado período (un trimestre) la Compañía puede pagar por materiales y mano de obra, con dinero obtenido de dos fuentes: fondos de la compañía (propio) y préstamos. La Compañía enfrenta tres decisiones. a. Cuántas unidades debe producir del producto? b. Cuántas unidades debe producir del producto? c. Cuánto dinero debe obtener prestado para apoyar la producción de los dos modelos? Al tomar estas decisiones la compañía desea Maimizar la ganancia sujeta a las condiciones siguientes: i. Los productos de la compañía disfrutan de un mercado de ventas por lo tanto la empresa puede vender tantas unidades como pueda producir, más aún la cantidad producida no tiene efectos en los

12 precios del mercado ya que el volumen de producción de la compañía es pequeño con relación al volumen del mercado total. Por lo tanto a la Empresa le gustaría producir tantas unidades como fuera posible dentro de las restricciones financieras y de capacidad de su fábrica, estas restricciones junto con los datos de los costos y precios se dan en tabla adjunta. ii. Los fondos propios de la Compañía disponibles durante el período son US$0 000 iii. Un banco prestará hasta US$0 000 por trimestre a una tasa de interés del 5% por trimestre, si la razón financiera conocida como la Prueba del ácido, de la compañía permanece en una proporción de a como mínimo mientras eiste el adeudo. Recuerda que la prueba del ácido esta dada por la RAZON DE EFECTIVO más cuentas por cobrar a cuentas por pagar. iv. Como se observa en la figura adjunta, los pagos por mano de obra y materia prima se hacen al final del período de producción, por lo tanto el crédito necesario se obtiene en ese momento, los envíos de los productos fabricados, se hacen a crédito al final del período de producción. Finalmente el ingreso por ventas se recibe al final del siguiente período. Producto Precio de Venta Costo de Producción Horas Disponibles por Trimestre Horas para Producir una Unidad en el Dpto. A B C 0,5 0, 0, 0, 0,4 0, Solución:

13 = Unidades del producto = Unidades del producto = Cantidad obtenida por el préstamo Producto P.V. C.P. Horas por Producir A B C Horas disponibles i 0,5 0, 0, 0,4 0, 0, ( 4 ) U = 0 U ( ) = 8 U = 0, 05 Ma Z Sujeto a: = , 05 0, 0, 0 0,5 + 0, ( ) + 0,05 + 0,4 + 0,, + 8, Fondos de la compañia Préstamo

14 Prueba ácida = Efectivo + cuenta por cobrar Cuenta por pagar ( ) =, ,

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades.

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades. Aplicaciones de máimos y mínimos. Criterio de la segunda Derivada: Sea f una función tal que f eiste en un intervalo ]a, b[, que contiene al número crítico c. a) Si f (c) > 0, entonces la función tiene

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar:

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar: TRABAJO PRÁCTICO N : FUNCIONES DE UNA VARIABLE REAL ASIGNATURA: MATEMÁTICA LIC. ADMINISTRACIÓN - LIC. TURISMO - LIC. HOTELERÍA - 05 ) Epresar los intervalos como conjuntos y los conjuntos en forma de intervalos

Más detalles

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003 SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

CAPÍTULO 4 Funciones Económicas

CAPÍTULO 4 Funciones Económicas CAPÍTULO 4 Funciones Económicas Introducción La actividad económica surge de la necesidad de utilizar recursos para producir los bienes materiales que satisfacen los deseos del hombre, ya sean básicos

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Componentes de capital Son las cuentas a la derecha del balance general. Costo del componente Es el costo de cada una de las fuentes de financiación.

Componentes de capital Son las cuentas a la derecha del balance general. Costo del componente Es el costo de cada una de las fuentes de financiación. Costo de Capital Definiciones Básicas Componentes de capital Son las cuentas a la derecha del balance general Costo del componente Es el costo de cada una de las fuentes de financiación. Cuáles son los

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

Método Gráfico. Dr. Mauricio Cabrera

Método Gráfico. Dr. Mauricio Cabrera Método Gráfico Dr. Mauricio Cabrera Problema Introductorio La Wyndor Glass Co. Produce artículos de vidrio de alta calidad, incluidas ventanas y puertas de vidrio que incluyen trabajo manual y la mejor

Más detalles

UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA. de programación lineal entera. lineal entera.

UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA. de programación lineal entera. lineal entera. UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA de programación lineal entera. lineal entera. Investigación de operaciones Introducción En la unidad aprendimos a resolver modelos de P. L. por el método símple y el

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

FINANZAS III MATERIAL DE APOYO- SEGUNDO PARCIAL GRUPO PACE. LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN

FINANZAS III MATERIAL DE APOYO- SEGUNDO PARCIAL GRUPO PACE. LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN PLANTEAMIENTO DEL PROBLEMA El Consejo de Administración de Proyectos Exitosos, S. A. decide desarrollar un proyecto para producir tornos

Más detalles

INSTITUCIÓN UNIVERSITARIA ESUMER

INSTITUCIÓN UNIVERSITARIA ESUMER INSTITUCIÓN UNIVERSITARIA ESUMER UNIDAD DE ESTUDIOS EMPRESARIALES Y DE MERCADEO ESPECIALIZACIÓN GERENCIA DE PROYECTOS MÓDULO NO 2 EVALUACIÓN FINANCIERA DEL PROYECTO GUÍAS DEL CURSO - CLASE NO 3 OBJETIVOS

Más detalles

Finanzas Internacionales: Capítulo 3: Forward Sintéticos

Finanzas Internacionales: Capítulo 3: Forward Sintéticos Finanzas Internacionales: Capítulo 3: Forward Sintéticos U n i v e r s i d a d N a c i o n a l d e P i u r a F a c u l t a d d e E c o n o m í a Profesor: Julio César Casaverde Vegas P i u r a J u n i

Más detalles

Suscripciones Administración Reclamos Formule un modelo de programación lineal.

Suscripciones Administración Reclamos Formule un modelo de programación lineal. EJERCICIOS DE APLICACIÓN 1) Par, Inc. es un pequeño fabricante de equipo y material de golf. El distribuidor de Par cree que existe un mercado tanto para una bolsa de golf de precio moderado, llamada modelo

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b.

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b. Universidad de Talca. Matemáticas II Algunas aplicaciones de la Integral indefinida 1) Excedente (Superávit) de Consumidor y Productor El precio de equilibrio es aquel en que la demanda de un producto

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

Herramientas para definir y optimizar los costos de su empresa

Herramientas para definir y optimizar los costos de su empresa Herramientas para definir y optimizar los costos de su empresa 1. Definición El costo es el valor monetario de los elementos que requiere el ejercicio de una actividad económica destinada a la producción

Más detalles

COSTO DE CAPITAL COSTO DE CAPITAL COSTO DE CAPITAL COSTO DE CAPITAL BALANCE GENERAL COSTO DE CAPITAL BALANCE GENERAL. M.Sc. Roberto Solé M.

COSTO DE CAPITAL COSTO DE CAPITAL COSTO DE CAPITAL COSTO DE CAPITAL BALANCE GENERAL COSTO DE CAPITAL BALANCE GENERAL. M.Sc. Roberto Solé M. CONCEPTO: Tasa de rendimiento mínimo que una empresa desea obtener sobre sus inversiones en proyectos por renunciar a un uso alternativo de esos recursos, bajo niveles de riesgo similares, y satisfacer

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Modelos de Programación Matemática

Modelos de Programación Matemática Modelos de Programación Matemática Las proposiciones matemáticas, en cuanto tienen que ver con la realidad, no son ciertas; y en cuanto que son ciertas, no tienen nada que ver con la realidad A. Einstein

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE PRIMER GRADO CONCEPTOS ECUACIÓN es una igualdad entre dos epresiones algebraicas que contienen elementos desconocidos llamados incógnitas. RAÍZ O SOLUCIÓN de una

Más detalles

FUENTES DEL CAPITAL CAPITAL INICIAL. Sociedades abiertas. Sociedades cerradas. Crédito Bancario. Nuevas emisiones accionarias

FUENTES DEL CAPITAL CAPITAL INICIAL. Sociedades abiertas. Sociedades cerradas. Crédito Bancario. Nuevas emisiones accionarias FUENTES DEL CAPITAL CAPITAL INICIAL PROPIO PRESTADO Sociedades abiertas Sociedades cerradas Crédito Bancario Nuevas emisiones accionarias Mayor aporte de socios existentes Asociar Capital (aporte de nuevos

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

Horas requeridas producto B

Horas requeridas producto B 1. J&M Winery fabrica dos tipos de Chardonnay, uno con etiqueta económica y otro con etiqueta especial. Han firmado un contrato de venta de 30.000 cajas de Chardonnay y están seguros que podrán vender

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange

Extremos condicionados. APUNTE: Extremos condicionados Multiplicadores de Lagrange APUNTE: Etremos condicionados Multiplicadores de Larane UNIVERSIDAD NACIONAL DE RIO NEGRO Asinatura: Matemática Carreras: Lic en Administración, Lic en Turismo, Lic en Hotelería Profesor: Prof Mabel Chrestia

