ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

Tamaño: px
Comenzar la demostración a partir de la página:

Download "http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17"

Transcripción

1 ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la variable independiente. y es la variable dependiente (depende de la x ). La función, que se suele denominar y = f(x), asocia a cada valor de x un único valor de y: x y = f(x). Para visualizar el comportamiento de una función, recurrimos a su representación gráfica: sobre unos ejes cartesianos, con sendas escalas, representamos las dos variables: La x sobre el eje horizontal o eje de abscisas. La y sobre el eje vertical o eje de ordenadas. Cada punto de la gráfica tiene dos coordenadas, su abscisa, x, y su ordenada, y. Se llama dominio de definición de una función, f, y se designa por Dom f o D(f), al conjunto de valores de x para los cuales existe la función. Se llama recorrido de f y se designa Rec(f) o R(f), al conjunto de valores que toma la función. Es decir, al conjunto de valores de y para los cuando hay un x tal que f(x) = y 2 CÓMO SE NOS PRESENTAN LAS FUNCIONES 2.1 MEDIANTE SU REPRESENTACIÓN GRÁFICA Como mejor se puede apreciar el comportamiento global de una función es mediante su representación gráfica. Por eso, siempre que pretendamos analizar una función, intentaremos representarla gráficamente, cualquiera que sea la forma en la cual, en principio, nos venga dada. 2.2 MEDIANTE UN ENUNCIADO Cuando una función viene dada por un enunciado o una descripción, la idea que nos podemos hacer de ella es, casi siempre, cuantitativamente poco precisa. Pero si el enunciado se acompaña con datos numéricos, la función puede quedar perfectamente determinada.

2 ACFGS - Matemáticas ESG - 05/2013 Pág. 2 de MEDIANTE UNA TABLA DE VALORES Con frecuencia se nos dan los datos de una función mediante una tabla de valores en la cual se obtienen directamente los datos buscados, aunque en otros casos, hay que efectuar complejos cálculos para obtener lo que se busca. 2.4 MEDIANTE SU EXPRESIÓN ANALÍTICA O FÓRMULA La expresión analítica es la forma más precisa y operativa de dar una función. Pero requiere un minucioso estudio posterior. 3 DOMINIO DE DEFINICIÓN Y EXPRESIÓN ANALÍTICA 3.1 DEFINICIÓN Se llama dominio de definición o simplemente dominio de una función f, y se designa por D(f) = Dom (f), al conjunto de valores de x para los cuales existe la función, es decir, para los cuales hay un f(x). 3.2 RESTRICCIONES DEL DOMINIO El dominio de una función puede quedar restringido por una de las siguientes causas: Imposibilidad de realizar alguna operación. Valores que anulen el denominador. Raíces de índice par de números negativos. Contexto real del cual se ha extraído la función. Voluntad de quien propone la función. 3.3 CÁLCULO DEL DOMINIO DE UNA FUNCIÓN Polinomios: D = R. Cocientes: f(x) = n(x) : D = R {x / d(x) = 0}. d(x) Raíces de índice impar: D = R. n Raíces de índice par: f(x) = r(x) : D = {x/ r(x) 0}.

3 ACFGS - Matemáticas ESG - 05/2013 Pág. 3 de 17 4 RECORRIDO DE UNA FUNCIÓN 4.1 DEFINICIÓN Se llama recorrido de una función f, y se designa por R(f), al conjunto de valores de y para los cuales existe x, es decir, conjunto de valores que toma la variable dependiente y. 4.2 CÁLCULO DEL RECORRIDO Para calcular el recorrido de una función, se dibuja y luego se estudia sobre el eje de ordenadas. 5 PUNTOS DE CORTE CON LOS EJES DE COORDENADAS 5.1 PUNTOS DE CORTE CON EL EJE DE ABSCISAS, OX Como el eje de abscisas, tiene de ecuación y = 0, los puntos serán de la forma (x o,0) 5.2 PUNTOS DE CORTE CON EL EJE DE ORDENADAS, OY Como el eje de ordenadas, tiene de ecuación x = 0, los puntos serán de la forma (0,y o ). 6 SIMETRÍA 6.1 DEFINICIÓN Una función es par o simétrica respecto del eje OY si f(x) = f(-x). Una función es impar o simétrica respecto del origen O si f(x) = - f(-x). Una función que no es par ni impar se dice que es no simétrica. 7 DISCONTINUIDADES. CONTINUIDAD 7.1 IDEA INTUITIVA La idea de función continua es la de que puede ser representada con un solo trazo. Una función que no es continua presenta alguna discontinuidad.

4 ACFGS - Matemáticas ESG - 05/2013 Pág. 4 de DEFINICIÓN DE CONTINUIDAD Una función se llama continua cuando no presenta discontinuidades de ningún tipo. Una función puede ser continua en un intervalo si solo presenta discontinuidades fuera de él. Las funciones con expresiones analíticas elementales son continuas en sus dominios. 7.3 TIPOS DE DISCONTINUIDADES Varias razones por las que una función puede ser discontinua en un punto: Tiene ramas infinitas en ese punto. Es decir, los valores de la función crecen o decrecen indefinidamente cuando la x se acerca al punto. Se dice que presenta una discontinuidad inevitable de salto infinito en ese punto. Presenta un salto. Se dice que presenta una discontinuidad inevitable de salto finito en ese punto. No está definida (le falta un punto) o el punto que parece que le falta lo tiene desplazado. Se dice que presenta una discontinuidad evitable en ese punto. 8 TENDENCIA Y PERIODICIDAD 8.1 TENDENCIA Hay funciones en las que, aunque solo conozcamos un trozo de ellas, podemos predecir cómo se comportarán lejos del intervalo en que han sido estudiadas, porque tienen ramas con una tendencia muy clara. Estas ramas reciben el nombre de asíntotas. Existen tres tipo de asíntotas: Asíntotas verticales: x = a. Asíntotas horizontales: y = b. Asíntotas oblicuas: y = mx + n. 8.2 PERIODICIDAD Función periódica es aquella cuyo comportamiento se repite cada vez que la variable independiente recorre un cierto intervalo. La longitud de ese intervalo se llama periodo. 9 MONOTONÍA, MÁXIMOS Y MÍNIMOS 9.1 MONOTONÍA Una función es creciente cuando al aumentar la x aumenta la y.

5 ACFGS - Matemáticas ESG - 05/2013 Pág. 5 de 17 Una función es decreciente cuando al aumentar la x disminuye la y. 9.2 MÁXIMOS Y MÍNIMOS Una función presenta un máximo absoluto en un punto cuando es el valor más alto de su representación gráfica. Este punto debe de ser del dominio. Una función presenta un mínimo absoluto en un punto cuando es el valor más bajo de su representación gráfica. Este punto debe de ser del dominio. Una función presenta un máximo relativo en un punto cuando en dicho punto la función pasa de creciente a decreciente. Este punto debe de ser del dominio. Una función presenta un mínimo relativo en un punto cuando en dicho punto la función pasa de decreciente a creciente. Este punto debe de ser del dominio. 9.3 TASA DE VARIACIÓN MEDIA (T.V.M) Para medir la variación (aumento o disminución) de una función en un intervalo se utiliza la tasa de variación media. Se llama tasa de variación media de una función f en el intervalo [a,b] al cociente entre la variación de la función y la longitud del intervalo. f (b) f (a) T.V.M de f en [a,b] = b a La T.V.M. de f en [a,b] es la pendiente del segmento AB. 10 CURVATURA, PUNTOS DE INFLEXIÓN 10.1 CURVATURA Una función es cóncava cuando presenta la siguiente forma:

6 ACFGS - Matemáticas ESG - 05/2013 Pág. 6 de 17 Una función es convexa cuando presenta la siguiente forma: 10.2 PUNTOS DE INFLEXIÓN Puntos (del dominio) donde la función cambia de curvatura, es decir, pasa de cóncava a convexa o de convexa a cóncava. 11. TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación. Las funciones algebraicas pueden ser: Funciones explícitas Si se pueden obtener las imágenes de x por simple sustitución. f(x) = 5x 2. Funciones implícitas Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones. 5x - y - 2 = 0. Funciones polinómicas Son las funciones que vienen definidas por un polinomio. f(x) = a 0 + a 1 x + a 2 x² + a 2 x³ + + a n x n. Su dominio es R, es decir, cualquier número real tiene imagen. Funciones constantes El criterio viene dado por un número real. f(x) = k. La gráfica es una recta horizontal paralela a al eje de abscisas. Funciones polinómica de primer grado f(x) = mx +n.

7 ACFGS - Matemáticas ESG - 05/2013 Pág. 7 de 17 Su gráfica es una recta oblicua, que queda definida por dos puntos de la función. Las principales son: Función afín. Función lineal. Función identidad. Funciones cuadráticas f(x) = ax² + bx + c. Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola. Funciones a trozos Son funciones definidas por distintos criterios, según los intervalos que se consideren. Funciones en valor absoluto. Función parte entera de x. Función mantisa. Función signo. Funciones racionales El criterio viene dado por un cociente entre polinomios: El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador. Funciones radicales El criterio viene dado por la variable x bajo el signo radical. El dominio de una función irracional de índice impar es R. El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.

8 ACFGS - Matemáticas ESG - 05/2013 Pág. 8 de 17 Funciones trascendentes La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría. Función exponencial f(x) = a x. Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia a x se llama función exponencial de base a y exponente x. Funciones logarítmicas La función logarítmica en base a es la función inversa de la exponencial en base a. f(x) = log a (x),, a>0, a 1. Funciones trigonométricas Función seno f(x) = sen(x) Función coseno f(x) = cos(x) Función tangente f(x) = tg(x) Función cosecante f(x) = cosec(x) Función secante f(x) = sec(x) Función cotangente f(x) = cotg(x) Funciones constantes La función constante es del tipo: y = n. El criterio viene dado por un número real. La pendiente es 0. La gráfica es una recta horizontal paralela a al eje de abscisas.

9 ACFGS - Matemáticas ESG - 05/2013 Pág. 9 de 17 Rectas verticales Las rectas paralelas al eje de ordenadas no son funciones, ya que un valor de x tiene infinitas imágenes y para que sea función sólo puede tener una. Son del tipo: x = K. Función lineal La función lineal es del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas. x y = 2x Pendiente m es la pendiente de la recta. La pendiente es la inclinación de la recta con respecto al eje de abscisas. Si m > 0 la función es creciente y el ángulo que forma la recta con la parte positiva del eje OX es agudo. Si m < 0 la función es decreciente y el ángulo que forma la recta con la parte positiva del eje OX es obtuso.

10 ACFGS - Matemáticas ESG - 05/2013 Pág. 10 de 17 Función identidad f(x) = x. Su gráfica es la bisectriz del primer y tercer cuadrante. Función afín La función afín es del tipo: y = mx + n. m es la pendiente de la recta. La pendiente es la inclinación de la recta con respecto al eje de abscisas. Dos rectas paralelas tienen la misma pendiente. n es la ordenada en el origen y nos indica el punto de corte de la recta con el eje de ordenadas.

11 ACFGS - Matemáticas ESG - 05/2013 Pág. 11 de 17 Ejemplos de funciones afines Representa las funciones: 1 y = 2x 1. x y = 2x y = -¾x 1. x y = -¾x Función cuadrática Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola. f(x) = ax² + bx + c. Representación gráfica de la parábola Podemos construir una parábola a partir de estos puntos: 1. Vértice Por el vértice pasa el eje de simetría de la parábola. La ecuación del eje de simetría es: x = b 2a

12 ACFGS - Matemáticas ESG - 05/2013 Pág. 12 de Puntos de corte con el eje OX En el eje de abscisas la segunda coordenada es cero, por lo que tendremos: ax² + bx +c = 0 Resolviendo la ecuación podemos obtener: Dos puntos de corte: (x 1, 0) y (x 2, 0) si b² - 4ac > 0 Un punto de corte: (x 1, 0) si b² - 4ac = 0 Ningún punto de corte si b² - 4ac < 0 3. Punto de corte con el eje OY En el eje de ordenadas la primera coordenada es cero, por lo que tendremos: f(0) = a 0² + b 0 + c = c (0,c) Ejemplos: Representar la función f(x) = x² - 4x Vértice x v = - (-4) / 2 = 2 y v = 2² = -1 V(2, -1) 2. Puntos de corte con el eje OX x² - 4x + 3 = 0 (3, 0) (1, 0) 3. Punto de corte con el eje OY (0, 3) Traslaciones de parábolas Construcción de parábolas a partir de y = x² Partimos de y = x² x y = x²

13 ACFGS - Matemáticas ESG - 05/2013 Pág. 13 de Traslación vertical y = x² + k_ Si k > 0, y = x² se desplaza hacia arriba k unidades. Si k < 0, y = x² se desplaza hacia abajo k unidades. El vértice de la parábola es: (0, k). El eje de simetría x = 0. y = x² +2 y = x² Traslación horizontal y = (x + h)²_ Si h > 0, y = x² se desplaza hacia la izquierda h unidades. Si h < 0, y = x² se desplaza hacia la derecha h unidades. El vértice de la parábola es: (-h, 0). El eje de simetría es x = -h. y = (x + 2)² y = (x - 2)²

14 ACFGS - Matemáticas ESG - 05/2013 Pág. 14 de Traslación oblicua y = (x + h)² + k_ El vértice de la parábola es: (-h, k). El eje de simetría es x = -h. y = (x - 2)² + 2 y = (x + 2)² - 2 Dilataciones y contracciones de funciones. Contracción de una función Una función f(k x) se contrae si K > 1. Una función f(k x) se dilata si 0 < K < 1.

15 ACFGS - Matemáticas ESG - 05/2013 Pág. 15 de 17 Funciones racionales El criterio viene dado por un cociente entre polinomios: El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador. Dentro de este tipo tenemos las funciones de proporcionalidad inversa de ecuación: f(x) = k x Sus gráficas son hipérbolas. También son hipérbolas las gráficas de las funciones. ax + b f(x) = cx + d Traslaciones de hipérbolas f(x) = 2 x Las hipérbolas f(x) = k son las más sencillas de representar. x Sus asíntotas son los ejes. El centro de la hipérbola, que es el punto donde se cortan las asíntotas, es el origen.

16 ACFGS - Matemáticas ESG - 05/2013 Pág. 16 de 17 A partir de estas hipérbolas se obtienen otras por traslación. 1. Traslación vertical f(x) = k x + a f(x) = k x + 3 El centro de la hipérbola es: (0, a). Si a>0, f(x) = k se desplaza hacia arriba a x unidades. El centro de la hipérbola es: (0, 3) f(x) = k x 3 Si a<0, f(x) = 2 x se desplaza hacia abajo a unidades. El centro de la hipérbola es: (0, -3) 2. Traslación horizontal f(x) = 2 x+3 f(x) = k x+b El centro de la hipérbola es: (-b, 0). Si b> 0, f(x) = 2 x se desplaza a la izquierda b unidades.

17 ACFGS - Matemáticas ESG - 05/2013 Pág. 17 de 17 El centro de la hipérbola es: (-3, 0) Si b<0, f(x) = 2 x se desplaza a la derecha f(x) = 2 x 3 b unidades. El centro de la hipérbola es: (3, 0) 2 f(x) = + 4 (x+3) 3. Traslación oblicua k f(x) = + a (x+b) El centro de la hipérbola es: (-b, a) El centro de la hipérbola es: (3, 4). Para representar hipérbolas del tipo: f(x) = ax+b cx+d se divide y se escribe como: k f(x) = + a (x+b) Su representación gráfica es una hipérbola de centro (-b, a) y de asíntotas paralelas a los ejes. f(x) = 3x+5 x+1 El centro de la hipérbola es: (-1, 3). 2 f(x) = + 3 (x+1)

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

PROPIEDADES FUNCIONES PRINCIPALES

PROPIEDADES FUNCIONES PRINCIPALES PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

Examen funciones 4º ESO 12/04/13

Examen funciones 4º ESO 12/04/13 Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

CUADERNO DE TRABAJO 2

CUADERNO DE TRABAJO 2 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

9 Funciones elementales

9 Funciones elementales Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(

Más detalles

Tipos de funciones. Clasificación de funciones. Funciones algebraicas

Tipos de funciones. Clasificación de funciones. Funciones algebraicas Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas CÁLCULO DIFERENCIAL Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas Cálculo Diferencial UNIDAD 1 2. Funciones y modelos 2.1.

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Funciones y gráficas. Objetivos

Funciones y gráficas. Objetivos 8 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se

Más detalles

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz Cuadernillo de Apuntes de Matemáticas I Luis Ignacio Sandoval Paéz 1 Índice Números reales 1.1 Clasificación de los números reales. 5 1.2 Propiedades. 7 1.3Interpretación geométrica de los números reales.

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA.

FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. La ecuación de dichas funciones es de la forma f(x) = y = ax 3 +bx 2 +cx +d, donde a,b,c y d PRIMERAS CARACTERÍSTICAS: 1.- DOMINIO: por ser polinómicas

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

# Matemática/Polimodal: Funciones 1 y 2. Editorial Longseller

# Matemática/Polimodal: Funciones 1 y 2. Editorial Longseller PROGRAMA DE ANÁLISIS MATEMÁTICO E. P. E. T. N 20-2014 UNIDAD N 1: FUNCIONES REALES Estudio de funciones reales (lineal, cuadrática, cúbica, módulo, homográfica, trigonométricas, por partes) a partir de

Más detalles

1.1Razones trigonométricas -Son las distintas proporciones que se establecen entre los lados de un triángulo rectángulo:

1.1Razones trigonométricas -Son las distintas proporciones que se establecen entre los lados de un triángulo rectángulo: --ÍNDICE-- Trigonometría 5 Razones trigonométricas 5 Coordenadas trigonométricas de un punto del plano 5 Consecuencias de esta fórmula 5 Razones exactas de ángulos 6 Otras fórmulas 6 Aplicaciones de la

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. > Función matemática El concepto de función matemática o simplemente función,

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

TEMA 4 FUNCIONES ELEMENTALES I

TEMA 4 FUNCIONES ELEMENTALES I Tema 4 Funciones elementales I Ejercicios resueltos Matemáticas B 4º ESO 1 TEMA 4 FUNCIONES ELEMENTALES I DEFINICIÓN DE FUNCIÓN EJERCICIO 1 : Indica cuáles de las siguientes representaciones corresponden

Más detalles

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos:

FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos: FUNCIÓN CUADRÁTICA Una función cuadrática es una función polinómica de segundo grado de la forma y=ax +bx+c, cuya gráfica es una parábola de eje vertical, donde a representa la abertura de la parábola.

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Gráficas. Funciones Reales. Variable Real

Gráficas. Funciones Reales. Variable Real I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Gráficas de Funciones Reales de Variable Real Por Javier Carroquino CaZas Catedrático de matemáticas del I.E.S.

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

APUNTES DE CÁLCULO DIFERENCIAL.

APUNTES DE CÁLCULO DIFERENCIAL. APUNTES DE CÁLCULO DIFERENCIAL. Prof. Jaime A Pinto. Departamento De Ciencias Básicas, Unidades Tecnológicas de Santander. Textos Universitarios 2013 Contenido Introducción... 1 1 Capítulo 1 "Desigualdades".......................................................

Más detalles

Funciones. Capítulo 1

Funciones. Capítulo 1 Capítulo Funciones En la base de muchos modelos matemáticos se halla el concepto de función. La descripción de un fenómeno que evoluciona con respecto al tiempo se realiza generalmente mediante una función

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Toda regla de correspondencia como los ejemplos anteriores es llamada relación.

Toda regla de correspondencia como los ejemplos anteriores es llamada relación. . Funciones.1. Definición de función Toda regla de correspondencia como los ejemplos anteriores es llamada relación. Ciertos tipos especiales de reglas de correspondencia se llaman funciones. La definición

Más detalles

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 República de Costa Rica Ministerio de Educación Pública PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 Basado en los programas de estudio en Matemáticas aprobados por el Consejo Superior de Educación

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

ESCUELA COLOMBIANA DE INGENIERÍA

ESCUELA COLOMBIANA DE INGENIERÍA ESCUELA COLOMBIANA DE INGENIERÍA ASIGNATURA: PRECÁLCULO DEPARTAMENTO: MATEMÁTICAS PLANES DE ESTUDIO: CÓDIGO: Mnemónico PREM Numérico 1. OBJETIVOS GENERALES Estudiar el campo ordenado de los reales. Estudiar

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA CAPÍTULO VI. APLICACIONES DE LA DERIVADA SECCIONES A. Crecimiento y decrecimiento. Máximos y mínimos locales. B. Concavidad. Puntos de inflexión. C. Representación gráfica de funciones. D. Problemas de

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones. Profesor(a):Mtra. Judith Ramírez Hernández.

Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones. Profesor(a):Mtra. Judith Ramírez Hernández. Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones Profesor(a):Mtra. Judith Ramírez Hernández. Periodo: Enero Junio 2012 Topic: Real Numbers and classification

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

49 http://iedonboscohunter.hol.es

49 http://iedonboscohunter.hol.es 49 http://iedonboscohunter.hol.es MODULO PRECALCULO SEGUNDA UNIDAD Funciones Algebraicas Había un hombre en Roma que se parecía mucho a César Augusto; Augusto se enteró de ello, mandó buscarlo y le preguntó.

Más detalles

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS 1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS Primera Evaluación TEMA 1. NÚMEROS REALES Distintos tipos de números. Recta real. Radicales. Logaritmos. Notación científica. Calculadora. TEMA 2.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Bachillerato Internacional Matemáticas II. Curso 2014-2015 Problemas

Bachillerato Internacional Matemáticas II. Curso 2014-2015 Problemas Bachillerato Internacional Matemáticas II. Curso 04-05 Problemas REGLAS DE DERIVACIÓN. Reglas de derivación Obtener la derivada de las siguientes funciones:. y = (x 7x + ). y = (4x + 5). y = (x 4x 5x

Más detalles

Calculadora ClassPad

Calculadora ClassPad Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos

Más detalles

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y) Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como

Más detalles

DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS

DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS Basado en los Programas de Estudio en Matemáticas aprobados por el Consejo Superior de Educación el 21 de mayo del 2012 y en el Plan de Transición

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles