Profr. Efraín Soto Apolinar. Límites

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Profr. Efraín Soto Apolinar. Límites"

Transcripción

1 Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial y del cálculo integral. Los conceptos fundamentales en cálculo, la derivada y la integral, son definidos a partir de otro, todavía más fundamental: el concepto de límite. Noción intuitiva de límite Nosotros utilizamos los límites muy frecuentemente, pero no los reconocemos como tales simplemente porque no estamos acostumbrados a pensar en términos de ellos. Cómo medimos la velocidad de un coche? Ejemplo 1 Cuando viajamos en un coche es común revisar frecuentemente el velocímetro. Supongamos que la velocidad que éste indica es de 45 km/hr. Nosotros podemos calcular la velocidad promedio v de un móvil dividiendo la distancia d recorrida por él entre el tiempo t que le tomó recorrerla. En un instante, es decir, en un punto del tiempo, la distancia recorrida es cero. Cómo, entonces, medimos la velocidad para indicarla en el velocímetro? Profesor: Puntualice que para calcular la velocidad en un instante, tenemos que sortear la división entre cero. Imagina que tienes que llenar un vaso con agua. Abres el grifo del agua y ésta sale a razón de 30 mililitros por segundo. Sabiendo que la capacidad del vaso es de 300 ml, Cuánto tiempo requieres para llenarlo? Ejemplo 2 Como cada segundo se vierten 30 ml de agua al vaso, en t = 10 segundos está a su capacidad máxima. Lo interesante de esto es que conforme el valor de t se acerca a 10 el volumen de agua vertido en el vaso se aproxima cada vez más a 300 ml. Imagina que deseas calcular el valor exacto del número π. Sabiendo que el área del círculo unitario (de radio 1) es igual a π, vamos a encontrar una forma de ir aproximando el valor de esta constante geométrica. Ejemplo 3 Ya sabes que el área de un círculo de radio 1 es igual a π unidades cuadradas. Entonces, podemos ir dibujando polígonos regulares en el círculo unitario (es decir, de radio 1), calcular el área de cada uno, y después aumentar el número de lados del polígono. Sea n el número de lados del polígono dibujado en el círculo unitario, y hagamos que n vayan creciendo. Cuando n sea infinito, obtedremos el valor exacto del número π. 1/10 Profesor: Recuerde a los estudiantes la fórmula: A c = π r 2 donde A c es el área del círculo y r es su radio.

2 Decimos que π es el valor del límite al cual tiende el área del polígono inscrito en el círculo unitario. A 5 A 6 A 7 n = 5 n = 6 n = 7 A 8 A 9 A 10 n = 8 n = 9 n = 10 Observa que conforme hacemos crecer el número de lados n, el área A n del polígono de n lados se acerca cada vez más al área de la círculo, que es igual a π, dado que su radio es 1. El polígono regular que vamos dibujando inscrito al círculo tiene su propia área. Si hacemos que el número de lados de este polígono crezca mucho, su área cada vez se acercará a la del círculo. Un matemático diría: «el límite del área del polígono inscrito a la circunferencia unitaria cuando su número de lados tiende a infinito es π.» Ejemplo 4 Luisa tiene una cuerda de un metro de largo. Como está aburrida y quiere matar el ocio, empieza a cortar la cuerda por la mitad exactamente. De los dos trozos que obtuvo, uno lo coloca en una mesa que está junto a ella y el otro trozo lo vuelve a partir por la mitad; de nuevo un trozo lo coloca en la mesa y el otro lo vuelve a cortar por la mitad. Si ella realiza n cortes, Cuál es la longitud de cuerda que está en la mesa? [?] Observa que cada vez corta la mitad de lo que le queda en la mano. En el primer corte tiene medio metro en cada trozo. Después de cortar la segunda vez tiene un cuarto. Después de cortar la tercera vez tiene un octavo de metro, y así sucesivamente. Esto es, n n 2/10