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

El término productividad, con frecuencia, se confunde con el término producción. Muchas

El término productividad, con frecuencia, se confunde con el término producción. Muchas RESUMEN El término productividad, con frecuencia, se confunde con el término producción. Muchas personas piensan que a mayor producción más productividad, pero esto no es necesariamente cierto. Producción

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

Universidad de Managua Al más alto nivel

Universidad de Managua Al más alto nivel Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Programación Lineal MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ciencias Económicas

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Soluciones Segundo Nivel Infantil

Soluciones Segundo Nivel Infantil SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA FINAL "VIII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones Segundo Nivel Infantil 21 de mayo de 2011 1. El resultado de la siguiente

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Programación Lineal Encuentro #9 Tema: PROBLEMA DE ASIGNACIÓN Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /201 Objetivos: Resolver problemas de asignación

Más detalles

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN N ÍTEMS CALIFICACIÓN 1 Presenta la carátula 1 1.1 No presenta la carátula 0 2 Presenta la Introducción 1 2.1 No presenta la Introducción 0 3 Explica con precisión

Más detalles

Matemáticas Financieras. Sesión 3 Intereses

Matemáticas Financieras. Sesión 3 Intereses Matemáticas Financieras Sesión 3 Intereses Contextualización de la Sesión 3 En esta sesión iniciaremos con una nueva unidad. Comenzaremos con el interés simple, es muy importante dominar éste tema ya que

Más detalles

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral Moisés Villena Muñoz Cap. Aplicaciones de la Integral.1 ÁREAS DE REGIONES PLANAS. APLICACIONES ECONÓMICAS..1. CAMBIO NETO... EXCESO DE UTILIDAD NETA... GANANCIAS NETAS... EXCEDENTES DE CONSUMIDORES Y EXCEDENTE

Más detalles

Rentas Ciertas MATEMÁTICA FINANCIERA. Rentas Ciertas: Ejemplo. Rentas Ciertas. Ejemplo (1) C C C C C

Rentas Ciertas MATEMÁTICA FINANCIERA. Rentas Ciertas: Ejemplo. Rentas Ciertas. Ejemplo (1) C C C C C Rentas Ciertas MATEMÁTICA FINANCIERA RENTAS CIERTAS I Luis Alcalá UNSL Segundo Cuatrimeste 06 A partir de ahora, utilizaremos capitalización compuesta como ley financiera por defecto, salvo que expĺıcitamente

Más detalles

ASIGNACION DE COSTOS

ASIGNACION DE COSTOS ASIGNACION DE COSTOS Para asignar los costos se deben asignar primero los centros de responsabilidad. Centros de responsabilidad: Existen tres tipos de responsabilidades: centros de costos, donde solo

Más detalles

Cuando una empresa hace una inversión incurre en un desembolso de efectivo con el própósito de generar en el futuro beneficios económicos que

Cuando una empresa hace una inversión incurre en un desembolso de efectivo con el própósito de generar en el futuro beneficios económicos que Cuando una empresa hace una inversión incurre en un desembolso de efectivo con el própósito de generar en el futuro beneficios económicos que ofrezcan un rendimiento atractivo para quienes invierten. Evaluar

Más detalles

TALLER ANUALIDADES Y GRADIENTES Curso: Matemáticas Financieras

TALLER ANUALIDADES Y GRADIENTES Curso: Matemáticas Financieras 1. La ciudad Bella Villa ha recibido de la CAF (Corporación Andina de Fomento) un crédito de fomento por valor de 120 millones de USD destinado al proyecto de movilidad de la ciudad. Las condiciones de

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Luis Alberto Gómez C. Msc. Economía Noviembre, 2011

Luis Alberto Gómez C. Msc. Economía Noviembre, 2011 Luis Alberto Gómez C. Msc. Economía Noviembre, 2011 Qué es competencia perfecta? Muchas empresas venden productos idénticos a muchos compradores. No hay restricciones para entrar a la industria. Las empresas

Más detalles

TEMA 4: GASTOS E INGRESOS 1- LOS COSTES 2- LOS INGRESOS 3- EL RESULTADO DE LA EMPRESA 4- LAS ECONOMÍAS DE ESCALA

TEMA 4: GASTOS E INGRESOS 1- LOS COSTES 2- LOS INGRESOS 3- EL RESULTADO DE LA EMPRESA 4- LAS ECONOMÍAS DE ESCALA TEMA 4: 1- LOS COSTES 2- LOS INGRESOS 3- EL RESULTADO DE LA EMPRESA 4- LAS ECONOMÍAS DE ESCALA 1 1- LOS COSTES Los costes son los gastos en los que incurre la empresa en la producción por el uso de factores

Más detalles

Lección 12: Sistemas de ecuaciones lineales

Lección 12: Sistemas de ecuaciones lineales LECCIÓN 1 Lección 1: Sistemas de ecuaciones lineales Resolución gráfica Hemos visto que las ecuaciones lineales de dos incógnitas nos permiten describir las situaciones planteadas en distintos problemas.

