TEMA 0: Herramientas matemáticas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 0: Herramientas matemáticas"

Transcripción

1 1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica de los campos. 6. Coordenadas curvilíneas ortogonales 7. Delta de Dirac 8. Teorema de Helmholtz 9. Clasificación de los campos según sus fuentes Apéndice J, K y Capítulo 1 de

2 2 Campos escalares y vectoriales. Notación Escalar: Cantidad física expresable en un sistema de unidades por un solo número (su magnitud). Vector ( a ): Cantidad física que precisa, además de su magnitud o módulo (definido positivo) una dirección y un sentido en el espacio. Notaremos su módulo por Suma de vectores: Vector dado por la regla del triángulo Negativo de un vector: Resta de vectores: a b a( b)

3 3 Campos escalares y vectoriales. Notación Producto de un escalar por un vector: Nuevo vector de módulo el valor absoluto del escalar por el modulo del vector, de igual dirección y sentido igual/opuesto si el escalar es positivo/negativo Vector unitario: a a a Producto escalar de dos vectores: a b a b cos a a a c a b a a bb Ortogonalidad: Dos vectores son ortogonales (perpendiculares) cuando su producto escalar es nulo.

4 Campos escalares y vectoriales. Notación Producto vectorial: (Pseudovector) Tiene el sentido de avance de un tornillo que gira desde el primero al segunod por el camino más corto (es anticonmutativo) NOTACIÓN a b a b 4

5 5 Sistema coordenado ortogonal: Dados tres vectores unitarios y ortogonales, cualquier otro se puede poner como combinación lineal de estos , con,, i i i i i i i ij j i a a a a e a a a e a e e e e e La base puede ser a izquierdas o a derechas Campos escalares y vectoriales. Notación

6 Campos escalares y vectoriales. Notación Producto vectorial en una base a derechas: 6

7 Coordenadas Cartesianas 7

8 8 Campos escalares y vectoriales. Notación Campo escalar: Función que a cada punto del espacio le asigna un escalar. Ej. Campo de presiones atmosféricas (líneas de isocampo) Campo vectorial: ( r ) Función que a cada punto del espacio le asigna un vector. Ej. Campo de velocidades en un fluido (líneas tangentes al campo) Fr ( ) Fre ( ) F( re ) F( re )

9 9 Gradiente de un Campo Escalar Supongamos que en un sistema se hace un desplazamiento elemental, y estudiemos la variación del campo escalar a lo largo del mismo d l con 3 i1 dl e i i 3 i1 e l i d i 3 i1 dl l grad i i d l Al operador diferencial se le denomina nabla y a su aplicación a un campo escalar, gradiente del campo. Si d l dl l d l d l Máximo si el gradiente es paralelo al desplamiento Nulo (equiescalaridad) si el gradiente es perpendicular al desplazamiento Las superficies equiescalares son perpendiculares al vector gradiente

10 10 Flujo de un Campo Vectorial: Divergencia ( a) a d S NOTACIÓN div a S Cerrada: Normal a la superficie saliente Abierta: Normal a la superficie según regla del tornillo por el giro de su contorno Si el flujo a través de una superficie CERRADA es positivo diremos que el campo tiene fuentes positivas en el volumen encerrado por la superficie y fuentes negativas si el flujo es negativo. Cabe definir la densidad de fuentes en un punto rodeándolo de un volumen, calculando el flujo a través de su superficie y hacer tender el volumen a cero: a esto se le llama divergencia del campo lim V 0 SV a d S V ds n ds n ds

11 11 Circulación Campo Vectorial: Rotacional C L ( a ) a d l Si la circulación a lo largo de un de una camino CERRADO es nula diremos que el campo es conservativo (irrotacional). Cabe caracterizar el comportamiento de la circulación de un campo alrededor de un punto, rodeándolo de un camino sobre n el que se apoya una superfice de vector unitario, calculando la circulación sobre el camino y haciendo tender la superficie a cero L rot a rot a a d l Ln n n lim Sn 0 Sn Proyección del vector rotacional sobre la dirección n. Si es no nulo podemos afirmar que el campo RODEA al punto. El vector rotacional en una base dada { e, e, e } será rot a rot a e rot a rot 1 e a 2 e3

12 Teoremas de Gauss y de Stokes TEOREMA DE LA DIVERGENCIA o DE GAUSS div a dv a V TEOREMA DEL ROTACIONAL o DE STOKES rot a ds S V a S VARIANTES rot a dv d S a V S V L S d d l S grad dl d S L S L dv d S V S V grad 12

13 Campos conservativos CONJUNTO DE AFIRMACIONES EQUIVALENTES 13

14 Operador Laplaciano SOBRE CAMPOS ESCALARES SOBRE CAMPOS VECTORIALES 14

15 Coordenadas Cartesianas ds dy dz x dz dx y dx dy z a a a grad x y z, div a a x y z x y z x y z x y z rot a a x y z a a a x y z 15

16 Representación gráfica de los campos. Líneas de campo (vectorial): líneas tangentes al campo en todos sus puntos 16

17 CAMPOS VECTORIALES DIVERGENTES 17

18 CAMPOS VECTORIALES ROTACIONALES 18

19 CAMPOS VECTORIALES DIVERGENTES Y ROTACIONALES 19

20 CAMPOS ESCALARES 20

21 21 Coordenadas Curvilíneas Ortogonales Las coordenadas (q 1, q 2, q 3 ) de un punto P pueden referirse a una base LOCAL de tres vectores tangentes a las curvas de corte de tres superficies, pertenecientes a tres familias distintas, que se corten ortogonalmente precisamente en P e e e, rotacion ciclica ( i, j, k) i j k Los vectores de la base e 1, e 2, e 3 son, pues, perpendiculares a cada una de las superficies f 1 =q 1,f 2 =q 2,f 3 =q 3 y por tanto, perpendiculares entre sí, y pueden ponerse en cada punto P como el gradiente normalizado de la función.

22 22 Coordenadas Curvilíneas Ortogonales El diferencial de longitud (desplazamiento elemental) es Con dl i la distancia en la dirección entre las superficies f i =q i y f i =q i +dq i. Por tanto en general se puede poner El vector diferencial de superficie viene dado por Con (i,j,k) rotación cíclica a derechas de (1,2,3) El diferencial de volumen dv dl1 dl2 dl3 h1 h2 h3 dq1 dq2 dq3 El vector de posición de un punto va desde el origen del sistema hasta el punto r r r 3 i1 r i e i

23 Coordenadas Curvilíneas: Operadores 23

24 24 Sistemas más usados CARTESIANAS q z f q y f q x f Plano Plano Plano z z y y x x r z k e y j e x i e h h h,, CILÍNDRICAS Plano Plano Cilindro , 0, q z f q f q f z z r k z e e e h h h,, 1,,

25 25 Sistemas más usados ESFÉRICAS 2 0, 0, 0, q f q f r q r f Cono Plano Esfera r r r e e r e r h r h h,, sin, 1,

26 CARTESIANAS dl x dx, dl y dy, dl z dz ds dydzx dxdzy dxdyz dv dl dl dl dx dy dz x y z 26

27 CILÍNDRICAS Alternativamente dl d, dl d, dl z dz ds d dz d dz d d z dv d d dz 27

28 ESFÉRICAS Alternativamente dl r dr, dl rd, dl r sin d 2 ds r sin d d r r sin d dr rd dr dv d d dz 28

29 OPERADORES 29

30 OPERADORES 30

31 ALGUNAS RELACIONES UTILES 31

32 CONVERSIONES 2 2 x y y arctan x A Ax x Ay y Az z A A Az z 32

33 CONVERSIONES r x y z y arctan x 2 2 x y arctan z A Ax x Ay y Az z Ar r A A 33

34 2 2 r z arctan z CONVERSIONES A A A A zz Ar r A A 34

35 DELTA DE DIRAC La Delta de Dirac es una función generalizada (distribución) f( x) ( x x ) f( x ) ( xx ) DESPLAZAMIENTO ( x x ) ( x x) FUNCION PAR 0 0 más general 35

36 DELTA DE DIRAC y FUNCIÓN DE HEAVISIDE 36 0 si x 0 Funcion de Heaviside H( x) 1 si x 0 0 si x 0 H'( x) 0 si x0 No derivable en x 0 H'( xx) f( xdx ) lim f( x) f'( xdx ) f( x) H'( xx) ( xx) x x Integrando por partes x (n) En general f(x)δ (x x 0 x 0 '( xx ) f( x) dx ( xx ) f '( x) dxf '( x ) Derivada de la Delta de Dirac )dx ( 1) n f (n) (x 0 )

37 DELTA DE DIRAC: SUCESIÓN DE FUNCIONES lim ( x x ) ( xx ) a 0 a 0 0 a=1/2981 a=1/148 a=1/55 x 0 lim ( x x ) ( xx ) a 0 a

38 DELTA DE DIRAC Y TRANSFORMADA DE FOURIER t a=1/40 a=1/20 a=1/10 sin ( tt')/ a a( ') 2 ( tt') 1/ a 1 j ( t t') t t e d 1/ a lim ( t t') ( tt') t' t' t' 1 (' ) 1 j t t jt' jt f ( t) f(t')δ(t' t)dt' f(t') e dt' d f(t') e dt' e d 2 2 t' t' t' F f(t') F( ) -1 F F( ) transformadas directa e inversa de Fourier de la función f(t), que existe si f(t) es de cuadrado sumable. t a0 j t 1 j t F f ( t) f(t) e dt F( ) F F( ) F( ) e d f ( t) t a 1 2 t t

39 DELTA DE DIRAC. PROPIEDADES ( ) 39

40 DELTA DE DIRAC EN 3D En otros sistemas coordenados 40

41 41 DELTA DE DIRAC Y LAPLACIANO TRES JUEGOS DE VARIABLES r xx yyzz, r' x' x y' yz' z, Rr r' x y z, ' x y z x y z x' y' z' R R ( R) ' ' R R R R si R 0 ' R x y z ( xx') ( y y') ( zz') si R 0 O O O O

42 42 TEOREMA DE HELMHOLTZ Las fuentes de un campo F lo determinan unívocamente si Tomando F la forma Espacios gradiente y rotacional: DISJUNTOS Si U f no existe ningun g U f g 2 porque g, g0 f, análogamente U g f porque f, f 0 g

43 TEOREMA DE HELMHOLTZ: DEMOSTRACIÓN Tomemos el volumen V de la figura, puntos interiores notaremos por r, encerrando o no a parte de las fuentes (V 0 ), y encerrando al punto r ' r ( i. e. R 0) P R 0 V ' La Delta de Dirac nos permite escribir para 43

44 44 TEOREMA DE HELMHOLTZ: DEMOSTRACIÓN (La segunda parte la probaremos sólo para el potencial escalar) Dado que F( r ') no es función de R sino de r,' y que la integración se hace en V Donde se ha tenido en cuenta que h Como quiera que 2 2 ( R) ' h( R), R ( x x') ( y y') ( z z 1 ' F( r ') 1 F( r ') f ( r) dv' ' ' ' dv' 4 V R 4 V R Haciendo uso del T. de Gauss, con S superficie que envuelve a V F( r ') ds' S ' R Haciendo tender V a infinito la integral de superficie se anula (por hipótesis F(r ) decrece según 1/r 2, 1/R decrece según 1/r y ds crece según r 2 ), y las fuentes sólo son no nulas dentro de V 0 ') 2

45 45 CLASIFICACIÓN DE LOS CAMPOS SEGÚN SUS FUENTES T. Stokes F dl RdS, R= rot F L S L T. Gauss F ds DdV, D= div F S V S (a) (b) (c) (d) (a) Irrotacional, solenoidal (b) Irrotacional, no solenoidal (c) Rotacional, solenoidal (d) Rotacional, no solenoidal

46 46 CLASIFICACIÓN DE LOS CAMPOS SEGÚN SUS FUENTES Campo irrotacional (fuentes vectoriales nulas) y solenoidal (fuentes escalares nulas) dentro de un volumen V. Para solución no trivial debe existir alguna región con fuentes no nulas fuera de V. Líneas de campo no se cierran sobre sí en V (campo conservativo) Tantas líneas de campo entran como salen de un V. D 0

47 47 CLASIFICACIÓN DE LOS CAMPOS SEGÚN SUS FUENTES Campo irrotacional (fuentes vectoriales nulas) y no solenoidal (fuentes escalares NO nulas) en V. Líneas de campo no se cierran sobre sí en V (campo conservativo) D 0 Las líneas de campo nacen o mueren en V en puntos con divergencia no nula

48 CLASIFICACIÓN DE LOS CAMPOS SEGÚN SUS FUENTES Campo rotacional (fuentes vectoriales NO nulas) y solenoidal (fuentes escalares nulas) en V. Líneas de campo se pueden cerrar sobre sí en V. g 0 Tantas líneas de campo entran como salen de un V. No nacen ni mueren en V. D 0 48

49 49 CLASIFICACIÓN DE LOS CAMPOS SEGÚN SUS FUENTES Campo rotacional (fuentes vectoriales NO nulas) y NO solenoidal (fuentes escalares NO nulas) en V. D 0 CAMPO ELECTROMAGNÉTICO: ECUACIONES DE MAXWELL SOLUCIÓN GENERAL EN VACÍO g A E V t BA 1 ( r', t R/ c) V( r, t) dv ' 4 0 R V ' J( r', t R/ c) A rt 0 (, ) dv' 4 R V '

50 EJEMPLOS: ONDAS EM INCIDENCIA EN AVIÓN METÁLICO FOCALIZACIÓN (LENTE BICONVEXA) FIBRA ÓPTICA 50

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

Dpto. Física y Mecánica. Operadores diferenciales

Dpto. Física y Mecánica. Operadores diferenciales Dpto. Física y Mecánica Operadores diferenciales Se denominan líneas coordenadas de un espacio euclídeo tridimensional a aquellas que se obtienen partiendo un punto dado P de coordenadas (q 1, q 2, q 3

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS Código: CNM- 517 Nombre: Análisis vectorial Prerrequisitos: CNM-295 Duración del semestre: 16 semanas Intensidad

Más detalles

Breviario de cálculo vectorial

Breviario de cálculo vectorial Apéndice A Breviario de cálculo vectorial versión 16 de octubre de 2006 Este apéndice no pretende ser mas que un resumen de definiciones y fórmulas útiles acerca de la función delta de Dirac, cálculo vectorial

Más detalles

INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad

INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad INDICE Capitulo 1. Números 1 Conjuntos 1 Números reales 1 Representación decimal de los números reales 2 Representación geométrica de los números reales 2 Operación con los números reales 2 Desigualdades

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.0

División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO CÁLCULO VECTORIAL CIENCIAS BÁSICAS 3 8 Asignatura Clave Semestre Créditos COORDINACIÓN DE MATEMÁTICAS INGENIERÍA CIVIL

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS

Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Análisis Vectorial 1. Algebra vectorial: suma, resta y multiplicación de vectores. 2. Sistemas de coordenadas ortogonales:

Más detalles

Elementos de análisis

Elementos de análisis Elementos de análisis El estudio universitario del electromagnetismo en Física II requiere del uso de elementos de análisis en varias variables que el alumno adquirirá en la asignatura Análisis Matemático

Más detalles

ANÁLISIS VECTORIAL. Contenido. Magnitudes escalares y vectoriales Definiciones Escalar Vector Sistemas de Coordenadas

ANÁLISIS VECTORIAL. Contenido. Magnitudes escalares y vectoriales Definiciones Escalar Vector Sistemas de Coordenadas ANÁLISIS VECTORIAL Contenido Magnitudes escalares y vectoriales Definiciones Escalar Vector Sistemas de Coordenadas Álgebra vectorial Definiciones Suma/Resta de vectores Producto/Cociente de un escalar

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Fundamentos Matemáticos. Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla

Fundamentos Matemáticos. Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Tema 1: Fundamentos Matemáticos Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Índice Introducción I. Sistemas de coordenadas II. Campos escalares. Gradiente III.

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos

Más detalles

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 32 Lectura 3 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 32 Motivación: muchas ecuaciones y propiedades fundamentales de la Física (y, en consecuencia, de aplicación

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada?

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada? ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 2 LEY DE GAUSS Bibliografía Obligatoria (mínima) Capítulo 24 Física de Serway Tomo II Apunte de la cátedra: Capìtulo III PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

INTRODUCCIÓN AL CONCEPTO DE CAMPOS

INTRODUCCIÓN AL CONCEPTO DE CAMPOS 1. CONCEPTO DE CAMPO. INTRODUCCIÓN AL CONCEPTO DE CAMPOS Una magnitud definida en un cierto espacio (p.ej. el euclídeo) y que pueda expresarse analíticamente como una función de las coordenadas espaciales

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

Teoría del potencial. Capítulo 5. Objetivos Introducción. Campos conservativos y solenoidales. Campos armónicos.

Teoría del potencial. Capítulo 5. Objetivos Introducción. Campos conservativos y solenoidales. Campos armónicos. Capítulo 5 Teoría del potencial Objetivos Campos conservativos y solenoidales. Campos armónicos. Representación integral de funciones. Teorema de Helmholtz. Ecuación de Poisson. 5.1. Introducción La teoría

Más detalles

Javier Junquera. Vectores

Javier Junquera. Vectores Javier Junquera Vectores Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas Un sistema de coordenadas que permita especificar posiciones consta de: Un punto de referencia fijo,

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial INDICE Capitulo Primero. Número. Variable. Función 1. Números reales. Representación de números reales por los puntos 1 del eje numérico 2. Valor absoluto de un número real 3 3. Magnitudes variables y

Más detalles

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS

ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS ELECTROMAGNETISMO PARA INGENIERÍA ELECTRÓNICA. CAMPOS Y ONDAS Introducción a la Teoría de Campos Introducción Capítulo 2 El modelo de campos eléctricos magnéticos es un derivado formal de la Teoría de

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

Los sistemas coordenados sirven para localizar puntos en el espacio. La localización de un punto se obtiene por intersección de tres superficies.

Los sistemas coordenados sirven para localizar puntos en el espacio. La localización de un punto se obtiene por intersección de tres superficies. Los sistemas coordenados sirven para localizar puntos en el espacio. La localización de un punto se obtiene por intersección de tres superficies. La intersección de dos superficies da lugar a una línea.

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Tema 2: Vectores libres

Tema 2: Vectores libres Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL

TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL Página Principal del Profesor: Luis Gerardo Guerrero Ojeda Ir al Capítulo 1 Página Principal de Apuntes de Cursos Pág. Principal de los Apuntes de Teoría TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 1. Coordenadas curvilíneas. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 1. Coordenadas curvilíneas. Ingeniero de Telecomunicación I. Fundamentos matemá 1. Coordenadas curvilíneas Gabriel Cano Gómez, G 2009/10 Dpto. Física F Aplicada III (U. Sevilla) Campos Electromagné Ingeniero de Telecomunicación I. Fundamentos matemá Gabriel Cano

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

2.8. Ecuaciones de Maxwell del electromagnetismo

2.8. Ecuaciones de Maxwell del electromagnetismo 2.8. Ecuaciones de Maxwell del electromagnetismo Para el caso de cargas en movimiento hemos de describir la fuerza mediante una ley de interacción carga-campo y nocarga-carga como es el caso de la ley

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

Ejemplos Desarrollados

Ejemplos Desarrollados Universidad de Santiago de Chile Departamento de Ingeniería Mecánica Mecánica de Medios Continuos Eugenio Rivera Mancilla Ejemplos Desarrollados 1. Una placa rectangular homogénea, de masa m, cuyas aristas

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

C 4 C 3 C 1. V n dσ = C i. i=1

C 4 C 3 C 1. V n dσ = C i. i=1 apítulo 2 Divergencia y flujo Sea V = V 1 i + V 2 j + V 3 k = (V 1, V 2, V 3 ) un campo vectorial en el espacio, por ejemplo el campo de velocidades de un fluido en un cierto instante de tiempo, en un

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte

Más detalles

e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105

e+ 2 Fay* Límites de una función Teoremas de los límites de funciones Límites unilaterales Límites infinitos 105 e+ I f 1.1 Números reales y desigualdades 2 1.2 Coordenadas y rectas 16 1.3 Circunferencias y gráficas de ecuaciones 32 1.4 Funciones 42 1.5 Gráficas de funciones S5 1.6 Funciones trigonométricas 61 Ejercicios

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Tema 1

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Tema 1 I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 28-9-Tema 1 Departamento de Física 1) Dado el campo vectorial F = y i+x j, calcule su circulación desde (2,1, 1) hasta

Más detalles

PLAN DE ESTUDIOS DE MS

PLAN DE ESTUDIOS DE MS PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

CÁLCULO INTEGRAL TEMARIO

CÁLCULO INTEGRAL TEMARIO CÁLCULO INTEGRAL TEMARIO 1. LA INTEGRAL 1.1 La integral indefinida Antiderivadas o primitivas. Funciones con la misma derivada. Antiderivada general. Antiderivada particular. Integral indefinida. Elementos

Más detalles

Un apunte sobre la referencia de Lacan al Teorema de Stokes en "Posición del inconsciente"

Un apunte sobre la referencia de Lacan al Teorema de Stokes en Posición del inconsciente NODVS de Un apunte sobre la referencia de Lacan al Teorema de Stokes en "Posición del inconsciente" Trabajo elaborado en el contexto del Seminario de Investigación Posición del inconsciente: entre alienación

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

CIRCUITOS ELÉCTRICOS. Temas:

CIRCUITOS ELÉCTRICOS. Temas: CIRCUITOS ELÉCTRICOS Temas: - Conceptos generales de circuitos eléctricos, ley de Ohm y de Kirchhoff. - Energía almacenada en bobinas y capacitores. - Teoremas de redes: Thevenin, Norton, superposición,

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Datos Descriptivos. ANEXO II Guía de Aprendizaje Información al estudiante. Sólo castellano Sólo inglés Ambos IDIOMA IMPARTICIÓN

Datos Descriptivos. ANEXO II Guía de Aprendizaje Información al estudiante. Sólo castellano Sólo inglés Ambos IDIOMA IMPARTICIÓN ANEXO II Guía de Aprendizaje Información al estudiante Datos Descriptivos ASIGNATURA: CÁLCULO II CRÉDITOS EUROPEOS: 6 MATERIA: MATEMÁTICAS (Módulo Básico) CARÁCTER: OBLIGATORIA TITULACIÓN: GRADO EN INGENIERÍA

Más detalles

Métodos Matemáticos para la Ingeniería

Métodos Matemáticos para la Ingeniería Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 280 - FNB - Facultad de Náutica de Barcelona 749 - MAT - Departamento de Matemáticas GRADO EN INGENIERÍA EN SISTEMAS Y TECNOLOGÍA

Más detalles

son dos elementos de Rⁿ, definimos su suma, denotada por

son dos elementos de Rⁿ, definimos su suma, denotada por 1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

ELECTROMAGNETISMO I El Rotor de H. ELECTROMAGNETISMO I El Rotor de H

ELECTROMAGNETISMO I El Rotor de H. ELECTROMAGNETISMO I El Rotor de H El Rotor de H Escribamos la expresión para Iy.. =? + + + + + + = = esto es igual a la corriente dentro del área analizada 139 El Rotor de H Dividiendo ambos miembros por el área dxdz y tomando el límite

Más detalles

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Universidad Técnica Federico Santamaría

Universidad Técnica Federico Santamaría Integral de uperficie - Mate 4 UPEFICIE PAAMÉTICA e forma similar a como se describe una curva mediante una función vectorial r(t), en función de un parámetro t,se puede describir una superficie mediante

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

Lección 4. CAMPOS VECTORIALES DIFERENCIABLES

Lección 4. CAMPOS VECTORIALES DIFERENCIABLES Matemáticas III GIC y GITI, curso 2015 2016) Lección 4. CAMPOS VECTORIALES DIFERENCIABLES 1. CAMPOS VECTORIALES DIFERENCIABLES Los campos vectoriales son funciones de una o más variables cuyas imágenes

Más detalles

=lim h 0. )=lim h 0 h. (2+h 2)2 2+h 4 ( 4)

=lim h 0. )=lim h 0 h. (2+h 2)2 2+h 4 ( 4) Tema 4 Derivación Ejercicios resueltos Derivación Ejercicio Estudiar la continuidad y derivabilidad de la función: ½ f () = si ( ) en el punto =. 4 si > Estudiemos primero los límites laterales en =: f

Más detalles

CAMPOS ESCALARES Y VECTORIALES

CAMPOS ESCALARES Y VECTORIALES CMPO ECLRE Y VECTORILE 1. CMPO ECLR Y CMPO VECTORIL 1.1.- CONCEPTO DE CMPO Consideremos el campo gravitatorio. Un hecho fundamental de la gravitación es que dos masas ejercen fuerzas entre sí, existe una

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y 5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y LÍMITES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.1.1. Las magnitudes variables: funciones. 5.1.1. Las magnitudes variables:

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4 Universidad de Alcalá Departamento de Física Solución del Ejercicio propuesto del Tema 4 1) La figura muestra un condensador esférico, cuyas armaduras interna y externa tienen radios R i 1 cm y R e 2 cm.

Más detalles