3 En cada corte que hace Luisa a la cuerda, obtiene la mitad del pedazo anterior, y éste lo suma a la longitud que ya tenía en la mesa. La misma situación práctica nos sugiere una interpretación en una recta numérica, como se muestra a continuación: O bien, en una tabla: 1 metro 0 1 o 2 o 3 o 4 o Corte No. Corte Longitud del corte 0 1 m 1 1/2 m 2 1/2 2 m 3 1/2 3 m n 1/2 n m Observa que cada vez que ella corta el trozo de cuerda que le queda en la mano, obtiene otros dos nuevos trozos que tienen el mismo tamaño, porque siempre corta por la mitad. Entonces, el último trozo que sumó a la cantidad de cuerda que había en la mesa es igual al trozo con el que se quedó en la mano. Esto significa que la suma de la cuerda que está en la mesa es igual a 1 metro de cuerda (la longitud inicial de la cuerda) menos la longitud del trozo que le quedó en la mano, cuya longitud es igual a la del último trozo que agregó n = n = 2n 2 n 1 2 n = 2n 1 2 n Observa que conforme n crece la suma se acerca cada vez más a 1. Esto es así porque el trozo de cuerda que le queda en la mano es cada vez más pequeño. Un terreno que va a ser repartido entre todos los que llegarán al Castillo de Chato Petter de tal forma que a la primera persona le tocará la mitad del terreno, a la segunda persona la mitad de lo que quede y a la siguiente persona la mitad que quede, y así sucesivamente. Enseguida se muestra la interpretación geométrica de esta situación. Ejemplo 5 Como a la primer persona le toca la mitad, dividimos el terreno por la mitad. A la segunda persona le corresponde la mitad de la mitad, es decir, una cuarta parte de todo el terreno. A la siguiente personal la mitad de lo que quede, y así sucesivamente... A la persona n-ésima le darán 1/2 n del terreno: 3/10

4 2 a 3 a 1 a 5 a 6 a... 4 a Observa que la suma: n = 2n 1 2 n se aproxima mucho a 1 cuando el valor de n crece mucho, sin embargo, nunca se hace igual a 1, porque para que eso ocurriera, necesariamente el numerador debería ser igual al denominador, pero eso nunca ocurre, porque se está restando 1 a 2 n. Por otra parte, cuando los valores de n crecen mucho, el número 1 se hace insignificante comparado con 2 n, y esto hace que el cociente: 2 n 1 2 n se aproxime cada vez más al número 1, pero como ya dijimos, nunca lo iguala. Ejemplo 6 Cuando una piedra cae desde 10 metros de altura, su posición y puede calcularse con la fórmula: y = t 2 donde t es el tiempo que lleva cayendo. Qué velocidad lleva a los 1.25 segundos después de inciar la caída? Podemos calcular la altura a la que se encuentra 1.2 segundos después de iniciar la caída: y(1.2) = (1.2) 2 = metros. Y cuando ya pasaron 1.25 segundos su altura es: y(1.25) = (1.25) 2 = metros. Entonces, entre los primeros 1.2 y 1.25 segundos ha recorrido: Su velocidad promedio en ese intervalo es: y(1.2) y(1.25) = = 0.6 metros v = d t = 0.6 = 12 m/s 0.05 Observa que hemos considerado la piedra justo antes de que pase por t = /10

5 t Vamos a calcular su velocidad justo después de pasar por ahí. Primero calculamos la altura que tiene esa predra a los 1.3 segundos: y(1.3) = (1.3) 2 = 1.71 metros. Y como y(1.25) = , entre los primeros 1.25 y 1.3 segundos ha recorrido: Y ahora su velocidad es: y(1.2) y(1.25) = = metros v = d t = = m/s Obviamente, al llevar más tiempo de caída, como está siendo acelerado debido a la gravedad, su velocidad creció. Pero no hemos medido su velocidad cuando t = 1.25 segundos, sino un poco antes y un poco después t Podemos calcular el promedio de las dos velocidades y suponer que este promedio está muy cerca de la velocidad que tiene la piedra cuando t = 1.25 segundos: v f = = m/s Sin embargo, no estamos seguros de que esta velocidad esté correcta. Si comparamos otros valores de t poco antes y poco después y volvemos a calcular el promedio, el resultado no necesariamente será el mismo. Vamos a elaborar una tabla, para calcular la altura de la piera para diferentes valores de t antes y después de t = A partir de esos valores vamos a calcular la velocidad alrededor del valor de t = 1.25 para ver cómo cambia. t y(t) d t v /10

6 De la tabla podemos observar que la velocidad que obtenemos depende cómo nos acerquemos al punto t = 1.25 s. Nuestro problema consiste en calcular la velocidad de la piedra en ese instante. De cualquier manera, el promedio que dimos antes ( v f = m/s) parece estar correcto. Esa palabra «parece» nos deja con la duda. Sabemos que es una aproximación inteligente, pero nos gustaría conocer con mayor certeza el valor de la velocidad en ese punto. En el siguiente ejemplo utilizaremos un recurso geométrico. Un estudiante de física lanzó una piedra hacia arriba de manera tal que su trayectoria sigue una parábola y la altura y medida en metros puede calcularse con: Ejemplo 7 y(t) = t t donde t es el tiempo que lleva la piedra en el aire medido en segundos. Interpreta gráficamente la velocidad de la piedra a los dos segundos de haber sido lanzada. Podemos calcular la posición de la piedra a los dos segundos: y(2) = (2) (2) = metros. Y su posición a los 2.5 segundos es: y(2.5) = (2.5) (2.5) = metros. Mientras que su posición después de 1.5 segundos de haber sido lanzada es: y(1.5) = (1.5) (1.5) = metros. Vamos a graficar esta función en el intervalo 2 t 2.5: y(t) 31 C B A t 6/10

7 Recuerda que en el eje vertical tenemos la distancia que recorrió en t segundos. El eje horizontal está representando al tiempo. En la gráfica se incluyeron los puntos A(1.5, 25.76), B(2, 29.45) y C(2.5, 30.68). De la gráfica se deduce inmediatamente que mientras la piedra se movía del punto A al punto B recorrió una mayor distancia que en el trayecto de B a C, a pesar de que utilizó la misma cantidad de tiempo. Esto nos indica que viajó, en promedio a mayor velocidad en el primer intervalo. La velocidad se calcula definiendo distancia entre tiempo. La velocidad promedio a la que viajó el tramo AB es: v AB = = 3.7 = 7.4 m/s 0.5 Por otra parte, la velocidad promedio para el tramo BC es: v BC = = = 2.46 m/s Vaya diferencia! Observa que la velocidad promedio en realidad es la pendiente de la recta que pasa por los puntos de interés. Recuerda que la pendiente de una recta es una razón de dos cantidades: m = y 2 y 1 x 2 x 1 = y x Si en el numerador de la pendiente escribimos una distancia y en el denominador tiempo, la pendiente representa una velocidad promedio. Geométricamente ahora puedes notar la gran diferencia en las velocidad medida entre los puntos A y B comparada con los puntos B y C. La pendiente de cada segmento en la gráfica nos debe mostrar eso 1. Pero no hemos terminado con el problema inicial. Nosotros debemos calcular la velocidad de un objeto que se mueve, pero en un instante. Sabiendo que la pendiente se interpreta como una velocidad, aproxima la velocidad promedio para acercarla cada vez más a la velocidad instantánea. Ejemplo 8 Utilizaremos la gráfica del ejemplo anterior: 1 Los segmentos no están incluidos en la gráfica. 7/10

8 y(t) 31 C 30 y B t t Ahora lo que debemos hacer es acercar el punto C al punto B poco a poco para ver cómo se comporta la pendiente de la recta que pasa por B y C. Pero nosotros sabemos cómo calcular y a partir de t: y(t) = t t Así que si hacemos t 0 = 2, trataremos de averiguar qué ocurre con la pendiente de la recta conforme los valores de t se acercan a cero. Esto implica que el punto C se aproxime cada vez más al punto B. Así podremos calcular la velocidad de esa piedra en el instante t = 2. Empezamos, si t 0 = 2 está fijo y le sumamos la cantidad t, entonces, y se comporta así: y(2 + t) = (2 + t) (2 + t) ( = t + ( t) 2) t = t 4.05 ( t) t = t 4.05 ( t) 2 La última expresión nos indica cómo se comporta y(2 + t). 8/10

9 Cuando t se hace muy pequeño, casi cero, y(2 + t) debe aproximarse a y(2): Esto está de acuerdo con la intuición. y(2) = (0) 4.05 (0) 2 = Observa que y(2 + t) y(2) representa la distancia que la piedra recorrió durante t segundos, a partir de t = 2. Ahora veamos qué pasa con el cociente [y(2 + t) y(2)]/( t), que es igual a la velocidad promedio: v BC = y(2 + t) y(2) t = [ t 4.05 ( t)2 ] t = t Cuando t se hace muy pequeño, la velocidad promedio se acerca mucho a la velocidad que debe tener la piedra cuando t = 2 segundos, que en este caso es de: v B = (0) = m/s. En el ejemplo anterior notamos que la velocidad promedio de la piedra entre los puntos B y C está representada geométricamente por la pendiente de la recta que pasa por esos puntos. Cuando acercamos el punto C al punto B la recta secante a la parábola se va acercando a la tangente a la parábola en el punto B. Precisamente esta es la interpretación geométrica de la velocidad instantánea. Créditos Todo debe hacerse tan simple como sea posible, pero no más. Albert Einstein Este material se extrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. 9/10

10 Productor general: Efraín Soto Apolinar. Año de edición: 2010 Año de publicación: Pendiente. Última revisión: 01 de agosto de Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: 10/10

Cálculo Diferencial. Efraín Soto Apolinar

Cálculo Diferencial. Efraín Soto Apolinar Cálculo Diferencial Efraín Soto Apolinar TÉRMINOS DE USO Derechos Reservados c 2010. Todos los derechos reservados a favor de Efraín Soto Apolinar. Soto Apolinar, Efraín. Cálculo Diferencial Primera edición.

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

Caracterización geométrica

Caracterización geométrica Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda

Más detalles

Errores. La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud?

Errores. La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud? 1 Errores La arista de un cubo variable crece a razón de 3 cm/s. Con qué rapidez está creciendo el volumen cuando la arista tiene 10 cm de longitud? 1 Sabemos que el volumen de un cubo se calcula por medio

Más detalles

Relaciones y funciones

Relaciones y funciones Relaciones y funciones En matemáticas, una relación es un conjunto de pares ordenados. Como si se tratara de coordenadas de puntos, un conjunto de pares ordenados, forma una relación. Relación Es un conjunto

Más detalles

Transformación de gráfica de funciones

Transformación de gráfica de funciones Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir

Más detalles

Profr. Efraín Soto Apolinar. Función exponencial

Profr. Efraín Soto Apolinar. Función exponencial Función eponencial La función eponencial viene de la generalización de la función polinomial. Si consideramos la función: =, por ejemplo, cabe preguntarnos, «cómo se comportaría la función si cambiamos

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

Profr. Efraín Soto Apolinar. Números reales

Profr. Efraín Soto Apolinar. Números reales úmeros reales En esta sección vamos a estudiar primero los distintos conjuntos de números que se definen en matemáticas. Después, al conocerlos mejor, podremos resolver distintos problemas aritméticos.

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

Ecuación ordinaria de la circunferencia

Ecuación ordinaria de la circunferencia Ecuación ordinaria de la circunferencia En esta sección estudiatemos la ecuación de la circunferencia en la forma ordinaria. Cuando hablemos de la forma ordinaria de una cónica, generalmente nos referiremos

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

Estabilidad dinámica Introducción

Estabilidad dinámica Introducción Figura 127: Varada Si el momento de asiento unitario del barco, en las condiciones de desplazamiento en las que se encuentra, es M u, tendremos que la alteración producida al bajar la marea de forma que

Más detalles

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivos 1. Medir la distancia recorrida y la velocidad de un objeto que se mueve con: a. velocidad constante y b. aceleración constante,. Establecer

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

1. Teorema del Valor Medio

1. Teorema del Valor Medio 1. l Valor Medio Uno de los teoremas más importantes del cálculo diferencial de funciones reales de una variable real es el l Valor Medio, del que se obtienen consecuencias como el Taylor y el estudio

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO CINEMATICA El objetivo de este tema es describir los movimientos utilizando un lenguaje científico preciso. En la primera actividad veremos qué magnitudes se necesitan introducir para lograr este objetivo.

Más detalles

Trabajo y energía: ejercicios resueltos

Trabajo y energía: ejercicios resueltos Trabajo y energía: ejercicios resueltos 1) Un hombre debe mover 15 metros una caja de 20Kg realizando una fuerza de 40N. Calcula el trabajo que realiza si: a) Empuja la caja desde atrás. b) Tira de la

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Geometría Analítica. Efraín Soto Apolinar

Geometría Analítica. Efraín Soto Apolinar Geometría Analítica Efraín Soto Apolinar TÉRMINOS DE USO Derechos Reservados c 010. Todos los derechos reservados a favor de Efraín Soto Apolinar. Soto Apolinar, Efraín. Geometría Analítica 010 edición.

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

Cosmología para la enseñanza media

Cosmología para la enseñanza media Cosmología para la enseñanza media P. Kittl (1) y G. Díaz (2) (1) Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 2777, Santiago, Chile (2)

Más detalles

Respuestas a las preguntas conceptuales.

Respuestas a las preguntas conceptuales. Respuestas a las preguntas conceptuales. 1. Respuesta: En general es más extensa la distancia recorrida. La distancia recorrida es una medición que pasa por todos los puntos de una trayectoria, sin embargo

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009 Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 2009 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

Derivadas de orden superior

Derivadas de orden superior Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

Función de producción

Función de producción Conceptos básicos de microeconomía de la empresa. Función de producción Autor: Lic. Florencia Montilla Julio de 2007 Función de producción La función de producción es la relación que existe entre el producto

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo 10 La circunferencia y el círculo Objetivos En esta quincena aprenderás a: Identificar los diferentes elementos presentes en la circunferencia y el círculo. Conocer las posiciones relativas de puntos,

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

1 EL MOVIMIENTO Y SU DESCRIPCIÓN

1 EL MOVIMIENTO Y SU DESCRIPCIÓN EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).

Más detalles

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación. Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: REGLA DE TRES CON BASE UNITARIA Año escolar: MATEMATICA 1 Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012

DEPARTAMENTO DE EDUCACIÓN FÍSICA CURSO 2011/2012 ORIENTACIÓN.1ºESO Carreras de Orientación Una Carrera de Orientación consiste en recorrer en el menor tiempo posible una ruta situada en un terreno desconocido pasando por unos puntos obligados en un orden

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

GUÍA DE APRENDIZAJE DE CÁLCULO DIFERENCIAL

GUÍA DE APRENDIZAJE DE CÁLCULO DIFERENCIAL I N S T I T U T O P O L I T É C N I C O N A C I O N A L C E N T R O D E E S T U D I O S C I E N T Í F I C O S Y T E C N O L Ó G I C O S N o.11 W I L F R I D O M A S S I E U A C A D E M I A D E M A T E

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

8Soluciones a las actividades de cada epígrafe

8Soluciones a las actividades de cada epígrafe PÁGINA 128 Pág. 1 En una comarca hay una cierta especie de vegetal que se encuentra con frecuencia. Se ha estudiado la cantidad media de ejemplares por hectárea que hay a distintas alturas. El resultado

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

Universidad de la Frontera

Universidad de la Frontera Universidad de la Frontera Facultad de Ingeniería, Ciencias y Admistración Departamento de Matemática Actividad Didáctica: El Abaco TALLER # 2 - Sistema Decimal El ábaco es uno de los recursos más antiguos

Más detalles

b) 3 c) 1 d) 2 6. Si ( ) ( ) ( 1,3) Cuál es el valor de u v + 2w

b) 3 c) 1 d) 2 6. Si ( ) ( ) ( 1,3) Cuál es el valor de u v + 2w Elaborada por José A. Barreto. Master of Arts The University of Teas at Austin. En el conjunto de los números reales se define la relación Ry ( está relacionado con y si > y + 0. Cuál de los siguientes

Más detalles

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones Departamento de Física Año 011 Trabajo Práctico º Movimiento en dos o tres dimensiones Problema 1. Se está usando un carrito robot para explorar la superficie de Marte. El módulo de descenso es el origen

Más detalles

Juan de la Cruz González Férez

Juan de la Cruz González Férez Curso 0: Matemáticas y sus Aplicaciones Vectores, Bases y Distancias Aplicaciones Juan de la Cruz González Férez IES Salvador Sandoval Las Torres de Cotillas (Murcia) 2012 Composición de movimientos Los

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

Lección 20: Gráficas de frecuencia

Lección 20: Gráficas de frecuencia Lección : Gráficas de frecuencia En la lección anterior vimos cómo organizar en una tabla de frecuencias, un conjunto de datos que contiene la información sobre alguna variable. Esas tablas permiten una

Más detalles

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual

Más detalles

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil

Más detalles

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág.

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág. 11 Funciones. Objetivos En esta quincena aprenderás a: Comprender, distinguir y valorar el concepto de función Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional Distinguir los

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

Fundamentos de importancia del Trabajo, Energía y Potencia en física

Fundamentos de importancia del Trabajo, Energía y Potencia en física Fundamentos de importancia del Trabajo, Energía y Potencia en física INTRODUCCIÓN En el campo de la Física no se habla de trabajo simplemente, sino de Trabajo Mecánico y se dice que una fuerza realiza

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

4Soluciones a los ejercicios y problemas PÁGINA 96

4Soluciones a los ejercicios y problemas PÁGINA 96 Soluciones a los ejercicios y problemas PÁGINA 96 Pág. P RACTICA Interpretación de gráficas Pepe y Susana han medido y pesado a su hijo, David, cada mes desde que nació hasta los meses. Estas son las gráficas

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Interpretación de gráficas Se suelta un globo que se eleva y, al alcanzar cierta altura, estalla. La siguiente gráfica representa la altura, con el paso del tiempo, a la que se encuentra

Más detalles

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no:

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no: FUNCIONES Recuerda: Una función es una correspondencia entre dos conjuntos (o relación entre magnitudes), de forma que cada elemento del conjunto inicial le corresponde sólo un elemento del conjunto final.

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

ESTADÍSTICA COMUNITARIA

ESTADÍSTICA COMUNITARIA ESTADÍSTICA COMUNITARIA MANUAL SENCILLO DE ESTADÍSTICA COMUNITARIA 1 La estadística es mucho más sencilla de lo que imaginas Es tan solo un conjunto de conocimientos de matemática y otras áreas que nos

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Guía de Repaso 6: Cantidades Vectoriales y Escalares

Guía de Repaso 6: Cantidades Vectoriales y Escalares Guía de Repaso 6: Cantidades Vectoriales y Escalares 1- En cada una de las frases siguientes, diga si la palabra en cursivas corresponde a una cantidad escalar o vectorial. a) El volumen de un depósito

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO Estudiar el movimiento es importante: es el fenómeno más corriente y fácil de observar en la Naturaleza. Todo el Universo está en constante

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de

Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de Caso 3: En la ecuación general a b c, a 0 b 0, obtenemos a c, a 0. 10 = + = 8 6 4 = -1 3 - -1 1 3-1 Por ejemplo si a = 1 c = obtenemos. El gráfico de, es el mismo que el de desplazado unidades hacia arriba.

Más detalles

Calcular con fracciones para todos

Calcular con fracciones para todos Calcular con fracciones para todos 1 Calcular con fracciones para todos M. Riat riat@pobox.com Versión 1.0 Burriana, 2014 Calcular con fracciones para todos 2 ÍNDICE DE CAPÍTULOS Índice de capítulos...

Más detalles