Más detalles

Breve introducción a la Investigación de Operaciones

Breve introducción a la Investigación de Operaciones Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Bloque VI INTERESES, ANUALIDADES Y AMORTIZACIONES

Bloque VI INTERESES, ANUALIDADES Y AMORTIZACIONES Bloque VI INTERESES, ANUALIDADES Y AMORTIZACIONES Bloque 6 VI: Intereses anualidades y amortizaciones A. PRESENTACIÓN Cambia el valor del dinero con el paso del tiempo? http://www.youtube.com/watch?v=na-b70nyh2q

Más detalles

PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S. Aplicación: Títulos de deuda del gobierno mexicano y del sector privado que se venden con

PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S. Aplicación: Títulos de deuda del gobierno mexicano y del sector privado que se venden con PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S Factores básicos de las operaciones financieras Operaciones a interés simple Convenciones sobre la medición del tiempo Valor presente y valor

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala Clave: 03-2-M-2-00-203 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de matemática Curso: Matemática Básica 2 Código del curso: 03 Semestre: Segundo semestre 203 Tipo de eamen:

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS Ejemplo: Un minorista recibe un cargamento de 10.000 Kg. De arroz que se consumirán en un período de 5 meses a una razón constante de 2.000 kg. Por mes.

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales.

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales. UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones especiales. Investigación de operaciones Introducción Después de construir modelos matemáticos de programación lineal, necesitamos desarrollar

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

19. En un hospital existen tres áreas: Ginecología, Pediatría, Traumatología. El presupuesto anual del hospital se reparte conforme a la sig.

19. En un hospital existen tres áreas: Ginecología, Pediatría, Traumatología. El presupuesto anual del hospital se reparte conforme a la sig. ESTRUCTURAS SECUENCIALES 1. Lea desde el teclado el nombre y la edad de cualquier persona e imprima tanto el nombre como la edad 2. Lea dos números. Calcule la suma e imprima la suma y los dos números.

Más detalles

Tema 2: La elección racional del consumidor

Tema 2: La elección racional del consumidor Tema 2: La elección racional del consumidor Introducción. 1. La restricción presupuestaria. 2. Las preferencias del consumidor: 1. Las curvas de indiferencia 2. La relación marginal de sustitución 3. El

Más detalles

Ejercicios Propuestos

Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 1 Modelación Matemática. Programación

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,

Más detalles

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX.

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. 1. Un empresario tiene a su disposición dos actividades de producción lineales, mediante la contribución de tres insumos, fundición,

Más detalles

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief

APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief APLICACIÓN DE LAS MATRICES Modelos de Entrada-Salida de Leontief El modelo desarrollado por Wassily Leontief, es una aplicación interesante de las matrices, que fue útil para pronosticar los efectos en

Más detalles

U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U.

U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U. U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U. Nº: FIRMA: Ejercicios: 1) Que es la I.O.? 2) Realice una síntesis histórica

Más detalles

EBOOK: Introducción al Marketing

EBOOK: Introducción al Marketing Definición de Marketing Es el proceso de planificación, preciación, promoción, venta y distribución de ideas, bienes o servicios para crear intercambios que satisfagan clientes. La idea es que un negocio

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

PARTE 4 ANUALIDADES T E M A S

PARTE 4 ANUALIDADES T E M A S PATE 4 ANUALIDADES T E M A S Concepto de anualidad y aplicaciones principales Tipos principales de anualidades Valuación de anualidades ordinarias (vencidas) Valuación de anualidades adelantadas Construcción

Más detalles

Fundamentos de valor del dinero en el tiempo

Fundamentos de valor del dinero en el tiempo Fundamentos de valor del dinero en el tiempo Fundamentos básicos Dr. José Luis Esparza A. Valor del Dinero en el tiempo En la práctica, siempre es posible invertir el dinero, ya sea en un banco, en inversiones

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Función Cuadrática: Es toda función de la forma: f() = a ² + b + c con a, b, c números Reales Puede suceder que b ó c sean nulos, por ej: f() = ½ ² + 5 f() = 5 ² ¾ Pero a no puede ser = 0, de los contrario

Más detalles