ESTRUCTURA DE LINEAS DE ESPERA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTRUCTURA DE LINEAS DE ESPERA"

Transcripción

1 ESTRUCTURA DE LINEAS DE ESPERA La teoría de las colas es el estudio de líneas de espera. Cuatro características de un sistema de la formación de colas o líneas de espera son: la manera en que los clientes llegan el tiempo requerido para el servicio la prioridad que determina el orden de servicio el número y configuración de servidores en el sistema.

2 Estructura de líneas de espera En general, la llegada de clientes en el sistema es un evento aleatorio. Frecuentemente el modelo de la llegada se planea como un proceso de Poisson. El tiempo de servicio también es normalmente una variable aleatoria. Una distribución que normalmente describe el tiempo de servicio que ocupan los clientes es la distribución exponencial. La disciplina de la cola más común es el que viene primero, primero se atiende (FCFS). Un ascensor es un ejemplo de el último que viene, es el primero quese sirvió (LCFS)

3 Sistemas de cola Las tres partes del código A/B/s se usa para describir varios sistemas de la formación de colas de espera. A identifica la distribución de la llegada, B el servicio (la salida) y s el número de servidores para el sistema. Los símbolos frecuentemente usados para la llegada y los procesos de servicio son: M - las distribuciones de Markov (Poisson/expotencial), D - Deterministica (constante) y G - la distribución del General (con una media conocida y variación). Por ejemplo, M/M/k se refiere a un sistema en que las llegadas ocurren según una distribución de Poisson, tiempos de servicio siguen una distribución exponencial y hay servidores del k que trabajan a las proporciones de servicio idénticas. A Las tres partes del código A/B/s se usa par describir varios sistemas.

4 Características de entrada λ = la proporción media de la llegada 1/λ = el tiempo medio entre las llegadas µ = la proporción media de servicio para cada servidor 1/µ = el tiempo medio de servicio σ = la desviación estándar del tiempo de servicio

5 Forma analítica de teoría de colas P 0 = la probabilidad de servicio 0 P n P w L q = la probabilidad de n unidades en el sistema = probabilidad que una unidad llega y espera por el servicio = el número medio de unidades en la cola que espera el servicio L = el número medio de unidades en el sistema W q = tiempo medio que una unidad se pasa en la cola de espera en el servicio W = tiempo medio que una unidad se pasa en el sistema

6 Formulas analíticas Para casi todos sistemas de la formación de colas de espera, hay una relación entre el tiempo medio que una unidad se pasa en el sistema o cola y el número medio de unidades en el sistema o cola. Estas relaciones, conocido como las ecuaciones de flujo están: L = λw y L q = λw q Cuando la disciplina de la cola es FCFS, se han derivado las fórmulas analíticas para varios modelos de la formación de colas de espera diferentes que incluyen lo siguiente: M/M/1, M/M/k, M/G/1, M/G/k con clientes bloqueados aclarados, y M/M/1 con una población finita. Las fórmulas analíticas no están disponibles para los todo posibles sistemas de la formación de colas de espera. En este evento, pueden ganarse las visiones a través de una simulación del sistema.

7 ejemplo Sistema de Colas M/M/1 Joe Ferris es un operador de piso en New York Stock Exchange de la firma Smith, Jones, Johnson, and Thomas, Inc. Las ordenes llegan en promedio de 20 por hora. Cada orden requiere por parte de Joe un promedio de 2 minutos. Las órdenes llegan a una proporción media de 20 por hora o un orden cada 3 minutos. Por consiguiente, en un intervalo de 15 minutos el número medio de órdenes será de λ = 15/3 = 5.

8 La Distribución de Proporción de llegada La pregunta Cuál es la probabilidad que ninnguna orden se reciba dentro de un período de 15 minuto? Respuesta P(x)= P (x = 0) = (5 0 e -5 )/0! = e -5 =.0067 λ x e x! λ

9 ejemplo La Distribución de Proporción de llegada La pregunta Cuál es la probabilidad que exactamente se reciben 3 órdenes dentro de un período del 15- minutos? Respuesta P (x = 3) = (5 3 e -5 )/3! = 125(.0067)/6 =.1396

10 Example: SJJT, Inc. (A) La Distribución de Proporción de llegada La pregunta Cuál es la probabilidad que más de 6 órdenes llega dentro de un período del 15-minuto? La respuesta P (x > 6) = 1 - P (x = 0) - P (x = 1) - P (x = 2) - P (x = 3) - P (x = 4) - P (x = 5) - P (x = 6) = =.238

11 Example: SJJT, Inc. (A) La Distribución de Proporción de servicio La pregunta Cuál es la proporción de servicio MEDIA por hora? La respuesta Joe Ferris puede procesar una orden en un tiempo medio de 2 minutos (= 60/2 hr.), entonces la proporción de servicio MEDIA, µ, es µ = 1/(Tiempo de servicio MEDIO), o 60/2 = 30 x hora.

12 Example: SJJT, Inc. (A) pregunta Qué porcentaje de los órdenes tomará menos de un minuto para procesar? respuesta Desde que las unidades se expresan en horas, El P (el T <1 minuto) = el P (el T <1/60 hora). Usando la distribución exponencial, P (T < t ) = 1 - e -µt. Entonces, P (T < 1/60) = 1 - e -30(1/60) =

13 Example: SJJT, Inc. (A) pregunta Qué porcentaje de los órdenes se procesará en exactamente 3 minutos? respuesta Desde que la distribución exponencial es una distribución continua, la probabilidad que un tiempo de servicio iguala exactamente cualquier valor específico es 0.

14 Fin fde la presentación

Modelos de cola.

Modelos de cola. Modelos de cola http://humberto-r-alvarez-a.webs.com Las colas Las colas son frecuentes en la vida cotidiana: En un banco En un restaurante de comidas rápidas Al matricular en la universidad Los autos

Más detalles

INVESTIGACIÓN DE OPERACIONES II. JULIO CÉSAR LONDOÑO ORTEGA

INVESTIGACIÓN DE OPERACIONES II. JULIO CÉSAR LONDOÑO ORTEGA INVESTIGACIÓN DE OPERACIONES II JULIO CÉSAR LONDOÑO ORTEGA Email: julio.londono@correounivalle.edu.co jclondonor@gmail.com MODELOS DE FILAS DE ESPERA Introducción a la Teoría de Colas Ejemplos de la teoría

Más detalles

UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA USB PS4161 GESTION DE LA PRODUCCION I LINEAS DE ESPERA

UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA USB PS4161 GESTION DE LA PRODUCCION I LINEAS DE ESPERA UNIVERSIDAD SIMON BOLIVAR LINEAS DE ESPERA 1 Contenido Características de un sistema de líneas de espera Características de las llegadas Características de la línea de espera Características del dispositivo

Más detalles

13.Teoría de colas y fenómenos de espera

13.Teoría de colas y fenómenos de espera 3.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Teoría de colas. Las colas (líneas de espera) son parte de la vida diaria

Teoría de colas. Las colas (líneas de espera) son parte de la vida diaria Teoría de colas Las colas (líneas de espera) son parte de la vida diaria Supermercado - Servicios de reparaciones - Telecom. Banco - Comedor universitario - Producción El tiempo que la población pierde

Más detalles

Introduccion. TEMA 6: MODELOS DE FILAS DE ESPERA (Waiting Line Models) (Capítulo 12 del libro) Modelos de Decisiones

Introduccion. TEMA 6: MODELOS DE FILAS DE ESPERA (Waiting Line Models) (Capítulo 12 del libro) Modelos de Decisiones Modelos de Decisioes TEMA 6: MODELOS DE FILAS DE ESPERA (Waitig Lie Models) (Capítulo 2 del libro) Itroduccio.. Estructura de u Sistema de Filas de Espera 2. Modelo Sigle-Chael co tasa de llegadas tipo

Más detalles

S = N λ = 5 5 = 1 hora.

S = N λ = 5 5 = 1 hora. Teoría de Colas / Investigación Operativa 1 PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 5 1. Al supercomputador de un centro de cálculo llegan usuarios según un proceso de Poisson de tasa 5 usuarios cada

Más detalles

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas).

Teoría de Colas. TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). Teoría de Colas TC: Parte de la Investigación Operativa que estudia el comportamiento de sistemas cuyos elementos incluyen líneas de espera (colas). IO 07/08 - Teoría de Colas 1 Teoría de Colas: ejemplos

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

lo que hace a las colas un área interesante y desafiante. En la figura se muestra un sistema típico de colas. 4. MODELOS DE LINEAS DE ESPERA

lo que hace a las colas un área interesante y desafiante. En la figura se muestra un sistema típico de colas. 4. MODELOS DE LINEAS DE ESPERA 4. MODELOS DE LINEAS DE ESPERA Objetivo: El estudiante evaluará los criterios de decisión en las líneas de espera, examinando el proceso de llegada para poblaciones sencillas o múltiples de unidades finita,

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

DISTRIBUCIÓN DE POISSON

DISTRIBUCIÓN DE POISSON DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad

Más detalles

Modelos de Inventarios

Modelos de Inventarios Modelos de Inventarios 1. Qué significa PERT? Program Evaluation Review Technique Técnica de Revisión de Evaluación de Programa 2. Qué significa las siglas C.E.P Cantidad Económica de Pedidos 3. Para qué

Más detalles

Teoría de líneas de espera

Teoría de líneas de espera Teoría de líneas de espera Recuerde la última vez que tuvo que esperar en la caja de un supermercado, en una ventanilla de su banco local, o a que lo atendieran en un restaurante de comida rápida. En éstas

Más detalles

Notas de Clase de: Investigación de Operaciones

Notas de Clase de: Investigación de Operaciones Notas de Clase de: Investigación de Operaciones Víctor Leiva Departamento de Estadística Universidad de Valparaíso, Chile victor.leiva@uv.cl www.deuv.cl/leiva Índice general 1. Programa de la Asignatura

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Las cadenas de Markov estudian procesos estocásticos Los procesos estocásticos son modelos matemáticos que describen sistemas dinámicos sometidos a procesos aleatorios Parámetros:

Más detalles

TEMA N 3.- TEORÍA DE COLAS

TEMA N 3.- TEORÍA DE COLAS UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI TEMA N 3.- TEORÍA DE COLAS Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos 3.1 Introducción

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

MODELADO Y SIMULACIÓN. Febrero de Primera semana

MODELADO Y SIMULACIÓN. Febrero de Primera semana Febrero de 2016 - Primera semana PREGUNTA 1 (3 puntos) Se pretende estudiar mediante simulación el funcionamiento de una lavandería industrial dedicada a la limpieza y planchado de manteles y servilletas.

Más detalles

Ingeniería de Sistemas. Teoría de colas y juegos

Ingeniería de Sistemas. Teoría de colas y juegos Ingeniería de Sistemas Teoría de colas y juegos DEFINICIÓN Estudio analítico del comportamiento de líneas de espera. DEFINICIÓN OBJETIVOS DE LA TEORÍA DE COLAS Identificar el nivel óptimo de capacidad

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Proceso de llegadas de Poisson

Proceso de llegadas de Poisson Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de

Más detalles

Instituto Politécnico Nacional Escuela Superior de Cómputo. Teoría a de Colas. M. En C. Eduardo Bustos Farías

Instituto Politécnico Nacional Escuela Superior de Cómputo. Teoría a de Colas. M. En C. Eduardo Bustos Farías Instituto Politécnico Nacional Escuela Superior de Cómputo Teoría a de Colas M. En C. Eduardo Bustos Farías as Objetivos del Capítulo La distribución Poisson y exponencial. Cumplimiento de las medidas

Más detalles

Temas 5 y /16.37

Temas 5 y /16.37 Temas 5 y 6 6.263/16.37 Introducción a la teoría de colas MIT, LIDS Dispositiva 1 Redes conmutadas por paquetes Los mensajes se dividen en paquetes que se enrutan hacia su destino PS PS PS PS Red de paquetes

Más detalles

Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS)

Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS) Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS) Agosto 2008 SEAN YUN Traducido por ANDREA MARÍN Modelando RF con Precisión 0 0 ICS Telecom ofrece

Más detalles

1.- INTRODUCCIÓN TEORIA DE COLAS

1.- INTRODUCCIÓN TEORIA DE COLAS 1.- INTRODUCCIÓN TEORIA DE COLAS 1.1.- Introducción a la teoría de colas Tal y como se ha comentado anteriormente, los sistemas de colas son modelos de sistemas que proporcionan un servicio. Como modelo,

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

TEOREMA DEL LÍMITE CENTRAL

TEOREMA DEL LÍMITE CENTRAL Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

INVESTIGACION DE OPERACIONES

INVESTIGACION DE OPERACIONES INVESTIGACION DE OPERACIONES (MAT-30924) Ingeniería de Sistemas Prof. Jessica Millán Definición de IO Orígenes. Enfoques. Limitaciones. Programación Lineal. Definición. Condiciones. Modelos Matemáticos

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

MODELO DE LINEAS DE ESPERA

MODELO DE LINEAS DE ESPERA MODELO DE LINEAS DE ESPERA La teoría de colas es el estudio matemático del comportamiento de líneas de espera. Esta se presenta, cuando los clientes llegan a un lugar demandando un servicio a un servidor,

Más detalles

Métodos Cuantitativos de Organización Industrial

Métodos Cuantitativos de Organización Industrial 11 de marzo de 2011 PRÁCTICA 1: TEORÍA DE COLAS FECHA DE ENTREGA: 31 DE MARZO DE 2011. Normativa La realización de estos ejercicios es una decisión voluntaria y su calificación alcanzará el 20 % de la

Más detalles

Teoría de colas. Modelado y Análisis de Redes de Telecomunicaciones. IIE - Facultad de Ingeniería

Teoría de colas. Modelado y Análisis de Redes de Telecomunicaciones. IIE - Facultad de Ingeniería Teoría de colas Modelado y Análisis de Redes de Telecomunicaciones IIE - Facultad de Ingeniería Contenido 1 Proceso de Poisson 2 Teoría de colas 3 El proceso M/M/1 4 Los procesos M/M/* 5 El proceso M/G/1

Más detalles

TEORIA DE COLAS, FENOMENOS DE ESPERA

TEORIA DE COLAS, FENOMENOS DE ESPERA Universidad del Bío-Bío Facultad de Ingeniería Depto. Ingeniería Industrial Investigación de Operaciones II: TEORIA DE COLAS, FENOMENOS DE ESPERA Integrantes: Pedro Chávez Cristian Guajardo Victor Pino

Más detalles

SIMULACIÓN DE PROCESOS INDUSTRIALES SOFTWARE ARENA INTRODUCCION

SIMULACIÓN DE PROCESOS INDUSTRIALES SOFTWARE ARENA INTRODUCCION UNIVERSIDAD DIEGO PORTALES FACULTAD CIENCIAS DE LA INGENIERIA INGENIERIA CIVIL INDUSTRIAL SIMULACIÓN DE PROCESOS INDUSTRIALES SOFTWARE ARENA INTRODUCCION Profesor Responsable. Macarena Donoso Ayudante.

Más detalles

Teoría de colas I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Teoría de colas I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Teoría de colas I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Teoría de colas Ejemplo: un centro de atención telefónica (call center) Tasa de llegada y

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

Distribución binomial

Distribución binomial Distribución binomial Cuando la Distribución de Benoulli se preguntaba Que pasara si sucede un único evento? la binomial esta asociada a la pregunta " Cuantas veces hay que realizar la prueba para que

Más detalles

DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICAS INVESTIGACION DE OPERACIONES

DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICAS INVESTIGACION DE OPERACIONES DEPARTAMENTO DE CIENCIAS BASICAS AREA DE MATEMATICAS INVESTIGACION DE OPERACIONES AUTOR: TEMA: OSCAR A. ROMERO CARDENAS INGENIERO INDUSTRIAL ESPECIALISTA EN INFORMATICA Y MULTIMEDIA ESPECIALISTA EN ESTADISTICA

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL

TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL ESCOLA TÈCNICA SUPERIOR D ENGINYERIA DE TELECOMUNICACIÓ DE BARCELONA TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL Autor: Francisco Barceló Arroyo Director:

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 4 Distribución de Probabilidades Distribución de Probabilidades Distribución de Probabilidades Variables Aleatorias: Discreta y Continua Función Densidad

Más detalles

2 Teoría de colas o líneas de espera

2 Teoría de colas o líneas de espera 2 Teoría de colas o líneas de espera El tráfico en redes se puede modelar con la ayuda de la teoría de colas, es por ello ue es importante estudiarlas y comprenderlas. Existen varias definiciones sobre

Más detalles

Teoria de Colas Aplicaciones en Aviación

Teoria de Colas Aplicaciones en Aviación Teoria de Colas Aplicaciones en Aviación Dr. Antonio A. Trani Profesor Asociado Instituto Politécnico de Virginia Seminario Taller sobre Equilibrio entre Demanda y Capacidad Operacional del Sistema Aeropuerto

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Simulación. Problema del jardinero. Modelo de stock aleatorio. Camino crítico.

Simulación. Problema del jardinero. Modelo de stock aleatorio. Camino crítico. Simulación Temario de la clase Introducción. Generacion de variables aleatorias: método de la transformada inversa. Avance del tiempo de simulación. Determinación de la cantidad de iteraciones requeridas.

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.

Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7. Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Investigación operativa: aplicaciones en la optimización de costes"

Investigación operativa: aplicaciones en la optimización de costes Autor: Ricardo San Martín Molina - 1 - Investigación operativa: aplicaciones en la optimización de costes" Autor: Ricardo San Martín Molina Resumen: En este artículo veremos, a través de un ejemplo y su

Más detalles

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías Teoría a de Colas o Filas de Espera M. En C. Eduardo Bustos Farías as Introducción Una línea de espera es la resultante de un sistema cuando la demanda por un bien o servicio supera la capacidad que puede

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Distribución Muestral.

Distribución Muestral. Distribución Muestral jujo386@hotmail.com Uno de los objetivos de la Estadística es tratar de inferir el valor real de los parámetros de la población Por ejemplo Cómo podríamos asegurar que una empresa

Más detalles

Modelos de colas exponenciales

Modelos de colas exponenciales Tema 6 Modelos de colas exponenciales 6.1. La distribución exponencial y los procesos de Poisson 6.1.1. Distribución exponencial El análisis de los distintos modelos de colas está determinado en gran parte

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Distribuciones de probabilidad con R Commander

Distribuciones de probabilidad con R Commander Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son

Más detalles

Inventarios.

Inventarios. Inventarios http://humberto-r-alvarez-a.webs.com Inventarios Los inventarios tienen una gran importancia siempre y cuando estos añadan valor a los procesos. La existencia de los inventarios añade valor

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Carrera: INB Participantes. Representante de las academias de ingeniería industrial de. Academias Ingeniería Industrial.

Carrera: INB Participantes. Representante de las academias de ingeniería industrial de. Academias Ingeniería Industrial. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de Operaciones II Ingeniería Industrial INB-0412 4-0-8 2.- HISTORIA

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Ensayo o prueba: es la realización concreta de un experimento aleatorio.

Ensayo o prueba: es la realización concreta de un experimento aleatorio. Tema 4. Probabilidad Resumen del tema 4.1. Introducción a la Probabilidad Experimento: cualquier proceso que permite asociar a cada individuo de una población un símbolo (numérico o no) entre los símbolos

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria

Más detalles

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales 1. Función de distribución binomial: Si X distribuye bin ( n, p), entonces f n x x n

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Tema 4 Variables Aleatorias

Tema 4 Variables Aleatorias Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K CONTENIDOS 1. Introducción a las colas poissonianas. 2. Modelo de colas poissoniano con un servidor M/M/1 3. Modelo con un servidor y capacidad finita M/M/1/K 4. Modelo con varios servidores M/M/c. Fórmula

Más detalles

Problemas Prueba de significación de la hipótesis nula Vicente Manzano-Arrondo, 2013

Problemas Prueba de significación de la hipótesis nula Vicente Manzano-Arrondo, 2013 Problemas Prueba de significación de la hipótesis nula Vicente Manzano-Arrondo, 2013 Ejercicios resueltos En los dos casos que siguen resuelven cada decisión estadística mediante tres procedimientos: intervalo

Más detalles

Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS

Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS Investigación de operaciones I UNIDAD Unidad I: Programación lineal Conjuntos convexos, propiedades. Solución gráfica del problema bidimensional

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta Distribución Normal La distribución normal (O Gaussiana) se define como sigue: En donde y >0 son constantes arbitrarias. Esta función es en realidad uno de las más importantes distribuciones de probabilidad

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Modelos de Probabilidad con Statgraphics

Modelos de Probabilidad con Statgraphics Modelos de Probabilidad con Statgraphics 1. Objetivos Representar funciones de probabilidad/densidad y de distribución de diferentes modelos de variables aleatorias discretas/continuas Calcular probabilidades

Más detalles

-80- El siguiente análisis definirá un modelo para determinar el nivel de servicio de estas operaciones (14).

-80- El siguiente análisis definirá un modelo para determinar el nivel de servicio de estas operaciones (14). ^. - - -^a»'-" l- ^.'.^'^'.'.-;.T'".. ' -^~'* :^'^.'J3aB,!.'-".'-Wii.T"-P7 -H!- aj,_i^whh-1. i'^r-'^r--" -80- IX. PLANIFICACIÓN DE OPERACIONES TERMINALES EN LA CADENA DE TRANSPORTE FORESTAL. Según se ha

Más detalles

np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q

np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q 52 CAPÍTULO 3. SISTEMAS DE ESPERA Luego: P {N q = n N q > 0} = P n+1 2 = (1 ) n 1, n = 1, 2, (3.33) Nótesequelaprobabilidadqueexistan N probabilidadgeométricaconparámetro n 1,locualesigualaladistribuciónprobabilidad

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles