LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90"

Transcripción

1 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar en geometría plana son el punto, la recta, la circunferencia y otras curvas. Los trazados básicos son las operaciones geométricas más elementales y que tienen una utilidad universal, como por ejemplo el trazado de mediatrices, bisectrices, etc. Una parte importante de la geometría plana son las construcciones con regla y compás. Dos rectas p y q son perpendiculares cuando se cortan formando ángulos iguales, que se llaman rectos. Dos rectas r y s que no tengan ningún punto en común se llaman paralelas. Rectas perpendiculares Rectas paralelas Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 CLASES DE ÁNGULOS Obtusos: Si su medida esta comprendida entre 90 y 180. Llanos: Si su medida es de 180º

2 Circunferencia Definición: La circunferencia es una línea curva cerrada y plana cuyos puntos están a igual distancia de otro fijo que se llama centro. Circulo es el conjunto de los puntos de un plano que se encuentran contenidos en una circunferencia. Existen varios puntos, rectas y segmentos, singulares en la circunferencia: Centro, el punto interior equidistante de todos los puntos de la circunferencia; Radio, el segmento que une el centro con un punto cualquiera de la circunferencia; Diámetro, el mayor segmento que une dos puntos de la circunferencia (necesariamente pasa por el centro); Cuerda, el segmento que une dos puntos de la circunferencia; las cuerdas de longitud máxima son los diámetros; Recta secante, la que corta a la circunferencia en dos puntos; Recta tangente, la que toca a la circunferencia en un sólo punto; Punto de tangencia, el de contacto de la recta tangente con la circunferencia; Arco, el segmento curvilíneo de puntos pertenecientes a la circunferencia; Semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro. Posiciones relativas de dos circunferencias Exteriores (1) Tangentes exteriormente, tienen un punto tangente y son exteriores (2) Secantes, se cortan en dos puntos (3) Tangentes interiormente, tienen un punto tangente y son interiores (4) Interiores excéntricas, tienen el mismo centro y distinto radio forman una corona circular o anillo.(5)

3

4 a a b

5

6

7 Mediatriz de un segmento Mediatriz de un segmento es la recta perpendicular a ese segmento y que lo divide en dos partes iguales Su trazado se realiza con regla y compás. Dado el segmento AB Construcción de la mediatriz de un segmento 1. Con centro en A y con cualquier radio mayor a la mitad del segmento se traza un arco. 2. Con centro en B y con el mismo radio cogido desde A se traza otro arco Los puntos de intersección de ambas circunferencias determinan la mediatriz del segmento en cuestión. El trazado de la mediatriz es muy útil para realizar muchos otros procedimientos como hallar el punto medio de un segmento, realizar polígonos regulares etc.

8 Su trazado se realiza con regla y compás. Dado un ángulo : Construcción de la bisectriz de un a segmento a 1. Con centro en el vértice V y con cualquier radio se traza un arco que corta a las dos semirrectas en los puntos A y B 4. Con centro en A y con cualquier radio un arco. 5. Con centro en B y con el mismo radio cogido desde A se traza otro arco que se corta con en anterior en el punto C. Unimos C y V obteniendo la bisectriz. El trazado de la mediatriz y de la bisectriz es muy útil para realizar muchos otros procedimientos como hallar el punto medio de un segmento, realizar polígonos regulares etc.

9 CONSTRUCCIÓN DE POLÍGONOS REGULARES DADO EL LADO Recuerda: Polígono es una figura plana y cerrada limitada por lados. El mínimo de lados que puede tener un polígono es de 3 lados. Polígono regular: polígono que tiene los lados y los ángulos iguales. TRIÁNGULO EQUILÁTERO Triángulo equilátero: el polígono regular que tiene tres lados y tres ángulos iguales. Construcción triángulo equilátero dado el lado A B 1. Con Centro en A y con un radio igual al lado AB, se traza un arco. 2. Con centro en B y con el mismo radio anterior AB se traza otro arco que corta al arco anterior en C 3. Unimos C con A y con B y construimos así el triángulo equilátero. CUADRADO Cuadrado: polígono regular que tiene cuatro lados iguales y cuatro ángulos iguales de 90º Construcción de un cuadrado dado el lado A B 1. Trazamos una perpendicular por A (con la escuadra y cartabón) 2. Con centro en A y radio AB (igual al lado) trazamos un arco que corta a la perpendicular en C. 3. Con centro en C y en B realizamos dos arcos con radio AB, obteniendo el punto D. 4. Unimos D con C y con B obteniendo así el cuadrado. PENTÁGONO Pentágono regular: polígono regular de 5 lados y 5 ángulos iguales. Construcción pentágono dado el lado A B 1. Se traza la mediatriz del segmento AB (ver ejercicio de mediatriz), hallando el

10 punto medio C. 2. Desde C colocamos en la mediatriz hacia abajo tres veces la medida CA (mitad del lado), hallando D. 3. Unimos D con B y con A obteniendo así loas ángulos del pentágono desde A y B 4. Con centro en B y radio AB (lado del pentágono) realizamos un arco que corta a la prolongación DB, en el punto E. 5. Con centro en A y con la medida del lado AB realizamos otro arco que corta a la prolongación DA en el punto F. 6. Con centro en E y en F respectivamente y con radio igual al lado AB realizamos dos arcos que se cortan en el punto G. Unimos G con E y con F obteniendo así el pentágono HEXÁGONO Hexágono regular : Polígono regular de 6 lados y 6 ángulos iguales. Construcción triángulo hexágono dado el lado A B 1. Con centro en A y en B realizamos dos arcos con el radio igual al lado AB, hallando el punto O. 2. Con centro en O y con radio igual al lado AB = CA = CB. Realizamos una circunferencia que pasa por el punto A y B. 3. Con centro en A y en B respectivamente y con radio igual al lado AB realizamos dos arcos que cortan a la circunferencia en los puntos F y C. 4. Con centro en F y en C respectivamente realizamos dos arcos con radio igual al lado AB que corta a la circunferencia en los puntos E y D. Unimos B con C, C con E, E con D, D con F y F con A y obtenemos así el hexágono.

11 CONSTRUCCIÓN DE POLÍGONOS REGULARES y ESTRELLAS DADO EL RADIO. A continuación aprenderás a realizar polígonos regulares o estrella regulares a partir de una circunferencia, por lo tanto si nos dan el radio de la circunferencia, podemos trazar con el compás esta y aplicando los pasos adecuados la dividimos en las partes que queramos y con cuerdas consecutivas o no consecutivas trazamos los polígonos o estrellas TRIÁNGULO EQUILÁTERO INSCRITO EN UNA CIRCUNFERENCIA. Triángulo equilátero: el polígono regular que tiene tres lados y tres ángulos iguales. Construcción triángulo equilátero a partir de una circunferencia Se traza un diámetro cualquiera, por ejemplo uno vertical. Los extremos del diámetro los llamamos M y A. 2. Con centro en M y con radio igual al radio de la circunferencia (OM), realizamos un arco que corte a la circunferencia en los puntos B y C 3. Unimos A con B y con C y construimos así el triángulo equilátero. 3 Triángulo equilátero. CUADRADO Cuadrado: el polígono regular que tiene 4 lados y 4 ángulos iguales. Construcción cuadrado a partir de una circunferencia: Se traza un diámetro cualquiera, por ejemplo uno vertical, los extremos del diámetro los llamamos A y C 2. Realizamos la mediatriz del diámetro AC (ver ejercicio de mediatriz), obteniendo así el diámetro perpendicular BD y quedándonos la circunferencia dividida en cuatro partes iguales. 3. Unimos A con B, B con C y C con D construyendo así el cuadrado inscrito. 3 Cuadrado B B D D

12 HEXÁGONO REGULAR Y ESTRELLA DE 6 PUNTAS INSCRITA EN UNA CIRCUNFERENCIA. Hexágono regular: el polígono regular que tiene 6lados y 6 ángulos iguales. Construcción hexágono regular y 1 2 de una estrella de 6 puntas a partir de una circunferencia: 1. Se traza un diámetro cualquiera y llamamos A y D a los extremos de ese diámetro. 2. Con centro en A realizamos arcos igual al radio (OA = AO) que corten a la circunferencia en los puntos B y F. 3. Con centro en D realizamos arcos igual al radio (OD = DO =OA) que corten a la circunferencia en los puntos C y E. 4. Unimos con cuerdas consecutivas los puntos A, B, C, D, E y F, obteniendo así el Hexágono regular. 5. Si unimos puntos alternos obtenemos una falsa estrella formada por dos triángulos equiláteros: A con C y E, y B con D y F 3 4 Hexágono 5 Estrella

13 DODECÁGONO REGULAR Y ESTRELLA DE 12 PUNTAS INSCRITA EN UNA CIRCUNFERENCIA. Dodecágono: el polígono regular que tiene 12 lados y 12 ángulos iguales. Construcción dodecágono regular y 1 2 de una estrella de 12 puntas a partir de una circunferencia: 1. Trazamos un diámetro cualquiera, y denominamos a sus extremos como punto A y G. 2. Realizamos una mediatriz (ver ejercicio de mediatriz) al diámetro AG, trazando así otro diámetro perpendicular al primero realizado que denominamos D y J. 3. Con centro en los cuatros extremos de los dos diámetro perpendiculares y con radio igual al de la circunferencia (OA=OG) realizamos arcos que cortan a esta en los puntos siguientes: A en C y K, G en E y en I, D en B y F y J en H y L. 4. Unimos todos los puntos con cuerdas consecutivas obteniendo así el dodecágono. 5. Obtenemos la estrella trazando cuerdas uniendo puntos alternos saltando de 5 en También podemos construir una falsa estrella trazando dos hexágonos saltando un punto. 3 4 Dodecágono 5 Estrella 6 Estrella falsa

14 OCTÓGONO REGULAR Y ESTRELLA DE 8 PUNTAS INSTRITA EN UNA CIRCUNFERENCIA Dodecágono: el polígono regular que tiene 8 lados y 8ángulos iguales. Construcción dodecágono regular y 1 1 de una estrella de 12 puntas a partir de una circunferencia: 1. Se divide la circunferencia en 4 partes iguales (ver ejercicio del cuadrado). 2. Se halla las bisectrices (ver ejercicio de bisectriz). de los ángulos que forman los 4 radios trazados, quedando así dividida en 8 partes iguales. 3. Se realizan 8 cuerdas consecutivas por las 8 divisiones y se obtiene el octógono regular. 4. Se traza la estrella saltando de 4 en 4 puntos. 5. O se traza una estrella falsa saltando sólo un punto y trazando dos cuadrados Estrella 3 Octógono 5 Estrella falsa

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Dibujo Técnico Curvas técnicas

Dibujo Técnico Curvas técnicas 22 CURVAS TÉCNICAS En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos cuenta

Más detalles

TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS

TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS TRAZADO DE POLÍGONOS REGULARES MASÓNICOS USANDO LA ESCUADRA, LA REGLA Y EL COMPÁS TRIÁNGULO, HEXÁGONO Y DODECÁGONO nos determinarán, sobre la circunferencia dada, los puntos A-B y 1-4 A continuación, con

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento

Más detalles

TEMA 9. RECTAS Y ÁNGULOS. Bisectriz de un ángulo

TEMA 9. RECTAS Y ÁNGULOS. Bisectriz de un ángulo TEMA 9. RECTAS Y ÁNGULOS RECTAS EN EL PLANO ÁNGULOS Rectas Segmento Semirrectas Mediatriz de un segmento Ángulos según su abertura: Recto, agudo, obtuso, llano, completo, cóncavo, Ángulos según su posición:

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS

EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

Polígono. Superficie plana limitada por una línea poligonal cerrada.

Polígono. Superficie plana limitada por una línea poligonal cerrada. POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA

POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA Introducción La construcción de polígonos regulares inscritos en una circunferencia dada, se basan en la división de dicha circunferencia en un número

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo

8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo 8. LA CIRCUNFERENCIA Y EL CÍRCULO 8.1. La Circunferencia. Una circunferencia es una línea curva, cerrada y plana, cuyos puntos están a la misma distancia de otro interior al que llamamos centro, es decir:

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 2ª EVALUACIÓN AMPLIACIÓN MATEMÁTICAS TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 1. EL PUNTO El punto es uno de los conceptos primarios de geometría. El punto no es un objeto físico y no tiene dimensiones

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: CTIVIDDES DE GEMETRÍ PR 4º ES DE EPV Nombre y apellidos: Curso: TEM 1: TRZDS BÁSICS. 1. RECTS PRLELS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar. 1.1. Trazado

Más detalles

CIRCUNFERENCIA INTRODUCCION

CIRCUNFERENCIA INTRODUCCION CIRCUNFERENCIA INTRODUCCION Definición Sea O punto del plano ( P ) y r un real positivo, entonces se denomina circunferencia de centro O y radio r ( C ( O, r ) ), al conjunto formado por y sólo por los

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

Ángulos. Proporcionalidad. Igualdad y Semejanza

Ángulos. Proporcionalidad. Igualdad y Semejanza 3. ÁNGULOS 3.1 DEFINICIÓN Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos

Más detalles

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo 1.3.6.-Ángulos. Definición Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA ELEMENTOS DE GEOMETRÍA 1. Elementos geométricos básicos: punto, recta y plano. 2. Semirrectas y segmentos. 3. Ángulos. 3.1. Cómo se miden los ángulos? 3.2. Ángulos importantes. 3.3. Clasificación respecto

Más detalles

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS 11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

21.3. Rectas tangentes exteriores a dos circunferencias.

21.3. Rectas tangentes exteriores a dos circunferencias. 21. TANGENCIAS 21.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.

Más detalles

CIRCUNFERENCIA Y CÍRCULO

CIRCUNFERENCIA Y CÍRCULO CIRCUNFERENCIA Y CÍRCULO 1. Circunferencia y círculo. Elementos. 2. Posiciones relativas de una recta y una circunferencia. 3. Posiciones relativas de dos circunferencias. 4. Ángulos centrales. 5. Ángulos

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

CURSO DE GEOMETRÍA 2º EMT

CURSO DE GEOMETRÍA 2º EMT CURSO DE GEOMETRÍA 2º EMT UNIDAD 0 REPASO 1º CIRCUNFERENCIA Y ANGULOS INSCRIPTOS Ángulos en la circunferencia 1. La circunferencia. 1.1. Elementos de una circunferencia Definición 1. Se llama circunferencia

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

Manejo de las herramientas de Dibujo

Manejo de las herramientas de Dibujo Manejo de las herramientas de Dibujo Una vez aprendidos los instrumentos de dibujo más básicos, en la siguiente ficha, vas a descubrir para que sirven en la práctica, y vas a poder adquirir soltura en

Más detalles

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO. 1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.

Más detalles

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo MODULO III - GEOMETRIA ENCUENTRO NÚMERO CINCO La circunferencia y el círculo 24 DEAGOSTO DE 2014 MANAGUA FINANCIADO POR: FUNDACIÓN UNO 1 Circunferencia: Una circunferencia es una línea curva cerrada cuyos

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Página 1 de 19 EXAMEN A: Ejercicio nº 1.- Traza por cada punto, con regla y escuadra, una recta paralela a la recta r. Ejercicio nº 2.- Traza la mediatriz de estos segmentos y responde: Qué tienen en común

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

5. UNIDAD DIDACTICA 5: FORMAS GEOMÉTRICAS I.

5. UNIDAD DIDACTICA 5: FORMAS GEOMÉTRICAS I. 5. UNIDAD DIDACTICA 5: FORMAS GEOMÉTRICAS I. Normalmente, un dibujo se puede realizar de dos maneras. La primera es a mano alzada, es decir, sin utilizar ningún instrumento que sirva de guía o de apoyo

Más detalles

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes: Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.

Más detalles

LA FORMA GEOMÉTRICA. Como base estructural para la composición. Colmena. Como medio para representar formas detalladas y precisas.

LA FORMA GEOMÉTRICA. Como base estructural para la composición. Colmena. Como medio para representar formas detalladas y precisas. LA FORMA GEOMÉTRICA LA FORMA GEOMÉTRICA La forma geométrica aparece cuando los elementos básicos que la componen se organizan de acuerdo a reglas matemáticas. Son formas con más regularidad, definición

Más detalles

Tema 2: --TRAZADOS DE FORMAS POLIGONALES

Tema 2: --TRAZADOS DE FORMAS POLIGONALES Tema 2: --TRAZADOS DE FORMAS POLIGONALES 1.- TRIÁNGULOS: - CLASIFICACIÓN Y PUNTOS NOTABLES 2.- CUADRILÁTEROS: PROPIEDADES Y CLASIFICACIÓN 3.- POLÍGONOS REGULARES: CLASIFICACIÓN Y CONSTRUCCIÓN Ø INTRODUCCIÓN:

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia

geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia geometría 2008 cbc taller de dibujo cátedra arq. víctor murgia CBC TALLER DE DIBUJO Cátedra Arq. VÍCTOR MURGIA 2008 3 INTRODUCCIÓN AL LENGUAJE GEOMÉTRICO línea recta Este texto trata sobre conceptos básicos

Más detalles

PROBLEMA 48.- SEGUNDO PROCEDIMIENTO.

PROBLEMA 48.- SEGUNDO PROCEDIMIENTO. 20 PROBLEMA 48.- SEGUNDO PROCEDMENTO. -.. Como en el caso anterior levantese perpendiculares a AB en s u punta medio P y en uno de sus extremos B, por e jemplo. Hagase centro en B y con AB como radio se

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

B5 Lugares geométricos

B5 Lugares geométricos Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IX: RECTAS Y ÁNGULOS Puntos, rectas, semirrectas y segmentos en el plano. Posiciones relativas de rectas en el plano. Mediatriz de un segmento. Ángulos. Elementos. Clasificación

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

Preguntas Propuestas

Preguntas Propuestas reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de

Más detalles

Dibujo Técnico División de la circunferencia en partes iguales. 1º.-Bach. IGUALES. 18.1. División de la circunferencia en tres y seis partes iguales.

Dibujo Técnico División de la circunferencia en partes iguales. 1º.-Bach. IGUALES. 18.1. División de la circunferencia en tres y seis partes iguales. 18. DIVISIÓN DE LA CIRCUNFERENCIA EN PARTES IGUALES 18.1. División de la circunferencia en tres y seis partes iguales. Trazamos dos diámetros perpendiculares AB y CD. Con centro en C y radio R trazamos

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

LA GEOMETRÍA. La Geometría. Su origen.

LA GEOMETRÍA. La Geometría. Su origen. LA GEOMETRÍA La Geometría. Su origen. La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes.

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T

Más detalles

TEMA 2 GEOMETRIA BASICA APLICADA

TEMA 2 GEOMETRIA BASICA APLICADA TEM GEOMETRI SIC PLICD OPERCIONES CON SEGMENTOS.... MEDITRIZ DE UN SEGMENTO.... DIVISION DE UN SEGMENTO EN PRTES IGULES....3 PERPENDICULR UN RECT... 3.4 DIVISION DE UN RCO DE CIRCUNFERENCI EN DOS PRTES

Más detalles

1. Conocimientos básicos de dibujo geométrico

1. Conocimientos básicos de dibujo geométrico 1. Conocimientos básicos de dibujo geométrico Los trazados que veremos en este capítulo se harán fundamentalmente con el uso de un compás, por considerar que en el taller hay trazados muy grandes en los

Más detalles

Construir un óvalo conociendo el eje mayor.

Construir un óvalo conociendo el eje mayor. CURVAS TÉCNICAS Englobaremos dentro de este grupo a los Óvalos y Ovoides, Espirales y Evolventes, Hélices, Curvas Trigonométricas y Curvas Cíclicas. ÓVALO Es una curva cerrada y plana compuesta por un

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad.

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Capítulo II. Lugar geométrico. Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Ejemplo: la mediatriz de un segmento es el conjunto

Más detalles

TRAZADO GEOMÉTRICO: Trazados fundamentales

TRAZADO GEOMÉTRICO: Trazados fundamentales IES Alonso Cano Dúrcal 1. Material de dibujo técnico. 1.1 Lápices. Antes de descubrirse la mina de grafito en la segunda mitad del siglo XVI, los dibujos se hacían con varillas formadas por una mezcla

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

Trazados en el plano. Potencia

Trazados en el plano. Potencia UNIDAD 1 Trazados en el plano. Potencia Localización de un barco mediante el arco capaz (Ilustración de los autores utilizando fotografías del Banco de imágenes del ISFTIC). E n esta Unidad se completan

Más detalles

17. POLÍGONOS REGULARES

17. POLÍGONOS REGULARES 17. POLÍGONOS REGULARES 17.1. Características generales Los polígonos regulares son los que tienen los lados y los ángulos iguales, es decir, son equiláteros y equiángulos. Son inscriptibles y circunscriptibles.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

1º ESO TEMA 12 FIGURAS PLANAS

1º ESO TEMA 12 FIGURAS PLANAS 1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

2º E.S.O. TECNOLOGÍAS. Tema 2: TÉCNICAS DE EXPRESIÓN GRÁFICA. Relación ejercicios. Departamento de Tecnología. Técnicas de expresión gráfica.

2º E.S.O. TECNOLOGÍAS. Tema 2: TÉCNICAS DE EXPRESIÓN GRÁFICA. Relación ejercicios. Departamento de Tecnología. Técnicas de expresión gráfica. 2º E.S.O. TECNOLOGÍAS. Tema 2: TÉCNICAS DE EXPRESIÓN GRÁFICA. Relación ejercicios 1.- Qué es un lápiz?. De qué material está hecho? Para qué sirve? 2.- Ordena los siguientes lápices desde el mas duro hasta

Más detalles

TEMA 4. CURVAS 3º ESO

TEMA 4. CURVAS 3º ESO E. URVS º ESO epartamento de rtes lásticas y ibujo URVS ÉIS. Las curvas técnicas y cónicas son curvas muy importantes en el diseño industrial como en ingenierías y arquitectura. Las curvas técnicas, óvalo,

Más detalles

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C. 1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la

Más detalles

Elementos geométricos fundamentales, definición:

Elementos geométricos fundamentales, definición: Elementos geométricos fundamentales, definición: Punto, línea y plano son los elementos geométricos básicos con los que podemos todas las figuras geométricas, se denominan propios si pertenecen a un espacio

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES

UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 13 POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD Nombre y apellidos:...

Más detalles

Curvas geométricas DIBUJO TÉCNICO I. Curvas técnicas OBJETIVOS

Curvas geométricas DIBUJO TÉCNICO I. Curvas técnicas OBJETIVOS DIBUJO TÉCNICO I Curvas geométricas Si prestamos atención a nuestro entorno, nos damos cuenta de que en muchos de los objetos que nos rodean están presentes las curvas técnicas y las curvas cónicas. Por

Más detalles

Con un radio de un centímetro traza una línea ondulada compuesta por 4 semicircunferencias.

Con un radio de un centímetro traza una línea ondulada compuesta por 4 semicircunferencias. 5.- FIGURAS PLANAS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben describir figuras geométricas usando el vocabulario apropiado; usar instrumentos de dibujo (regla, compás, escuadra,

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente.

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente. apítulo 1 Rectas notables 1.1. Puntos y rectas notables en el triángulo ltura, mediana y bisectriz Sean, y los vértices de un triángulo de lados opuestos a, b y c, respectivamente. H a c h b a H c H b

Más detalles

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Tenemos la recta

Más detalles

MATEMÁTICAS (GEOMÉTRÍA)

MATEMÁTICAS (GEOMÉTRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

EL PROBLEMA DE APOLONIO 1

EL PROBLEMA DE APOLONIO 1 EL PROBLEMA DE APOLONIO 1 Benjamín R. Sarmiento Lugo 2 Universidad Pedagógica Nacional Profesor de Planta Bogotá Colombia bsarmiento@pedagogica.edu.co RESUMEN El objetivo de este cursillo es reconstruir

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un segmento equidista

Más detalles