Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002"

Transcripción

1 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de Proponer una gramática libre del contexto que genere al lenguaje {0 n 1 n n 1}. 2. El lenguaje {a i b i 3 i 100}, es regular o es libre del contexto? 3. Una palabra w Vt se dice palíndroma si, y sólo si, se verifica que w = w, donde w denota al reverso de w. Generalizando esta noción, se dice que un dado lenguaje es palíndromo si, y sólo si, está compuesto únicamente por palabras palíndromas. a) Proponer una gramática que en base al alfabeto {a, b} genere el conjunto de todas las palabras palíndromas posibles. b) Demostrar que para todo lenguaje palíndromo L se verifica que su reverso L, definido como { w w L}, también es un lenguaje palíndromo. 4. Definir una gramática que genere el conjunto de cadenas en las cuales cada aparición de la palabra reservada begin va acompañada de su correspondiente end. La gramática propuesta, se asemeja estructuralmente a la propuesta en el ejercicio 1? 5. Modelar mediante una gramática BNF al conjunto de las expresiones aritméticas válidas de Pascal. 6. Describir a través de una gramática libre del contexto alguna de las sentencias del lenguaje Pascal. Es posible describir esa misma sentencia a través de una gramática BNF? 7. Construir una gramática libre del contexto que genere el lenguaje {0 2n 1 n n 1}. 8. Proponer una gramática libre del contexto que genere el siguiente lenguaje: {a n b n c m n, m 1} {a n b m c m n, m 1} En la gramática postulada, qué árbol de derivación tendría la palabra a 3 b 3 c 3? 9. Sea G la gramática libre del contexto (V n, V t, S, P ), donde V n = {A, S}, V t = {0, 1} y P = {S A1A, A 0, A A1A}. Encontrar al menos dos árboles de derivación distintos para la palabra En consecuencia, qué se puede afirmar acerca de G? 10. Formular una gramática que genere el lenguaje L 1 L 2, donde: L 1 = {a n b n a m b m m, n 1} L 2 = {a n b m a m b n m, n 1} La gramática obtenida, debe ser necesariamente ambigua? 1

2 11. Encontrar algún autómata a pila que reconozca al lenguaje de las expresiones matemáticas infijas que resultan de combinar las variables x e y con las operaciones tradicionales. Pista: Apelar al teorema de equivalencia entre autómatas a pila no deterministas y gramáticas libre de contexto. 12. Definir un autómata a pila que sea capaz de reconocer al lenguaje {a n ba m ba n+m m, n 1}. 13. El lenguaje de programación Lisp fue específicamente diseñado para el procesamiento de datos simbólicos. En este lenguaje tanto los programas como las estructuras de datos se representan de la misma forma apelando a las denominadas S-expresiones. Las S- expresiones se componen de los símbolos (, ) y, combinados con un conjunto infinito de símbolos atómicos, donde los símbolos atómicos pueden a su vez ser valores numéricos o identificadores. En términos formalmente: i. Los símbolos atómicos son S-expresiones. ii. Si e 1 y e 2 son S-expresiones, (e 1 e 2 ), también lo es. iii. Sólo son S-expresiones las cadenas de símbolos que surjan de aplicar las reglas anteriores un número finito de veces. Teniendo en cuenta esta definición, encontrar una gramática libre del contexto que genere el conjunto de todas las S-expresiones posibles. 14. Proponer un autómata a pila que sea capaz de reconocer el siguiente lenguaje: {a i b j c k i j o j k, con i, j, k 0} 15. Sea G la gramática libre del contexto (V n, V t, P, S), donde V n = {S}, V t = {a, b, +, } y P = {S +SS, S SS, S a, S b}, la cual describe al conjunto de las expresiones aritméticas en notación prefija. a) Construir un autómata a pila que reconozca al lenguaje generado por G. b) Proveer una derivación a izquierda de la cadena + ab + ba. c) Proveer una derivación a derecha de la cadena + ab + ba. d) Cuál de las dos derivaciones refleja de forma más certera el proceso llevado a cabo por el autómata a pila al reconocer la esta cadena? 16. Qué otros problemas de la vida cotidiana pueden ser modelados a través de autómatas a pila? 17. [ ] 1 Encontrar sendas gramáticas que respetando la forma normal de Chomsky resulten equivalentes a las gramáticas indicadas a continuación: a) G 1 = (V n, V t, P, S), donde V n = {S, A, B}, V t = {a, b} y P = {S aab, S BA, A BBB, A a, B AS, B b}. b) G 2 = (V n, V t, P, S), donde V n = {S, A, B}, V t = {0, 1} y P = {S 1A, S 0B, A 1AA, A 0S, A 0, B 0BB, B 1S, B 1}. 1 los ejercicios denotados de esta manera son exclusivamente para los alumnos de Fundamentos de Ciencias de la Computación. 2

3 18. Sea G la gramática libre del contexto (V n, V t, P, S), donde V n = {S, A}, V t = {a, b} y P = {S AA, A AAA, A ba, A Ab, A a}. a) Se trata de una gramática ambigua? b) Demostrar que G genera el lenguaje compuesto sólo por aquellas cadenas con un número par de símbolos a. Pista: Probar por inducción sobre la longitud de la derivación que la cantidad de símbolos A o a siempre es par. c) Comprobar que el lenguaje generado por G no es inherentemente ambiguo. 19. Sea Σ = {a, b}. Demostrar a través de las propiedades satisfechas por los lenguajes libres del contexto que los siguientes lenguajes sobre Σ resultan libres del contexto: a) L 1 = {a m b n m n}. b) L 2 = L((a + b) ) {a n b n n 0}. 20. [ ] Demostrar aplicando homomorfismos que los siguientes lenguajes son en efecto libres del contexto: a) El lenguaje de los begin y end balanceados. b) El lenguaje {a n b 2n n 1}. 21. Sea G una gramática (V n, V t, E, P ), donde V n = {E}, V t = {a, b, [, ],, +, &} y P = {E E&E, E E + E, &E λ, E [E], E E, E a, E b}. a) Analizando la estructuras de las producciones de G, de qué tipo de gramática se trata? b) A qué lenguaje conocido se asemeja el lenguaje generado por G? c) De qué tipo es el lenguaje generado por G? Justificar formalmente la respuesta ensayada. Pista: Intersectar el lenguaje generado por G con el lenguaje denotado por la expresión regular [ a]. 22. Encontrar un contraejemplo que refute la siguiente afimación: los lenguajes libres del contexto son cerrados bajo intersección 23. Sea L el lenguaje {a n b n c n n 1}. a) Suministrar una gramática G que genere a L. b) De qué tipo es la gramática propuesta? c) Demostrar formalmente que L no es libre del contexto. 24. Comprobar formalmente que los siguientes lenguajes no son libres del contexto: a) L 1 = {www w (a + b) } b) L 2 = {nha n n es un número en representación decimal}. 25. Determinar informalmente si cada uno de los siguientes lenguajes son libres del contexto: 3

4 a) L 1 = {a m b n c p m = n o n = p o m = p}. b) L 2 = {a m b n c p m n o n p o m p}. c) L 3 = {a m b n c p m n y n p y m p}. d) L 4 = {w w (a + b + c) y w no tiene el mismo número de a, b y c}. 26. Considerando cada una de las gramáticas indicadas a continuación, G 1 = (V n, V t, S, P ), donde V n = {A, B, C, S}, V t = {a} y P = {S A, A BC, B A, A a, ac λ} G 2 = (V n, V t, S, P ), donde V n = {A, B, S}, V t = {0, 1} y P = {S 0A, S 1A, A 1BB, B 01, B 11} G 3 = (V n, V t, S, P ), donde V n = {A, B, S}, V t = {0, 1} y P = {S 0A, S 11A, A 1A, A 1} G 4 = (V n, V t, S, P ), donde V n = {A, S}, V t = {0, 1} y P = {S 0A1, 0A 00A1, A 01} dilucidar los siguientes interrogantes: a) De qué tipo es cada una de estas gramáticas? b) Describir informalmente el lenguaje generado por cada una de éstas. c) Cuáles de estos lenguajes son regulares? Cuáles son libres del contexto? d) En los casos que sea posible, proponer sendas gramáticas regulares que generen cada uno de los lenguajes anteriores. 27. Qué aspectos del lenguajes Pascal pueden ser capturados sólo mediante lenguajes sensibles al contexto? 28. Los procesadores de texto de antaño permitían subrayar palabras sobreescribiendo cada caracter con el símbolo (underscore). Esto es, una palabra subrayada se representa como una secuencia de letras, seguidas por una secuencia de igual longitud de caracteres de retroceso (backspace), seguidos por una secuencia de igual longitud de caracteres de subrayado. Encontrar una representación abstracta para este lenguaje. 29. Demostrar que el lenguaje {xwywz w (0 + 1) no es libre de contexto, donde x, y y z son palabras tomadas del lenguaje (0 + 1) }. Sea L un lenguaje que contiene un subconjunto que no es libre del contexto. Es factible que L sea libre del contexto de todas formas? Justificar la respuesta suministrada. 30. Determinar formalmente si cada uno de los siguientes lenguajes son libres del contexto: a) L 1 = {w w (a + b + c) y w posee la misma cantidad de símbolos a, b y c}. b) L 2 = {a 3n n 0}. c) L 3 = {(a + b) n (b + c) n (c + d) n n 1}. d) L 4 = {ww r w (a + b) }. 31. Encontrar sendas gramáticas que generen cada uno de los siguientes lenguajes: a) L 1 = {a n b m c n d m n, m 1}. 4

5 b) L 2 = {ww w (a + b) }. c) L 3 = {a 2n n 0}. 32. Considerando que la demostración del teorema que asegura que todo lenguaje sensible al contexto es recursivo presenta un cariz constructivo, resulta sencillo diseñar a partir de ésta un algoritmo que permita decidir si una determinada cadena de símbolos pertenece a un dado lenguaje sensible al contexto. El siguiente fragmento de pseudocódigo captura la esencia de este algoritmo. Suponiendo que G = (V n, V t, P, S) es la gramática que genera a un dado lenguaje L, se desea determinar si una cierta cadena x pertenece a L, partiendo de que x Vt y x = k. if x = λ then if (S λ) P then x L else x L else NuevoConj := {S}; repeat ActualConj := NuevoConj ; NuevoConj := ActualConj el conjunto de aquellas formas sentenciales de long k que se puedan obtener a partir de ActualConj por virtud de la aplicación de una sola producción; until NuevoConj = ActualConj ; if x NuevoConj then x L else x L 33. Sea G la gramática (V n, V t, S, P ), donde V n = {A, B, S}, V t = {0, 1} y P = {S 0, S 1A, 1A 1B, B 0B1, B 1}. Aplicando el algoritmo anterior, determinar si la cadena 1010 pertenece a L(G). 34. Qué inconveniente se sucita al intentar aplicar el algoritmo anterior a lenguajes que no son recursivos? En otras palabras, qué característica de los lenguajes estructurados por frases invalida la estrategia implícita en este algoritmo? 5

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Teoría de la Computabilidad

Teoría de la Computabilidad Teoría de la Computabilidad Módulo 7: Lenguajes sensibles al contexto 2016 Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina Es este programa en Pascal sintácticamente

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Teoría de Lenguajes. Gramáticas incontextuales

Teoría de Lenguajes. Gramáticas incontextuales Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b*

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b* UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo Algoritmos En general, no hay una definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un número finito de pasos convierten

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,

Más detalles

Computabilidad y Lenguajes Formales: Autómatas Finitos

Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

Capítulo 3. Conjuntos. Continuar

Capítulo 3. Conjuntos. Continuar Capítulo 3. Conjuntos Continuar Introducción Georg Cantor definió el concepto de conjunto como una colección de objetos reales o abstractos e introdujo el conjunto potencia y las operaciones entre conjuntos.

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

SISTEMAS INFORMÁTICOS PROGRAMACION I - Contenidos Analíticos Ing. Alejandro Guzmán M. TEMA 2. Diseño de Algoritmos

SISTEMAS INFORMÁTICOS PROGRAMACION I - Contenidos Analíticos Ing. Alejandro Guzmán M. TEMA 2. Diseño de Algoritmos TEMA 2 Diseño de Algoritmos 7 2. DISEÑO DE ALGORITMOS 2.1. Concepto de Algoritmo En matemáticas, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latín, dixit algorithmus

Más detalles

Autómatas Deterministas. Ivan Olmos Pineda

Autómatas Deterministas. Ivan Olmos Pineda Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Algoritmos y programas. Algoritmos y Estructuras de Datos I

Algoritmos y programas. Algoritmos y Estructuras de Datos I Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)

Más detalles

Lógica proposicional. Ivan Olmos Pineda

Lógica proposicional. Ivan Olmos Pineda Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

TEORÍA DE CONJUNTOS.

TEORÍA DE CONJUNTOS. TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 3.1: Autómatas Finitos Deterministas Tema 3.1: Autómatas Finitos Deterministas Luis Peña luis.pena@urjc.es http://www.ia.urjc.es/cms/es/docencia/ic-msal Sumario Tema 3.1: Autómatas Finitos Deterministas. 1. Concepto de AFD 2. Equivalencia

Más detalles

Tema: Autómata de Pila

Tema: Autómata de Pila Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES

PROGRAMA INSTRUCCIONAL AUTOMATAS Y LENGUAJES FORMALES UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales 6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.

Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R. Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Clase 17: Autómatas de pila

Clase 17: Autómatas de pila Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata de pila Definición

Más detalles

Conjuntos y Conjuntos Numéricos

Conjuntos y Conjuntos Numéricos Conjuntos y Conjuntos Numéricos Alguna Nociones Básica Sobre Conjuntos Definición: Un conjunto es una colección de objetos o cosas, llamados los elementos o miembros del conjunto. Formas de expresar un

Más detalles

Estructura de Datos y de la Información. Pilas y expresiones aritméticas

Estructura de Datos y de la Información. Pilas y expresiones aritméticas Estructura de Datos y de la Información Pilas y expresiones aritméticas LIDIA Laboratorio de Investigación y desarrollo en Inteligencia Artificial Departamento de Computación Universidade da Coruña, España

Más detalles

Computabilidad y Lenguajes Formales: Autómatas de Pila

Computabilidad y Lenguajes Formales: Autómatas de Pila 300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas

Más detalles

Unidad II: Análisis semántico

Unidad II: Análisis semántico Unidad II: Análisis semántico Se compone de un conjunto de rutinas independientes, llamadas por los analizadores morfológico y sintáctico. El análisis semántico utiliza como entrada el árbol sintáctico

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos

Más detalles

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir

Más detalles

06 Análisis léxico II

06 Análisis léxico II 2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios

Más detalles

PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07

PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07 PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07 1. En qué método de análisis sintáctico puede suceder que en la construcción del árbol de derivación de las posibles expansiones de un símbolo no terminal

Más detalles

ARITMÉTICA MODULAR. Unidad 1

ARITMÉTICA MODULAR. Unidad 1 Unidad 1 ARITMÉTICA MODULAR 9 Capítulo 1 DE LA TEORÍA DE CONJUNTOS Objetivo general Presentar y afianzar algunos conceptos de la Teoría de Conjuntos relacionados con el estudio de la matemática discreta.

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]* Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,

Más detalles

INAOE. Gramáticas Libres de Contexto. Definición formal de CFGs. Derivaciones usando. Derivaciones. izquierda y. derecha.

INAOE. Gramáticas Libres de Contexto. Definición formal de CFGs. Derivaciones usando. Derivaciones. izquierda y. derecha. s s INAOE en s (INAOE) 1 / 67 Contenido s en s 1 s 2 3 4 5 6 7 8 en s (INAOE) 2 / 67 s s s Hemos visto que muchos lenguajes no son regulares. Por lo que necesitamos una clase más grande de lenguages Las

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se

Más detalles

Manual de turbo pascal

Manual de turbo pascal Universidad Nacional Experimental De Los Llanos Occidentales Ezequiel Zamora UNELLEZ-Barinas Manual de turbo pascal Bachilleres: Martinez Ninibeth C.I:20.867.002 Mora Yaco C.I:17.205.073 Estructura de

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos

Más detalles

Guía práctica de estudio 06: Lenguaje binario

Guía práctica de estudio 06: Lenguaje binario Guía práctica de estudio 06: Lenguaje binario Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 06: Lenguaje binario

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia

Más detalles

2.Teoría de Autómatas

2.Teoría de Autómatas 2.Teoría de Autómatas Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Lenguajes Formales. 27 de octubre de 2005

Lenguajes Formales. 27 de octubre de 2005 Apuntes de Teoría de Autómatas y Lenguajes Formales Gloria Martínez Luis A. García 27 de octubre de 2005 II Índice general 3.1. El Teorema de Myhill-Nerode. Minimización de Autómatas Finitos..... 41 3.2.

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Ubicación de la asignatura. Propósito de la asignatura. Desarrollando proyectos. Asignaturas relacionadas. Una mirada hacia la optimización económica

Ubicación de la asignatura. Propósito de la asignatura. Desarrollando proyectos. Asignaturas relacionadas. Una mirada hacia la optimización económica EL CÁLCULO EN MI VIDA DIARIA OPTATIVAS ÁREA: MATEMÁTICAS Ubicación de la asignatura La asignatura El cálculo en mi vida diaria, se encuentra dentro del bloque de las asignaturas optativas del Bachillerato

Más detalles

Unidad Didáctica 2. Elementos básicos del lenguaje Java Tipos, declaraciones, expresiones y asignaciones

Unidad Didáctica 2. Elementos básicos del lenguaje Java Tipos, declaraciones, expresiones y asignaciones Unidad Didáctica 2 Elementos básicos del lenguaje Java Tipos, declaraciones, expresiones y asignaciones Fundamentos de Programación Departamento de Lenguajes y Sistemas Informáticos Versión 1.0.3 Índice

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Sintaxis y Semántica del Lenguaje. Gramáticas

Sintaxis y Semántica del Lenguaje. Gramáticas Gramáticas La tarea de proveer una descripción bien concisa y entendible de un lenguaje de programación es difícil pero esencial para el éxito de un lenguaje. Uno de los problemas en describir un lenguaje

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

Bloque 4 Competencias a desarrollar:

Bloque 4 Competencias a desarrollar: Bloque 4 Competencias a desarrollar: Construir e interpretar modelos matemáticos mediante 4_CUEVAS_MAT4_B4.indd 7 la aplicación de procedimientos aritméticos, algebraicos, geométricos y variacionales para

Más detalles

PROCESADORES DE LENGUAJE. Hoja de ejercicios de FLEX

PROCESADORES DE LENGUAJE. Hoja de ejercicios de FLEX PROCESADORES DE LENGUAJE Ingeniería Informática Especialidad de Computación Tercer curso Segundo cuatrimestre Departamento de Informática y Análisis Numérico Escuela Politécnica Superior de Córdoba Universidad

Más detalles

Estructuras de control

Estructuras de control Estructuras de control Introducción Los algoritmos vistos hasta el momento han consistido en simples secuencias de instrucciones; sin embargo, existen tareas más complejas que no pueden ser resueltas empleando

Más detalles

Profs. Carlos Pérez y Ricardo Monascal

Profs. Carlos Pérez y Ricardo Monascal TRADUCTORES E INTERPRETADORES Clase 0: Introducción al Curso Quiénes somos? Prof. Carlos Pérez caperez@ldc.usb.ve Prof. Ricardo Monascal rmonascal@ldc.usb.ve Oficina: MYS-228A (Sí, es la misma) Recursos

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3041 GRADO: ING. EN COMPUTACIÓN, CUARTO SEMESTRE TIPO DE TEÓRICA/PRÁCTICA ANTECEDENTE CURRICULAR: 3033.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

NOT. Ejemplo: Circuito C1

NOT. Ejemplo: Circuito C1 Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen

Más detalles

GUION TÉCNICO AUDIO. El Conjunto De Los Números Reales. realidad, es una ciencia resultado de más de 4 mil años de

GUION TÉCNICO AUDIO. El Conjunto De Los Números Reales. realidad, es una ciencia resultado de más de 4 mil años de 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. El Conjunto De Los Números Reales. Hablar de matemáticas, no es solo referirse a números. En realidad, es

Más detalles

MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5

MATEMÁTICAS II CICLO COMÚN INBAC UNIDAD DIDÁCTICA #5 UNIDAD DIDÁCTICA #5 INDICE PÁGINA Números Irracionales -------------------------------------------------------------------------------------2 Los Pitagóricos y 2 ----------------------------------------------------------------------3

Más detalles

ANEXO XVII DE LA RESOLUCION N

ANEXO XVII DE LA RESOLUCION N Hoja 1 de 7 UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas Físicas y Naturales República Argentina Programa de: Código: Informática Carrera: Materia común Res. Nº Plan: Puntos:3.5 Escuela:

Más detalles

Algoritmos y solución de problemas. Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal

Algoritmos y solución de problemas. Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal Algoritmos y solución de problemas Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal Introducción Departamento de Electrónica, Sistemas e Informática En las ciencias de la computación

Más detalles

PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251

PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251 No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo

Más detalles

Apuntes de Teoría de Autómatas y Lenguajes Formales. Gloria Martínez

Apuntes de Teoría de Autómatas y Lenguajes Formales. Gloria Martínez Apuntes de Teoría de Autómatas y Lenguajes Formales Gloria Martínez Luis A. García 11 de octubre de 2005 Índice general 1. Introducción 1 1.1. Alfabetos y Cadenas.............................. 1 1.2.

Más detalles