PRÁCTICA 5. Para ver donde se maximiza esta función hay que ver donde se anula la primera derivada respecto al precio. R

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA 5. Para ver donde se maximiza esta función hay que ver donde se anula la primera derivada respecto al precio. R"

Transcripción

1 .- La función de demanda de un bien viene dada por. Se pide: a) Demuestre matemáticamente para que cantidad se obtiene el máximo de los ingresos totales. El ingreso total es la cantidad de producto por el precio del mismo. Por tanto, hay que maximizar la siguiente función: R = p x = p 6 p = 6 p p Para ver donde se maximiza esta función hay que ver donde se anula la primera derivada respecto al precio. R = 6 p = 0 p = Para saber cuál es la cantidad que maximiza los ingresos hay que sustituir el valor del precio en la función de demanda: x = 6 = 3 Al mismo resultado se llega poniendo los ingresos en función de la cantidad y derivando los ingresos respecto a la cantidad e igualando a cero: x = 6 p p = x R = p x = x x = x x R = x = 0 x = 3 R = máximo b) Qué valor tiene la elasticidad de la demanda en ese punto? El valor de la elasticidad en ese punto se calcula mediante la fórmula: ε = p x = 3 = c) Realice un gráfico en Excel en el que se encuentren la curva de demanda, la curva de ingreso marginal, los ingresos totales y el valor de la elasticidad D P, Img, R R ε Img -30 X Microeconomía Intermedia. Curso 0/0

2 . La demanda de entradas para visionar una película es:. En el local donde se proyecta dispone de 0 localidades. a) Qué precio debería cobrarse para llenar el local? Cuál es el ingreso total que se obtiene a ese precio? Para llenar el local hay que poner el precio para que la cantidad demandada sea 0. Es decir, 0 = 00 0P p = El ingreso total es de 0 80 b) Se maximizan los ingresos a ese precio? Para saber si es el ingreso máximo que se puede obtener hay que ver si la elasticidad en el punto de equilibrio es -. ε = p x = 0 0 ) = 0,66 En el punto de equilibrio la demanda está en el tramo inelástico, por tanto, el ingreso podrá aumentarse si se incrementa el precio. Para saber el punto donde la elasticidad es - hay que hacer lo siguiente: p 0 p ε = = = 0 p = p 00 = 0p p x 00 0 p = Si el precio es el número de espectadores es 00, por tanto el ingreso es 00. Otra forma de ver cuál es el ingreso máximo con 0 localidades es resolver este programa: maxr = p x s. a. x 0 x = 00 0 p x p = x x R = + 0 x = 0 x 0 0 R x = 0 = 0 x = p = + 0 = 0 c) Cómo cambiarían las conclusiones si la capacidad de la sala fuese de 80 localidades? En este caso sabemos que el punto donde la elasticidad es - se sitúa en la cantidad 00, que no es alcanzable, por tanto la cantidad 80 se sitúa a la izquierda del punto donde la elasticidad es unitaria. En este caso lo que hay que hacer es poner el precio que hace que se complete el aforo dado que está en el tramo elástico de la demanda por lo que aumentar el precio va a tener un efecto negativo sobre el ingreso. Microeconomía Intermedia. Curso 0/0

3 Es decir, PRÁCTICA x = p 80 = p p = 6 Como conclusión de este ejercicio se obtiene que si el precio que llena el local (estadio, cine ) se sitúa en el tramo elástico de la curva de demanda es el precio que maximiza ingresos. Sin embargo, si el precio que llena el local se sitúa en el tramo inelástico podrán aumentarse los ingresos vía un aumento del precio. En consecuencia no siempre llenar la capacidad es lo más rentable. d) Realice un archivo de Excel que calcule el precio que hay que poner para maximizar los ingresos ante una demanda lineal y un límite de espectadores. 3.- La función de demanda de un bien viene dada por la expresión:. a) Calcule el valor de la elasticidad de demanda para dos puntos cualquiera de esta curva de demanda. El valor de la elasticidad para cualquier punto de esta función es de -. Por ejemplo para los puntos (,00) y (,0). ε p x ε p x b) Calcule los ingresos obtenidos en los dos puntos anteriores. Es el mismo el ingreso en ambos puntos? Explique este resultado. Los ingresos obtenidos en los dos puntos son de 00 u.m. c) Realice un gráfico en Excel en el que se encuentren la curva de demanda, la curva de ingreso marginal, los ingresos totales y el valor de la elasticidad. P X D R ε Img Microeconomía Intermedia. Curso 0/0

4 .- Suponga que la función de producción a corto plazo de una empresa viene dada por la siguiente expresión:,,, se pide: a) Analice la concavidad, convexidad y puntos de inflexión de esta función de producción en el rango de L (0; 0,9). Realice el gráfico de dicha función en dicho rango de L en Excel. Para analizar la concavidad de una función hay que estudiar el signo de la segunda derivada de esa función. Si toma valor positivo es un tramo convexo, si toma valor negativo es cóncavo mientras que si es cero es un punto de inflexión. Vamos a calcular si tiene algún punto de inflexión en el rango relevante (0; 0,9).,,,,,,,,,,,, Por tanto, la función de producción tiene un punto de inflexión cuando L es aproximadamente 0,. Si L es menor que 0, el valor de la segunda derivada es positivo por tanto en ese tramo la función de producción es convexa mientras que en el tramo 0,-0,9 el valor de la segunda derivada es negativa por tanto en ese tramo la función es cóncava. b) Obtenga la función producto marginal del trabajo. Analice el crecimiento de esta función en el rango de L (0; 0,9). La función producto marginal del trabajo es la derivada de la función de producción. Para analizar el crecimiento de esta función hay que analizar su primera derivada, que es la segunda derivada de la función de producción. Hemos visto que desde cero hasta 0, el valor es positivo, por tanto la función es creciente. En 0, toma el valor cero por tanto tiene un óptimo que en este caso es un máximo y a partir de 0, toma valor negativo por tanto la función es decreciente.,,,, c) Obtenga la función producto medio del trabajo. Analice el crecimiento de esta función en el rango de L (0; 0,9).,,,, La función producto medio del trabajo es el cociente entre la función de producción y el factor trabajo. Para analizar el crecimiento de esta función hay que analizar su primera derivada. Esta derivada se iguala a cero en 0,6 por tanto en este punto la función producto medio tiene un óptimo. Si el valor de L es menor que 0,6 el valor de la Microeconomía Intermedia. Curso 0/0

5 primera derivada del producto medio del trabajo es positiva por tanto la función es creciente y a partir de 0,6 toma valor negativo por tanto la función es decreciente. d) Realice un gráfico que contenga el producto medio del trabajo, el producto marginal del trabajo y la función de producción y Pme PMg L.- Sea la función de producción: y = L. a) Calcule qué tipo de rendimientos a escala presenta dicha función. y = L 0,7 ( t ) ( t L) = t y* = L Por tanto, tiene rendimientos decrecientes. b) Calcule la función de la familia de isocuantas. Analice el crecimiento y concavidad de éstas. Haga el gráfico del mapa de isocuantas en Excel, para ello haga el gráfico de cuatro isocuantas. y = L L y y = = y L y = = L L d 3 = L y < 0 decreciente dl d = 3 L y > 0 convexa dl Microeconomía Intermedia. Curso 0/0

6 L y0 y y y3 c) Calcule la función de la RMST. Determine si dicha función es creciente o decreciente. PMg RMST = PMg drmst dl L = L = 3 L L > 0 creciente = L Microeconomía Intermedia. Curso 0/0

= y. [Estudio y representación de funciones] Matemáticas 1º y 2º BACHILLERATO. Pasos a seguir para estudiar una función:

= y. [Estudio y representación de funciones] Matemáticas 1º y 2º BACHILLERATO. Pasos a seguir para estudiar una función: Pasos a seguir para estudiar una función: 1. Dominio de la función. 2. Puntos de corte. 3. Simetrías. 4. Asíntotas. 5. Crecimiento y decrecimiento. 6. Máximos y mínimos. 7. Concavidad y Convexidad. 8.

Más detalles

Tema 4 LA PRODUCCIÓN. Pindyck, R. y Rubinfeld, D. Tema 18 Varian, H. Tema 6 MICROECONOMÍA. VISIÓN PANORÁMICA.

Tema 4 LA PRODUCCIÓN. Pindyck, R. y Rubinfeld, D. Tema 18 Varian, H. Tema 6 MICROECONOMÍA. VISIÓN PANORÁMICA. Tema 4 A PRODUCCIÓN Pindyck, R. y Rubinfeld, D. Tema 18 Varian, H. Tema 6 Página 2 MICROECONOMÍA. VISIÓN PANORÁMICA. Parte I. El comportamiento del consumidor. Teoría de la demanda Tema 2. a conducta del

Más detalles

PRÁCTICA 5 (PRODUCCION) MICROECONOMÍA: CONSUMO Y PRODUCCIÓN 1º CURSO, GRADO EN ECONOMÍA (CURSO ACADÉMICO 2014-2015) Grupo 1

PRÁCTICA 5 (PRODUCCION) MICROECONOMÍA: CONSUMO Y PRODUCCIÓN 1º CURSO, GRADO EN ECONOMÍA (CURSO ACADÉMICO 2014-2015) Grupo 1 PRÁCTICA 5 (PRODUCCION) MICROECONOMÍA: CONSUMO Y PRODUCCIÓN 1º CURSO, GRADO EN ECONOMÍA (CURSO ACADÉMICO 2014-2015) Grupo 1 1.- En relación a la función de producción de arroz de un payés de la Albufera,

Más detalles

LA TEORÍA DE LA EMPRESA

LA TEORÍA DE LA EMPRESA www.empresas-polar.com LA TEORÍA DE LA EMPRESA www.sidor.com www.edc-ven.com www.cantv.net EMPRESA: Unidad técnica y económica, dedicada a la transformación de insumos o factores productivos mediante la

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Microeconomía Básica

Microeconomía Básica Microeconomía Básica Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las propuestas

Más detalles

MATE 3013 DERIVADAS Y GRAFICAS

MATE 3013 DERIVADAS Y GRAFICAS MATE 3013 DERIVADAS Y GRAFICAS Extremos relativos La función f tiene un máximo relativo en el valor c si hay un intervalo (r, s), que contiene a c, en el cual f(c) f(x) para toda x entre r y s. Si además,

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

RESPUESTAS EXAMEN TIPOS A Y B M. EN C. EDUARDO BUSTOS FARÍAS

RESPUESTAS EXAMEN TIPOS A Y B M. EN C. EDUARDO BUSTOS FARÍAS RESPUESTAS EXAMEN TIPOS A Y B M. EN C. EDUARDO BUSTOS FARÍAS EXAMEN TIPO A 1. Hay 10000 individuos idénticos en el mercado X, cada uno con una función de demanda de y=12-2x, y 1000 productores idénticos

Más detalles

Universidad del Rosario Facultad de Economía Microeconomía I TALLER V

Universidad del Rosario Facultad de Economía Microeconomía I TALLER V Universidad del Rosario Facultad de Economía Microeconomía I Jacobo Rozo, Andrea Atencio, Rosa Villareal, Carlos Eduardo Hernández TALLER V 1) Pepito Pérez Compañía es una empresa que planea salir al mercado

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

PRÁCTICA 3. , se pide:

PRÁCTICA 3. , se pide: 3 3.- Dada la función de utilidad U, se ide: a) Calcular la función de la familia de curvas de indiferencia corresondientes a dicha función de utilidad Para calcular la familia de curvas de indiferencia

Más detalles

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan

Más detalles

Aplicaciones de la derivada Ecuación de la recta tangente

Aplicaciones de la derivada Ecuación de la recta tangente Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto

Más detalles

Análisis matemático de la función de Nelson y Siegel

Análisis matemático de la función de Nelson y Siegel Anexos Anexo 1 Análisis matemático de la función de Nelson y Siegel La función que define el tipo forward según el modelo propuesto por Nelson y Siegel (1987) es la siguiente: con m 0 y τ 0. 1 > m m m

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Tema 2. La restricción presupuestaria y las preferencias. Microeconomía Intermedia 2011/12. Tema 2 1

Tema 2. La restricción presupuestaria y las preferencias. Microeconomía Intermedia 2011/12. Tema 2 1 Tema 2 La restricción presupuestaria y las preferencias Microeconomía Intermedia 2011/12. Tema 2 1 1. La restricción presupuestaria 2. Las preferencias del consumidor 3. Las curvas de indiferencia 4. La

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

TEORIA DEL CONSUMIDOR. Microeconomia: Prof Ernesto Moreno

TEORIA DEL CONSUMIDOR. Microeconomia: Prof Ernesto Moreno TEORIA DEL CONSUMIDOR Caracas, 03 de Octubre de 2002 RESUMEN SEMANA 1 1. Introduccion a la Microeconomia Categorias Basica de Microeconomia (Kreps 1990) ACTORES CONDUCTA MARCO INSTITUCIONAL EQUILIBRIO

Más detalles

Tema 4: Producción y Costes

Tema 4: Producción y Costes Tema 4: Producción y Costes Introducción 1. Producción en el corto plazo 1. Productividad total, media y marginal 2. ey de rendimientos decrecientes 2. Producción en el largo plazo 1. Rendimientos a escala

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

ICS1513 INTRODUCCIÓN A LA ECONOMÍA Profesora: Loreto Ayala Ayudante: Begoña Salazar. Ayudantía 4

ICS1513 INTRODUCCIÓN A LA ECONOMÍA Profesora: Loreto Ayala Ayudante: Begoña Salazar. Ayudantía 4 Ayudantía 4 1. Comentes a) El efecto sustitución siempre tendrá signo negativo, y el efecto renta positivo. Falso, el efecto sustitución es siempre negativo debido a las formas de las curvas de indiferencia,

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

FUNCIÓN DE PRODUCCIÓN CUADRÁTICA

FUNCIÓN DE PRODUCCIÓN CUADRÁTICA LA FUNCION DE PRODUCCION CUADRATICA lorenzo castro gómez 1 CARACTERISTICAS: 1. Al menos una de las variables independientes está elevada al cuadrado. 2. Tiene rendimientos decrecientes. 3. El PM y PMg

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA Supongamos que tenemos una función. Consideramos la recta que corta a la gráfica en los puntos A y B. Esta recta se llama secante

Más detalles

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA

SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA SESIÓN 14 DERIVADAS SUCESIVAS DE UNA FUNCION, DE MÁXIMOS Y MÍNIMOS Y LA CONCAVIDAD DE UNA CURVA APLICANDO EL CRITERIO DE LA SEGUNDA DERIVADA I. CONTENIDOS: 1. Derivadas sucesivas de una función 2. Concavidad

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

MATE 3013 DERIVADAS Y GRAFICAS

MATE 3013 DERIVADAS Y GRAFICAS MATE 3013 DERIVADAS Y GRAFICAS Extremos relativos La función f tiene un máximo relativo en el valor c si hay un intervalo (r, s), que contiene a c, en el cual f(c) f(x) para toda x entre r y s. Si además,

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

Apellidos : Nombre :

Apellidos : Nombre : Grupo : EXAMEN DE MICROECONOMIA 1.- Dada la siguiente función de Demanda-Renta : x = - r 2 + 65 r - 900 (x = cantidad ; r = renta) 1.1.- Para que intervalos de renta el bien es inferior? 1.2.- Para que

Más detalles

Solucion Problema 1:

Solucion Problema 1: Solucion Problema 1: En el equilibrio de largo plazo es indiferente la modalidad que se aplique para el subsidio, lo relevante es que las firmas tendrán utilidades nulas y por lo tanto el precio de oferta

Más detalles

Examen funciones 4º ESO 12/04/13

Examen funciones 4º ESO 12/04/13 Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

Microeconomía Básica

Microeconomía Básica Microeconomía Básica Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las propuestas

Más detalles

Guía Práctica: Estructuras de Mercado. Economía II 2016 Prof.: Evelyn Colino y Omar Alvarado Contín

Guía Práctica: Estructuras de Mercado. Economía II 2016 Prof.: Evelyn Colino y Omar Alvarado Contín Estimados estudiantes: esta es una guía con ejercicios y preguntas teóricas que pretende ayudarlos a estudiar. Si la trabajan a conciencia, con cada pregunta o ejercicio podrán reforzar conceptos y les

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0 CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA 1. Derivabilidad y monotonía Tenemos también el resultado: f (x) > 0 creciente para x en cierto intervalo f es Lo cual es claro, pues: Si la

Más detalles

PRÁCTICA 8. Microeconomía Intermedia. Curso 2011/2012 Facultad de Derecho y Ciencias Sociales de Ciudad Real (UCLM) Profesor: Julio del Corral Cuervo

PRÁCTICA 8. Microeconomía Intermedia. Curso 2011/2012 Facultad de Derecho y Ciencias Sociales de Ciudad Real (UCLM) Profesor: Julio del Corral Cuervo PRÁCICA 8 1.- Un monopolista con función costes C= 2 abastece a un mercado cua demanda es p=300-4. a) Calcule la cantidad producida, el precio el beneficio si la empresa se comporta como un monopolio maximizador

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA

UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA UNIDAD III: APLICACIONES ADICIONALES DE LA DERIVADA Estimado estudiante continuando con el estudio, determinaremos el comportamiento de una función en un intervalo, es decir, cuestiones como: Tiene la

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa Elasticidad de la demanda. El término se reresenta or la letra griega η que reresenta x cccccccccccc eeee dddddddddddddd cccccccccccc eeee = 00( xx xx ) dddd 00( = ) xx dddd = ηη Deendiendo del valor que

Más detalles

Descomponemos la demanda y la oferta nacional por intervalos, ya que a ciertos niveles de precios, la demanda y/o la oferta es igual a cero.

Descomponemos la demanda y la oferta nacional por intervalos, ya que a ciertos niveles de precios, la demanda y/o la oferta es igual a cero. ANEXO: Soluciones lista. Ejercicios 4, 5 y 6 Ejercicio 4. Soluciones: a) Equilibrio del monopolio. Descomponemos la demanda y la oferta nacional por intervalos, ya que a ciertos niveles de precios, la

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

Teoría de la Empresa. La Tecnología de Producción

Teoría de la Empresa. La Tecnología de Producción Teoría de la Empresa La Tecnología de Producción La Empresa Qué es una Empresa? En la práctica, el concepto de empresa, y el papel que las empresa desempeñan en la economía, son extraordinariamente complejos.

Más detalles

Los isocostos isocosto DT P L P K P L P K CURVA DE ISOCOSTOS

Los isocostos isocosto DT P L P K P L P K CURVA DE ISOCOSTOS Los isocostos Los isocostos son líneas que muestran las combinaciones de los montos de los bienes o de los factores de la producción que se pueden adquirir con el mismo gasto total. Las líneas de isocostos

Más detalles

FUNCIÓN DE PRODUCCIÓN LINEAL. La función lineal se caracteriza porque las variables están elevadas a la primera potencia.

FUNCIÓN DE PRODUCCIÓN LINEAL. La función lineal se caracteriza porque las variables están elevadas a la primera potencia. LA FUNCION DE PRODUCCION LINEAL lorenzo castro gómez 1 La función lineal se caracteriza porque las variables están elevadas a la primera potencia. A). Si se tiene un insumo variable: Y = ƒ (X) = a +b 1

Más detalles

INTRODUCCION A LA ECONOMIA (IN 2201)

INTRODUCCION A LA ECONOMIA (IN 2201) Departamento de Ingeniería Industrial INTRODUCCION A LA ECONOMIA (IN 2201) Clase: Martes 31 de Marzo 2009 Profesora: Pilar Romaguera Profesor Auxiliar Coordinador: Carolina Méndez Semestre: Otoño 2009

Más detalles

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos. Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica

Más detalles

Apellidos : Nombre :

Apellidos : Nombre : (Junio 98) La actividad económica busca satisfacer las necesidades humanas : Con medios escasos no susceptibles de usos alternativos Con medios no escasos susceptibles de usos alternativos Con medios escasos

Más detalles

Estática de Vigas. 20 de mayo de 2006

Estática de Vigas. 20 de mayo de 2006 Estática de Vigas 0 de mayo de 006 Los elementos estructurales que vamos a estudiar en este capítulo estarán sometidos a fuerzas o distribuciones aplicadas lateral o transversalmente a sus ejes y el objetivo

Más detalles

Evaluación de Proyectos. Ayudantía N º 2. Profesor: Marco Mosca Ayudante: Andrés Jara

Evaluación de Proyectos. Ayudantía N º 2. Profesor: Marco Mosca Ayudante: Andrés Jara Evaluación de Proyectos Ayudantía N º 2 Profesor: Marco Mosca Ayudante: Andrés Jara Preguntas y Problemas 1.- Que factores afectan el precio de la demanda? Analice los efectos de cada factor a) Ingreso

Más detalles

Tema 7: EL MERCADO DE FACTORES

Tema 7: EL MERCADO DE FACTORES Tema 7: E MERCADO DE FACTORES Introducción. 1. El mercado de trabajo en competencia perfecta 1. a demanda de trabajo 2. a oferta de trabajo 3. El equilibrio 4. s mínimos Conceptos básicos BIBIOGRAFÍA:

Más detalles

Examen parcial de Microeconomía Intermedia. Grupo 3.

Examen parcial de Microeconomía Intermedia. Grupo 3. Examen parcial de Microeconomía Intermedia. Grupo 3. Octubrede01. Nombre: 1. Sabemos que un consumidor con preferencias regulares y con dotaciones iniciales de los dos bienes existentes en la economía

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

Microeconomía. Jhonatan Alexander Moreno Economistas y Esp. en Gobierno y Políticas Públicas

Microeconomía. Jhonatan Alexander Moreno Economistas y Esp. en Gobierno y Políticas Públicas Microeconomía Jhonatan Alexander Moreno Economistas y Esp. en Gobierno y Políticas Públicas Elasticidad Hay productos que a pesar de que se de un aumento muy grande en el precio, la cantidad demandada

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS

GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.

Más detalles

El Modelo Competitivo EJERCICIOS. Profesor Guillermo Pereyra clases.microeconomia.

El Modelo Competitivo EJERCICIOS. Profesor Guillermo Pereyra  clases.microeconomia. El Modelo Competitivo EJERCICIOS Profesor Guillermo Pereyra guillermopereyra@microeconomia.org www.microeconomia.org clases.microeconomia.org 1. La curva de demanda que enfrenta una empresa individual

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

La elasticidad-precio de la demanda jamón es. donde J se refiere a la cantidad de jamón y al precio.

La elasticidad-precio de la demanda jamón es. donde J se refiere a la cantidad de jamón y al precio. SOLUCION EXAMEN JULIO 2010 MICRO I MARCELO CAFFERA EJERCICIO 1 EJERCICIO 5.7 Suponga que una persona considera que el jamón y el queso son bienes complementarios puros; siempre come un sándwich de jamón

Más detalles

Competencia Perfecta. Microeconomía Douglas C. Ramírez Vera. Introducción

Competencia Perfecta. Microeconomía Douglas C. Ramírez Vera. Introducción Competencia Perfecta Microeconomía Douglas C. Ramírez Vera Introducción Para el análisis de la competencia perfecta existen dos formas de proceder Realizar un análisis de equilibrio general Realizar un

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

EQUILIBRIO DE LA EMPRESA EN DIFERENTES ESTRUCTURAS DE MERCADO. MSc. Ing. Agr. Vanina Ciardullo

EQUILIBRIO DE LA EMPRESA EN DIFERENTES ESTRUCTURAS DE MERCADO. MSc. Ing. Agr. Vanina Ciardullo EQUILIBRIO DE LA EMPRESA EN DIFERENTES ESTRUCTURAS DE MERCADO MSc. Ing. Agr. Vanina Ciardullo Competencia perfecta: La empresa perfectamente competitiva: Curva de Demanda Ingreso total Maximizar los beneficios

Más detalles

SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS

SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS SESIÓN 8 MAXIMOS Y MÍNIMOS DE UNA FUNCION, APLICACIONES DE LOS MAXIMOS Y MINIMOS I. CONTENIDOS: 1. Máximos y mínimos de una función (definiciones) 2. Máximos y mínimos (metodología de cálculo) 3. Ejercicios

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

7. TEORÍA DEL MERCADO OLIGOPÓLICO (O)

7. TEORÍA DEL MERCADO OLIGOPÓLICO (O) 7. TEORÍA DEL MERCADO OLIGOPÓLICO (O) SECCIÓN I: EJERCICIOS RESUELTOS Ejercicio 0.1 (oligopolio con colusión) Suponga un cártel compuesto por dos empresas que producen un producto homogéneo,y y que procuran

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Capítulo 3 La demanda de trabajo

Capítulo 3 La demanda de trabajo Capítulo 3 La demanda de trabajo 3.1.- El modelo básico a corto plazo 3.2.- Demanda de trabajo a corto plazo 3.3.- Demanda de trabajo a largo plazo 3.4.- La demanda de trabajo del mercado 1 1 Introducción

Más detalles

Microeconomía Superior I: Tema 2 (cont.)

Microeconomía Superior I: Tema 2 (cont.) UNIVERSIDAD COMPLUTENSE DE MADRID Departamento de Fundamentos del Análisis Económico I Microeconomía Superior I: Tema 2 (cont.) Rafael Salas octubre de 2004 2. Las preferencias del consumidor 1. Enfoque

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Capítulo Cuatro TEORÍA DE LA CONDUCTA DEL CONSUMIDOR PROFESOR: RICARDO HIDALGO

Capítulo Cuatro TEORÍA DE LA CONDUCTA DEL CONSUMIDOR PROFESOR: RICARDO HIDALGO Capítulo Cuatro TEORÍA DE LA CONDUCTA DEL CONSUMIDOR PROFESOR: RICARDO HIDALGO [I] CONCEPTO.- Estudia la obtención de la forma y ubicación de la curva de demanda del consumidor para un producto (bien o

Más detalles

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor

Más detalles

TEMA 3: APLICACIONES DE LAS DERIVADAS

TEMA 3: APLICACIONES DE LAS DERIVADAS TEMA 3: APLICACIONES DE LAS DERIVADAS Monotonía: Crecimiento y decrecemento Sea f:d R R una función Definiciones: Diremos que f es creciente en x = a si existe un entorno de a para el que se cumple: f(a)

Más detalles

EL COSTE DE PRODUCCIÓN SAID HENRIQUEZ LAURA GÓMEZ

EL COSTE DE PRODUCCIÓN SAID HENRIQUEZ LAURA GÓMEZ EL COSTE DE PRODUCCIÓN SAID HENRIQUEZ LAURA GÓMEZ INTRODUCCIÓN La tecnología de producción mide la relación entre los factores y la producción. Dada la tecnología de producción de una empresa, los directivos

Más detalles

Mide el grado que la Qd responde ante variaciones en el precio del mercado.

Mide el grado que la Qd responde ante variaciones en el precio del mercado. Mide el grado que la Qd responde ante variaciones en el precio del mercado. Ep Q P / / Q P Q P x P Q Ep arco Q / Q P / P 1 1 Q P 2 2 Variación porcentual de la Qd ante variaciones porcentuales en el precio

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

CANTIDAD A `PRODUCIR = FUNCION DE LA COMBINACION OPTIMA DE FACTORES DE LA PRODUCCION

CANTIDAD A `PRODUCIR = FUNCION DE LA COMBINACION OPTIMA DE FACTORES DE LA PRODUCCION PRODUCCION Y COSTOS DEFINICION DE EMPRESA Las empresas son agentes económicos dedicados a producir una serie de bienes y servicios en base a una serie de insumos o inputs intermedios y la utilización de

Más detalles

Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale un punto.

Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale un punto. EJERCICIO A Conteste a cuatro de las siguientes cinco cuestiones. Explique el concepto y ponga un ejemplo. Cada una de las cuestiones vale un punto. A.1. Explique el concepto de rendimientos decrecientes.

Más detalles

La ecuación diferencial logística (o de Verhulst)

La ecuación diferencial logística (o de Verhulst) La ecuación diferencial logística o de Verhulst) José Luis López Fernández 2 de noviembre de 2011 Resolver un problema del que tenemos garantía de que existe solución, es como ir de excursión por el monte,

Más detalles

TEORÍA DE LA PRODUCCIÓN

TEORÍA DE LA PRODUCCIÓN TEORÍA DE LA PRODUCCIÓN 1. LA FUNCIÓN DE PRODUCCIÓN Y EL CORTO PLAZO Muchos de los factores que se emplean en la producción son bienes de capital tales como edificios, maquinarias, etc. Si quisiéramos

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

Tema 1 El objeto de análisis de la economía

Tema 1 El objeto de análisis de la economía Ejercicios resueltos de Introducción a la Teoría Económica Carmen Dolores Álvarez Albelo Miguel Becerra Domínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Auxiliar 2. IN Economía Semestre Otoño de marzo. Profesora: Pamela Arellano Auxiliares: Stefano Banfi - Alexis Orellana

Auxiliar 2. IN Economía Semestre Otoño de marzo. Profesora: Pamela Arellano Auxiliares: Stefano Banfi - Alexis Orellana Auxiliar 2 IN2201 - Economía Semestre Otoño 2012 27 de marzo Profesora: Pamela Arellano Auxiliares: Stefano Banfi - Alexis Orellana Problema 1 (Elasticidades) Comente las siguientes afirmaciones: a) Se

Más detalles

Representación de funciones

Representación de funciones Representación de funciones 1) Sea la función Calcule: a) Los intervalos de crecimiento y decrecimiento. Sol: La función es creciente en (0,4) y decreciente en (,0) (4, ). b) Las coordenadas de sus extremos

Más detalles

EL PUNTO DE EQUILIBRIO

EL PUNTO DE EQUILIBRIO EL PUNTO DE EQUILIBRIO El punto de equilibrio sirve para determinar el volumen mínimo de ventas que la empresa debe realizar para no perder, ni ganar. En el punto de equilibrio de un negocio las ventas

Más detalles

DERIVADAS. es: = + = es: = +

DERIVADAS. es: = + = es: = + DERIVADAS. La derivada de la función f ( ) es: A) f ( ) f ( ) + B) f ( ) D) f ( ) ( ) f ( ). La derivada de la función f ( ) e es: A) f ( ) e f ( ) e B) f ( ) ( ) e D) f ( ) + e ( ) f e + e e e e ( ).

Más detalles

TEORIA DEL CONSUMIDOR

TEORIA DEL CONSUMIDOR TEORIA DEL CONSUMIDOR LIC. ZINATH JAVIER GERONIMO ZORAIDA DE JESUS RAMIREZ AVALOS I N S T I T U T O T E C N O L O G I C O D E V I L L A H E R M O S A I N G. E N G E S T I O N E M P R E S A R I A L 1 0

Más detalles

MICROECONOMÍA I LM9. Universidad de Granada

MICROECONOMÍA I LM9. Universidad de Granada MICROECONOMÍA I LM9 Universidad de Granada 1 Tema cuatro La clase de hoy Tema 4: La Producción La tecnología Restricciones tecnológicas La función de producción Los rendimientos de escala Referencias:

Más detalles