Introducción a la Programación Lineal

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la Programación Lineal"

Transcripción

1 UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla siguiente proporciona los datos básicos del problema Producto Componente Materia prima, M Materia prima, M Utilidad por toneladas (miles de $) Pinturas para Pinturas para eteriores interiores Disponibilidad diaria máima (toneladas) 4 6 Una encuesta de mercado indica que: la demanda diaria de pintura para interiores no puede ser mayor que tonelada más que la pintura para eteriores. También, que la demanda máima diaria de pintura para interiores es de toneladas. Reddy desea determinar la mezcla óptima (la mejor) de productos para eteriores y para interiores que maimice la utilidad diaria total.

2 El modelo de programación lineal, como en cualquier modelo de investigación de operaciones, tiene tres componentes básicos: Las variables de decisión que se trata de determinar El objetivo (la meta) que se trata de optimizar Las restricciones que se deben satisfacer Definimos las variables: =toneladas producidas diariamente, de pintura para eteriores =toneladas producidas diariamente, de pintura para interiores Para formar la función objetivo, la empresa desea aumentar sus utilidades todo lo posible. Si Z representa la utilidad diaria total (en miles de dólares), el objetivo de la empresa se epresa así: Maimizar Z=5 +4 A continuación se definen las restricciones que limitan el uso de las materias primas y la demanda: (uso de la materia prima para ambas pinturas)=(disponibilidad máima de materia prima) Según los datos del problema: Uso de la materia prima M, por día = 6 +4 toneladas Uso de la materia prima M, por día = + toneladas Ya que la disponibilidad de las materias primas M y M se limita a 4 y 6 toneladas, respectivamente, las restricciones correspondientes se epresan: (materia prima M) + 6 (materia prima M)

3 La primera restricción de la demanda indica que la diferencia entre la producción diaria de pinturas para interiores y eteriores, -, no debe ser mayor que tonelada, y eso se traduce en: -. La segunda restricción de la demanda estipula que la demanda máima diaria de pintura para interiores se limita a toneladas, y eso se traduce como:. Una restricción implícita (o que se sobreentiende ) es que las variables y no pueden asumir valores negativos. Las restricciones de no negatividad: 0 y 0. El modelo de Reddy Mikks completo es: Maimizar: Z = Sujeto a: , 0

4 EJEMPLOS INICIALES DE PROGRAMACION LINEAL. Una firma industrial elabora dos productos, en las cuales entran cuatro componentes en cada uno. Hay una determinada disponibilidad de cada componente y un beneficio por cada producto. Se desea hallar la cantidad de cada artículo que deba fabricarse, con el fin de maimizar los beneficios. El siguiente cuadro resume los coeficientes de transformación. O sea la cantidad de cada componente que entra en cada producto. Producto Componente A B C D Beneficios US$Unidad P P 4 Disponibilidad (kilogramos) Solución

5 = Nº de Unidades de Producto P = Nº de Unidades de Producto P Dado que y pueden tomar distintos valores reciben el nombre de "variables". Analizando ahora el componente A del cuadro de coeficientes de transformación se tiene: Si en una unidad del Producto P entra Kg. Del componente A, en unidades de P entrarán. [ ] Kg de componente Unidad de P ( Unidades de P ) y para el producto P : [ ] Kg de componente Unidad de P ( Unidades de P ) Dado que la restricción impuesta dice que la disponibilidad del componente A es de Kg es evidente que la suma de las epresiones anteriores deberá ser menor, a lo sumo igual a Es decir Kg constituye el máimo disponible de la componente A. Entonces eliminando las unidades de medida, se epresan en forma matemática de la siguiente forma: Aplicando el mismo análisis a los componentes B, C, y D, se tendrán las siguientes inecuaciones:

6 Ahora bien, si el producto P genera un beneficio de US$4 por unidad, unidades producirá un beneficio de US$ 4 y para el producto P, serán soles de beneficio. El beneficio total puede epresarse entonces como suma de los beneficios que deja cada producto. Entonces: Z = 4 + Pero lo que nosotros queremos es que este beneficio no sólo sea grande, sino que sea el mayor de todos; en una palabra, que sea máimo. Entonces el programa lineal correspondiente es: Sujeto a: Z = , 0. La Compañía "PROLANSA" produce tornillos y clavos. La materia prima para los tornillos cuesta US$,00 por unidad, mientras que la materia prima para cada clavo cuesta US$,50. un clavo requiere dos horas de mano de obra en el departamento Nº y tres horas en el departamento Nº, mientras que un

7 tornillo requiere cuatro horas en el departamento Nº y dos horas en el departamento Nº. El jornal por hora en cada departamento es de US$,00. Si ambos productos se venden a US$8,00, y el número de horas de mano de obra disponibles por semana en los departamentos es de 60 y 80 respectivamente, epresar el problema propuesto como un programa lineal, tal que maimicen las utilidades. Solución = Nº de tornillos/semana = Nº de clavos/semana Utilidad = venta - costo Costo de los tornillos = 6 + US$US$ /Unid. = US$ Unid + US$ /Unid. = US$4 /Unid. = US$4 /Unid. Utilidad = 8-4 = US$4 /Unid. Costo de los clavos = 5 +,5 = US$,5 /Unid. = US$,5 /Unid. Utilidad = 8,5 = US$5,50 /Unid. Por lo tanto el programa lineal es: Sujeto a: Ma Z = 4 + 5, ,

8 . Un fabricante produce tres modelos (I, II y III) de un cierto producto, y usa dos tipos de materia prima (A y B), de los cuales se tienen disponibles 000 y 000 unidades respectivamente. Los requisitos de materia prima por unidad de los modelos son: MATERIA PRIMA A B REQUISITOS POR UNIDAD DE MODELO DADA I II III El tiempo de mano de obra por cada unidad del modelo I es dos veces el modelo II y tres veces el modelo III. La fuerza laboral completa de la fábrica pudo producir el equivalente de 700 unidades del modelo I. Una encuesta de mercado indica que la demanda mínima de los tres modelos es 00, 50 y 50 unidades respectivamente. Sin embargo, las relaciones del número de unidades producidas deben ser iguales a : : 5. Supongamos que los beneficios por unidad de los modelos I, II y III son 0, 0 y 50 unidades monetarias. Formule el problema como un modelo de Programación lineal a fin de determinar el número de unidades de cada producto que maimiza el beneficio. Solución = Cantidad de Producción del Modelo I = Cantidad de Producción del Modelo II = Cantidad de Producción del Modelo III Función Objetivo

9 Ma Z = 0 + Sujeto a: ) Con respecto a Materia Prima ) Con respecto a la Demanda Mínima ) Relación de las unidades producidas =, =, 5 = 5 4) Condición Laboral ) Condiciones de no negatividad 0, 0, 0 4. Para una cafetería que trabaja 4 horas se requiere las siguientes meseras: HORAS DEL DIA NÚMERO MÍNIMO DE MESERAS - 6 4

10 Cada mesera trabaja 8 horas consecutivas por día. El objeto es encontrar el número más pequeño requerido para cumplir los requisitos anteriores. Formule el problema como un modelo de Programación Lineal. Solución = Cantidad de meseras que ingresan en el turno i i =,6 Función Objetivo Sujeto a: Min Z = Turno : Turno : + 8 Turno : + 0 Turno 4: Turno 5: Turno 6: i =,, 6 i Turno horas

11 Considere una Compañía que debe elaborar dos productos en determinado período (un trimestre) la Compañía puede pagar por materiales y mano de obra, con dinero obtenido de dos fuentes: fondos de la compañía (propio) y préstamos. La Compañía enfrenta tres decisiones. a. Cuántas unidades debe producir del producto? b. Cuántas unidades debe producir del producto? c. Cuánto dinero debe obtener prestado para apoyar la producción de los dos modelos? Al tomar estas decisiones la compañía desea Maimizar la ganancia sujeta a las condiciones siguientes: i. Los productos de la compañía disfrutan de un mercado de ventas por lo tanto la empresa puede vender tantas unidades como pueda producir, más aún la cantidad producida no tiene efectos en los

12 precios del mercado ya que el volumen de producción de la compañía es pequeño con relación al volumen del mercado total. Por lo tanto a la Empresa le gustaría producir tantas unidades como fuera posible dentro de las restricciones financieras y de capacidad de su fábrica, estas restricciones junto con los datos de los costos y precios se dan en tabla adjunta. ii. Los fondos propios de la Compañía disponibles durante el período son US$0 000 iii. Un banco prestará hasta US$0 000 por trimestre a una tasa de interés del 5% por trimestre, si la razón financiera conocida como la Prueba del ácido, de la compañía permanece en una proporción de a como mínimo mientras eiste el adeudo. Recuerda que la prueba del ácido esta dada por la RAZON DE EFECTIVO más cuentas por cobrar a cuentas por pagar. iv. Como se observa en la figura adjunta, los pagos por mano de obra y materia prima se hacen al final del período de producción, por lo tanto el crédito necesario se obtiene en ese momento, los envíos de los productos fabricados, se hacen a crédito al final del período de producción. Finalmente el ingreso por ventas se recibe al final del siguiente período. Producto Precio de Venta Costo de Producción Horas Disponibles por Trimestre Horas para Producir una Unidad en el Dpto. A B C 0,5 0, 0, 0, 0,4 0, Solución:

13 = Unidades del producto = Unidades del producto = Cantidad obtenida por el préstamo Producto P.V. C.P. Horas por Producir A B C Horas disponibles i 0,5 0, 0, 0,4 0, 0, ( 4 ) U = 0 U ( ) = 8 U = 0, 05 Ma Z Sujeto a: = , 05 0, 0, 0 0,5 + 0, ( ) + 0,05 + 0,4 + 0,, + 8, Fondos de la compañia Préstamo

14 Prueba ácida = Efectivo + cuenta por cobrar Cuenta por pagar ( ) =, ,

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades.

b) Con sus máquinas actuales tiene una producción anual máxima de 500 unidades. Aplicaciones de máimos y mínimos. Criterio de la segunda Derivada: Sea f una función tal que f eiste en un intervalo ]a, b[, que contiene al número crítico c. a) Si f (c) > 0, entonces la función tiene

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

Problemas de análisis de sensibilidad

Problemas de análisis de sensibilidad Problemas de análisis de sensibilidad. Considerar el siguiente modelo lineal y la tabla óptima max z = x + x + x x x x x x x sujeto a 0 0 0 8 x + x + x a 0 0 x + x + x 0 a 0 0 x + x + x a 0 0 x, x, x 0.

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003 SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo

Más detalles

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar:

1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar: TRABAJO PRÁCTICO N : FUNCIONES DE UNA VARIABLE REAL ASIGNATURA: MATEMÁTICA LIC. ADMINISTRACIÓN - LIC. TURISMO - LIC. HOTELERÍA - 05 ) Epresar los intervalos como conjuntos y los conjuntos en forma de intervalos

Más detalles

En los siguientes ejemplos, usarás Solver para resolver los modelos y problemas de programación lineal planteados. 1 + x 2

En los siguientes ejemplos, usarás Solver para resolver los modelos y problemas de programación lineal planteados. 1 + x 2 II000_MAAL3_Ejemplos Versión: Septiembre 0 Ejemplos con Solver por Oliverio Ramírez En los siguientes ejemplos, usarás Solver para resolver los modelos y problemas de programación lineal planteados. Ejemplo

Más detalles

Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente:

Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente: Fundamentos de la programación lineal Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la situación siguiente: Optimizar (maximizar o minimizar) una función objetivo,

Más detalles

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Programación Lineal Departamento de Matemáticas ITESM Programación Lineal Ma130 - p. 1/27 ducción En esta lectura daremos una introducción a la modelación de problemas

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010

Programación Lineal. Departamento de Matemáticas, CSI/ITESM. 28 de abril de 2010 Programación Lineal Departamento de Matemáticas, CSI/ITESM 28 de abril de 2010 Índice 16.1.Introducción............................................... 1 16.2.Ejemplo 1................................................

Más detalles

ACTIVIDAD INTEGRADORA Nº 18 20 (El problema de las cien palomas).al volar sobre un palomar, dijo el gavilán: Adiós mis cien palomas. A lo que una paloma respondió: No somos cien. Pero con nosotras mas

Más detalles

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.

Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones. A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA PROBLEMAS RESUELTOS DE PROGRAMACIÒN LINEAL POR METODO GRAFICO CON POM-QM. Profesor: MSc. Julio Rito Vargas Avilés Elaborado por: Yucep Gutiérrez Baltodano. Carlos Reynaldo Guevara.

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

Problemas de PL con varias variables Análisis de Sensibilidad

Problemas de PL con varias variables Análisis de Sensibilidad UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.

Más detalles

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN 1.- Ejemplo resuelto Un herrero dispone de 80 kg. de acero y 120 kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente

Más detalles

Unidad 4 Análisis de dualidad

Unidad 4 Análisis de dualidad Unidad 4 Análisis de dualidad Objetivos Al nalizar la unidad, el alumno: Identi cará el tipo de problemas que se resuelven con el método dual-símple. Utilizará el método dual-símple para resolver modelos

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

CAPÍTULO 4 Funciones Económicas

CAPÍTULO 4 Funciones Económicas CAPÍTULO 4 Funciones Económicas Introducción La actividad económica surge de la necesidad de utilizar recursos para producir los bienes materiales que satisfacen los deseos del hombre, ya sean básicos

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0 Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le

Más detalles

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1

Tabla 1 RADIO 1 RADIO 2 Precio (BsF) Costo materia prima (BsF) 5 4 Horas trabajador Horas trabajador 2 2 1 Ejercicios de Dualidad y Análisis de Sensibilidad 1. Radioco fabrica dos tipos de radios. El único recurso escaso que se necesita para producir los radios es la mano de obra. Actualmente, la compañía tiene

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Problemas resueltos con el método gráfico 4 de junio de 2014 1. Resuelva el siguiente PL por el método gráfico Max z = x 1 + x 2 x 1 + x 2 4 x 1 x 2 5 En la figura 1

Más detalles

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL

SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL SOLUCIÓN GRÁFICA DE PROBLEMAS DE PROGRAMACIÓN LINEAL Muchos problemas de administración y economía están relacionados con la optimización (maximización o minimización) de una función sujeta a un sistema

Más detalles

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN

3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal

Más detalles

( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo

( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo Modelo 01. Problema B.- Calificación máima: puntos) El coste de fabricación de una serie de hornos microondas viene dado por la función C) + 0 + 0000, donde representa el número de hornos fabricados. Supongamos

Más detalles

Modelos de Programación Matemática

Modelos de Programación Matemática Modelos de Programación Matemática Las proposiciones matemáticas, en cuanto tienen que ver con la realidad, no son ciertas; y en cuanto que son ciertas, no tienen nada que ver con la realidad A. Einstein

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4 . Calcula la derivada de las siguientes funciones:. y = 2-2 +2 2. y = 2-2 2 +2. y = 2 -ln +e 4. y = 2 e 2 5. y = e 6. y = 2 ln 2 7. y = 2-8. y = e. y = 2 + 4. y = ln 2-5. y = 2 2 2 6. y = 2-9. y = e 2

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

5. Hallar un número positivo tal que la suma de dicho número y el inverso de su cuadrado sea mínima.

5. Hallar un número positivo tal que la suma de dicho número y el inverso de su cuadrado sea mínima. º de Bachillerato 1. El propietario de un inmueble tiene alquilados los cuarenta pisos del mismo a 00 al mes cada uno. Por cada 10 de aumento en el precio del alquiler pierde un inquilino, que se traslada

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN

FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE

Más detalles

UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA. de programación lineal entera. lineal entera.

UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA. de programación lineal entera. lineal entera. UNIDAD 6 PROGRAMACIÓN LINEAL ENTERA de programación lineal entera. lineal entera. Investigación de operaciones Introducción En la unidad aprendimos a resolver modelos de P. L. por el método símple y el

Más detalles

EJERCISIOS METODO SIMPLEX

EJERCISIOS METODO SIMPLEX EJERCISIOS METODO SIMPLEX 1. Un fabricante produce dos modelos de de equipos de pruebas M1 M2, que requieren de 3 etapas principales para su manufactura. Estos requerimientos, el beneficio obtenido al

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala Clave: 03-2-M-2-00-203 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de matemática Curso: Matemática Básica 2 Código del curso: 03 Semestre: Segundo semestre 203 Tipo de eamen:

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 2, Ejercicio

Más detalles

U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U.

U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U. U.N.Ju. Facultad de Ingeniería I. O. Trabajo Practico Nº 1: Programación Matemática - Fecha: 06/Abr/11 ALUMNO: CARRERA: L.U. Nº: FIRMA: Ejercicios: 1) Que es la I.O.? 2) Realice una síntesis histórica

Más detalles

UNIDAD I. DIFERENCIALES E INTEGRAL DEFINIDA. Tema: INTEGRAL INDEFINIDA Y REGLAS PARA LA INTEGRACIÓN DE DIERENCIALES

UNIDAD I. DIFERENCIALES E INTEGRAL DEFINIDA. Tema: INTEGRAL INDEFINIDA Y REGLAS PARA LA INTEGRACIÓN DE DIERENCIALES UNIDAD I. DIFERENCIALES E INTEGRAL DEFINIDA Tema: INTEGRAL INDEFINIDA Y REGLAS PARA LA INTEGRACIÓN DE DIERENCIALES INTEGRAL INDEFINIDA Y REGLAS PARA LA INTEGRACIÓN DE DIFERENCIALES ALGEBRAICAS Con fundamento

Más detalles

Ecuación de segundo grado

Ecuación de segundo grado UNEFA C.I.N.U. Matemáticas 0 Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008) Fundamentos de Matemáticas, Unidad 5 Ecuaciones e Inecuaciones,

Más detalles

REPASO MATE3171 Parcial 3

REPASO MATE3171 Parcial 3 REPASO MATE3171 Parcial 3 ya estudie jeje!! voy lento, pero seguro!!! aún no he empezado!!! REPASO PARA EL TERCER PARCIAL (MATE3171)ISEM14-15 Profa: Ysela Ochoa Tapia Cap2 Transformaciones 1) La gráfica

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo:

Para hallar, gráficamente, la solución de un problema de Programación Lineal con dos variables, procederemos del siguiente modo: Siempre que el problema incluya únicamente dos o tres variables de decisión, podemos representar gráficamente las restricciones para dibujar en su intersección el poliedro convexo que conforma la región

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

a) Plantee el problema multiobjetivo de la empresa, obtenga los óptimos individuales y la matriz de pagos.

a) Plantee el problema multiobjetivo de la empresa, obtenga los óptimos individuales y la matriz de pagos. 1.- Una empresa papelera de propiedad pública fabrica dos productos: pulpa de celulosa obtenida por medios mecánicos y pulpa de celulosa obtenida por medios químicos. Las capacidades máimas de producción

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1 Un fabricante desea encontrar la producción semanal óptima de los artículos A, B y C para maximizar sus beneficios. Las ganancias por unidad de estos artículos son:

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Suscripciones Administración Reclamos Formule un modelo de programación lineal.

Suscripciones Administración Reclamos Formule un modelo de programación lineal. EJERCICIOS DE APLICACIÓN 1) Par, Inc. es un pequeño fabricante de equipo y material de golf. El distribuidor de Par cree que existe un mercado tanto para una bolsa de golf de precio moderado, llamada modelo

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

Componentes de capital Son las cuentas a la derecha del balance general. Costo del componente Es el costo de cada una de las fuentes de financiación.

Componentes de capital Son las cuentas a la derecha del balance general. Costo del componente Es el costo de cada una de las fuentes de financiación. Costo de Capital Definiciones Básicas Componentes de capital Son las cuentas a la derecha del balance general Costo del componente Es el costo de cada una de las fuentes de financiación. Cuáles son los

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CAMPUS VILLA NUEVA CURSO MATEMATICA FINANCIERA Lic. Manuel de Jesús Campos Boc

Más detalles

OPTIMIZACION DETERMINISTICA

OPTIMIZACION DETERMINISTICA OPTIMIZACION DETERMINISTICA 1 PROBLEMA GENERAL Además de analizar los flujos de caja de las las alternativas de inversión, también se debe analizar la forma como se asignan recursos limitados entre actividades

Más detalles

FINANZAS III MATERIAL DE APOYO- SEGUNDO PARCIAL GRUPO PACE. LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN

FINANZAS III MATERIAL DE APOYO- SEGUNDO PARCIAL GRUPO PACE. LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN LABORATORIO No. 1 EVALUACIÓN FINANCIERA DE PROYECTOS DE INVERSIÓN PLANTEAMIENTO DEL PROBLEMA El Consejo de Administración de Proyectos Exitosos, S. A. decide desarrollar un proyecto para producir tornos

Más detalles

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales.

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales. UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones especiales. Investigación de operaciones Introducción Después de construir modelos matemáticos de programación lineal, necesitamos desarrollar

Más detalles

Tema 2: La elección racional del consumidor

Tema 2: La elección racional del consumidor Tema 2: La elección racional del consumidor Introducción. 1. La restricción presupuestaria. 2. Las preferencias del consumidor: 1. Las curvas de indiferencia 2. La relación marginal de sustitución 3. El

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

INSTITUCIÓN UNIVERSITARIA ESUMER

INSTITUCIÓN UNIVERSITARIA ESUMER INSTITUCIÓN UNIVERSITARIA ESUMER UNIDAD DE ESTUDIOS EMPRESARIALES Y DE MERCADEO ESPECIALIZACIÓN GERENCIA DE PROYECTOS MÓDULO NO 2 EVALUACIÓN FINANCIERA DEL PROYECTO GUÍAS DEL CURSO - CLASE NO 3 OBJETIVOS

Más detalles

ASIGNACION DE COSTOS

ASIGNACION DE COSTOS ASIGNACION DE COSTOS Para asignar los costos se deben asignar primero los centros de responsabilidad. Centros de responsabilidad: Existen tres tipos de responsabilidades: centros de costos, donde solo

Más detalles

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN

LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN LISTA DE COTEJO TRABAJO Nº 2 CALIFICACIÓN N ÍTEMS CALIFICACIÓN 1 Presenta la carátula 1 1.1 No presenta la carátula 0 2 Presenta la Introducción 1 2.1 No presenta la Introducción 0 3 Explica con precisión

Más detalles

Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización.

Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. PROGRAMACION LINEAL [Introducción] Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. Sirve para asignar

Más detalles

La cuenta: Regla del cargo y abono

La cuenta: Regla del cargo y abono La cuenta: Regla del cargo y abono Por: Alma Ruth Cortés Para registrar las transacciones financieras que realiza un ente económico, es necesario utilizar cuentas que identifiquen la operación que se está

Más detalles

Derivadas Parciales. Aplicaciones.

Derivadas Parciales. Aplicaciones. RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.

Más detalles

PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S. Aplicación: Títulos de deuda del gobierno mexicano y del sector privado que se venden con

PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S. Aplicación: Títulos de deuda del gobierno mexicano y del sector privado que se venden con PARTE 1 OPERACIONES FINANCIERAS A INTERÉS SIMPLE T E M A S Factores básicos de las operaciones financieras Operaciones a interés simple Convenciones sobre la medición del tiempo Valor presente y valor

Más detalles

4 Programación lineal

4 Programación lineal Programación lineal TIVIES INIILES.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) ( ) b) > a) 8 8 9, Solución, b) > > > > 8 > > Solución,.II. Resuelve las siguientes inecuaciones de primer

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 31 de agosto de 2010 SOLUCIÓN 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año. Un acre

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

1. CONCEPTO DE CAPITAL DE TRABAJO. 4. CAPITAL DE TRABAJO PERMANENTE TEMPORAL. 2. IMPORTANCIA DE LA ADMINISTRACION DEL CAPITAL DE TRABAJO.

1. CONCEPTO DE CAPITAL DE TRABAJO. 4. CAPITAL DE TRABAJO PERMANENTE TEMPORAL. 2. IMPORTANCIA DE LA ADMINISTRACION DEL CAPITAL DE TRABAJO. 1. CONCEPTO DE CAPITAL DE TRABAJO. 2. IMPORTANCIA DE LA ADMINISTRACION DEL CAPITAL DE TRABAJO. 3. NIVEL OPTIMO DE ACTIVOS CORRIENTES. 4. CAPITAL DE TRABAJO PERMANENTE Y TEMPORAL. 5. FINANCIACION DEL CAPITAL

Más detalles

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b.

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b. Universidad de Talca. Matemáticas II Algunas aplicaciones de la Integral indefinida 1) Excedente (Superávit) de Consumidor y Productor El precio de equilibrio es aquel en que la demanda de un producto

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Departamento de Matemáticas, CCIR/ITESM 3 de junio de 2014 Problemas Resueltos 1. El granjero Jones debe determinar cuántos acres de maíz y trigo debe plantar este año.

Más detalles

Método Gráfico. Dr. Mauricio Cabrera

Método Gráfico. Dr. Mauricio Cabrera Método Gráfico Dr. Mauricio Cabrera Problema Introductorio La Wyndor Glass Co. Produce artículos de vidrio de alta calidad, incluidas ventanas y puertas de vidrio que incluyen trabajo manual y la mejor

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

Tema 8: Programación lineal. Nociones elementales. Ejemplos.

Tema 8: Programación lineal. Nociones elementales. Ejemplos. Tema 8: Programación lineal. Nociones elementales. Ejemplos.. Introducción / motivación: -La optimización en problemas reales depende en general de varias variables -Las técnicas de diferenciabilidad siguen

Más detalles

LP Problems. M. En C. Eduardo Bustos Farías

LP Problems. M. En C. Eduardo Bustos Farías LP Problems M. En C. Eduardo Bustos Farías 2 Solution Decision Variables 4 Objective function 5 Constraints onstraint 3. Amount of raw material purchased determines the amount of Brute and hanelle that

Más detalles

Desigualdades lineales

Desigualdades lineales SECCIÓN.7 Desigualdades 77 Ponga atención especial a las reglas 3 y 4. La regla 3 establece que podemos multiplicar (o dividir) cada miembro de una desigualdad por un número positivo, pero la regla 4 señala

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I

UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que

Más detalles

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX.

EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. EJERCICIOS SOBRE PROGRMACIÓN LINEAL RESUELTOS POR EL MÉTODO SIMPLEX. 1. Un empresario tiene a su disposición dos actividades de producción lineales, mediante la contribución de tres insumos, fundición,

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL

ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO. ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL ASIGNATURA: MATEMÁTICAS CCSS 2º BACHILLERATO TEMA: ÁLGEBRA Boletín 3 PROGRAMACIÓN LINEAL 1) Un taller fabrica y vende dos tipos de alfombras, de seda y de lana. Para la elaboración de una unidad se necesita

Más detalles

x + y 20; 3x + 5y 70; x 0; y 0

x + y 20; 3x + 5y 70; x 0; y 0 PROGRAMACIÓN LINEAL: ACTIVIDADES 1. Sea el recinto definido por el siguiente sistema de inecuaciones: x + y 20; 3x + 5y 70; x 0; y 0 a) Razone si el punto de coordenadas (4.1, 11.7) pertenece al recinto.

Más detalles

Derivación de Funciones

Derivación de Funciones CAPÍTULO 7 Derivación de Funciones Sea f una función definida al menos en un intervalo abierto que incluya al número. Si f( + h) f() lím h 0 h eiste (finito), se llama la derivada de f en, y se denota

Más detalles

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3)

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) 4 de Julio de 26 ASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela 4 de Julio de 26 MÉTODO SIMPLEX REVISADO

Más detalles

7. PROGRAMACION LINEAL

7. PROGRAMACION LINEAL 7. PROGRAMACION LINEAL 7.1. INTRODUCCION A LA PROGRMACION LINEAL 7.2. FORMULACION DE UN PROBLEMA LINEAL 7.3. SOLUCION GRAFICA DE UN PROBLEMA LINEAL 7.4. CASOS ESPECIALES DE PROBLEMAS LINEALES 7.4.1. Problemas

Más detalles

I N E C U A C I O N E S

I N E C U A C I O N E S I N E C U A C I O N E S DE PRIMER GRADO CON UNA INCÓGNITA Forma general: a + b> 0 a + b 0 a + b< 0 a + b 0 Para resolverlas se siguen los mismos pasos que en las ecuaciones de primer grado con una incógnita:.

Más detalles