INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS"

Transcripción

1 INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics

2

3 I) CONCEPTO DE INTEGRAL DEFINIDA DEF: f(x) dx = áre del recinto limitdo por l curv f(x), el eje x, y ls rects verticles x= y x= Gráficmente, coincide con el áre A del diujo : f(x) A Signo de l integrl definid: Hy posiiliddes: + _ + y=sen x π _ π Cundo l curv está por encim del eje x, el áre es positiv (lógico pues f(x)>0 en ese cso. Si está por dejo, entonces l integrl definid es negtiv (y que entonces f(x)<0) p.ej. π 0 senx dx = 0 Cómo se clcul?: Medinte l REGLA DE BARROW : se trt de hllr un primitiv F(x) medinte los procedimientos del tem nterior, y continución vlorrl entre los extremos y : f(x) dx = F(x) + C f(x) dx = F() F() Ejemplos justifictivos: ) f(x)= A A = dx = (Puede comprorse el resultdo gráficmente) L definición nterior puede entenderse intuitivmente si pensmos que f(x) dx representrí el áre de un rectángulo infinitesiml de ltur f(x) y nchur tn pequeñ como quermos dx, por lo que l integrl definid vendrí ser l sum de esos infinitos pequeños rectángulos. Pr un comprensión más riguros de este hecho puede uscrse l entrd Integrl de Riemnn en Internet. Isc Brrow (60-677), eminente mtemático inglés y profesor de Isc Newton en Cmridge. Puede encontrrse en Internet fácilmente l justificción de est regl, que se conoce como º Teorem Fundmentl del Cálculo Integrl. Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

4 ) y=x A A = (x ) dx = Compruéese que el áre A del triángulo es efectivmente l clculd: c) A = ( x + 5 ) d x = Podemos compror que coincide con áre A del trpecio, l cul viene dd por: B + A = h = Nótese, por consiguiente, que l integrl definid tiene un utilísim plicción l cálculo de áres. Ejercicio: Compror por Brrow que π 0 senx dx = 0 Ejercicios PAEG: Teórico-prácticos: sept 008 A, jun 04 B Prácticos: jun 009 B, jun 04 A, jun 008 B Ejercicios finl tem: 0 II) PROPIEDADES DE LA INTEGRAL DEFINIDA c ) Si c [,]: f = f + f Est propiedd nos será muy útil l hor de hllr el áre de un recinto c compuesto como sum de dos o más suáres. Su justificción es trivil, tnto gráficmente como plicndo l regl de Brrow. ) f = 0 Ovio y fácil de pror. ) f = f Puede demostrrse plicndo l regl de Brrow. 4) f ± g = f ± g Es un consecuenci inmedit de un propiedd nálog de l integrl indefinid. Un plicción de esto es el ejercicio 9 del finl del tem. Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

5 5) L interpretción gráfic es ovi: función impr = 0 - _ + Ls dos áres son igules pero de signo opuesto, por lo que su sum es cero. Por ejemplo, podemos concluir que hcer l integrl. π π x senx dx = 0 sin necesidd de III) ÁREA BAJO f En cd uno de los tres csos vistos en el prtdo I hrá que proceder de form distint: ) f es positiv: f(x) A A = f(x) dx (por l propi definición de l integrl definid) ) f es negtiv: A A = f(x) dx o ien: A = f(x) dx f(x) ) f es positiv y negtiv (se ltern): por l propiedd A x A x A T x x A = A + A + A = f + f + f x x NOTA: En generl hrá que hllr los puntos en que f(x) cort l eje x (x y x en el ejemplo nterior) pues no semos de ntemno si f(x) cmi de signo. Tmién, veces conviene representr f(x), pues puede formr con respecto l eje x dos o más suáres (ver p. ej. ejercicio 5 del finl del tem) Recordr que pr otener los puntos en que un función cort l eje x hy que resolver l ecución f(x)=0 Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

6 Ejemplo: Hllr el áre limitd por l práol y=x -4x y el eje x (Un esozo de l gráfic no es oligtorio, pero puede ser útil ) Nótese que en este ejemplo l integrl en sí result negtiv, pues l práol está por dejo del eje x, pero el vlor soluto l convierte en positiv, como dee ser por trtrse de un áre. NOTA: Si nos pidiern el áre respecto l eje y, entonces intercmirímos l x con l y (vése el ejercicio 8), pero no olvidemos que los límites de integrción estrán hor en el eje y! Todo esto puede comprorse gráficmente mirndo l trsluz l hoj en l que hemos diujdo el recinto. Ejercicios PAEG: B sept 004, A jun 004, B sept 008, B sept 009 Ejercicios finl tem: 8 IV) ÁREA LIMITADA POR DOS CURVAS Existen tres posiiliddes: ) Ams curvs son positivs 4 y no se cortn: A f(x) g(x) A = f g = (f g) ) Ams curvs son de distinto signo y no se cortn: A f(x) A T A = A + A = f g = (f g) g(x) 4 Nótese que llegrímos l mism fórmul si ms curvs fuern negtivs, es decir, situds jo el eje X Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

7 ) Ams curvs se cortn: f(x) A g(x) c A En este cso hy que hllr los puntos de corte y seprr en vris integrles; por ejemplo, en el cso de l figur: T c A = A + A = (f g) + (g f) c Como conclusión, en generl tendremos que resolver previmente el sistem formdo por ms funciones pr hllr el punto o los puntos donde se cortn. Además, conviene diujr el recinto pues veces hy que hllr el áre pedid como sum de vris suáres, por dos rzones: o ien porque se otienen dos o más recintos seprdos (p. ej. ejercicio 6 del finl tem), o ien porque se otiene un recinto único delimitdo superior e inferiormente por curvs distints (prolems 4 y ss. finl tem, o junio 97 A). Ejemplo: Prolem 4B sept 97 NOTA: En lgunos prolems, un vez diujdo el recinto, convendrá intercmir l x con l y pr hcer lo nterior con respecto l eje y (como en el prolem B junio 98). Otr solución puede ser sudividir el recinto en sectores. Ejercicios finl tem: 9 y ss. Ejercicios PAEG (por orden de complejidd): Áre de un recinto: jun 0 A, jun 00 A, jun 00 A, jun 99 B, sept 99 4B, sept 007 B, jun 007 B, sept 006 B, jun 006 B, jun 00 A, sept 0 B Hllr previmente l rect tngente: sept 98 A, jun 00 A Vlor soluto: sept 000 A, sept 00 4A Vrios recintos: sept 0 B, jun 0 B, jun 000 4A, Jun 97 A, jun 98 B (áre respecto l eje y), sept 98 A, sept 04 A Con prámetro: sept 0 B, jun 0 A (+ rect tngente) Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

8 45 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Integrl definid:. Enuncir l regl de Brrow. Clculr:. Clculr:. (S) Clculr: x dx (Soluc: 4) + ( ) x + x dx Soluc : 0 x dx (Soluc: 5/) 0 4. Clculr: 5. Clculr: 6. Clculr: 7. Clculr: π x senx dx (Soluc: /) 0 x rctg x dx (Soluc:π/4-/) 0 x (x )e + dx 4 4e 0 dx 7 Soluc : - 0 (x + )(x + ) 4 Soluc : ln 8. Clculr: dx 0 x + π Soluc : ln Hllr el vlor de π x sen x dx sin necesidd de integrr, rzondmente. (Soluc: 0) π 0. Sen: π/ π/ = x sen x dx = x cos x dx 0 0 Clculr + y - y otener los vlores de y. (Soluc: =(π +4)/6; =(π -4)/6) Áre jo un curv:. Clculr el áre limitd por l curv y = x + 4, ls rects x=, x= y el eje x. (Soluc: π/4 u ). Hllr los vlores de, y c en el polinomio P(x)=x +x+c de form que P()=4, P'()=8 y P()+5P(0)=0 Representr l función y clculr el áre finit comprendid entre l curv y el eje x. (Soluc: P(x)=x +x-; /7 u ). Clculr el áre limitd por l curv y = ln x, ls rects x=, x=e y el eje x. (Soluc: e - u ) Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

9 4. Clculr el áre limitd por l curv y = x y ls rects y=0, x=0, x= /. (Soluc: (π+)/8 u ) 5. Clculr el áre comprendid entre l curv y =, el eje x y ls rects verticles que psn por los puntos de inflexión de dich curv. (Soluc: π / u + x ) x 6. Dd l función y =, clculr el áre encerrd por l curv, el eje x y ls rects perpendiculres l eje x + x que psn por el máximo y el mínimo de l función dd. (Soluc: Ln u ) x si x < 0 7. Considerr l función f(x) = x si 0 x <. Representrl y clculr ls siguientes integrles: 0 x si < x 4 ) f(x) dx ) 4 f(x) dx c) 4 f(x) dx 8. Considérese l función t si 0 t f(t) = si t x y se F(x) = f(t) dt x ) Hllr un expresión explícit pr F(x) (Soluc: F(x)=x-) ) Diujr F(x) Áre entre dos curvs: 9. Clculr el áre encerrd entre ls gráfics de ls línes y=x, y=x(6-x) (Soluc: 5/6 u ) 0. Hllr el áre de l región comprendid entre ls práols y=x, y=-x + (Soluc: 4 u ). Diujr l curv y=x -x-0, y clculr el áre del recinto limitdo por est curv y l rect y=x-4 (Soluc: 4/6 u ). Hllr el áre de l región limitd, pr x>0, por y=x y l rect y=8x (Soluc: 6 u ). Clcul el áre comprendid entre ls curvs f(x)=x 4 +5x -7x +x- y g(x)=x 4 +4x -8x +4x-, sin necesidd de representrls. (Soluc. 7/ u ) x 4. Sen f(x) = y g(x) = x. ) Diujr sus gráfics en los mismos ejes y hllr sus puntos de intersección. ) Determinr el áre del recinto encerrdo entre ms gráfics. (Soluc. /4 u ) 5. Clculr el áre de l región del semiplno y 0 limitd por l curv y=ln x, su tngente en x= y l rect x=. (Soluc: l tngente es y=x-; el áre es 4-Ln u ) 6. ) Clculr el áre de l región encerrd entre y=x e y = x (Soluc: / u ) Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

10 ) Clculr el áre de l región encerrd entre y=x e y = x (Soluc: u ) c) Clculr el áre de l región encerrd entre y=x e y = x (Soluc: 5/ u ) 7. Hllr el áre de l región cotd del plno limitd por ls práols y=x -x, y =x. (Soluc: u ) 8. Clculr el áre de l región situd entre l rect x= y ls curvs y=x e y=8/x (Soluc: 8Ln-7/ u ) 9. Hllr el áre del recinto cotdo por ls curvs y=x, y=6/x y l rect x= (Soluc: 6ln-5/4 u ) 0. Clculr el áre del recinto limitdo por l curv y=e x y l cuerd de l curv que une el punto de scis x=0 con el de scis x= (Soluc: (e +5)/6 u ). Se >0. Hllr, en función de, el áre limitd por l práol y=x y l rect y=x (Soluc: /6 u ) x. Se consider l función y = 9 x ) Diujr su gráfic indicndo su dominio de definición. ) Clculr el áre de l región cotd limitd por l curv nterior y l rect y= (Soluc:6[ +ln(- )] u ) 5 5. Hllr el áre del recinto limitdo por y= e y = Soluc : 4 Ln 5 x 9 Vrios recintos (más elordos): 4. Hllr el áre de ls regiones comprendids entre l curv y=x y ls rects y=x, x=0, x= (Soluc: u ) 5. Clculr el áre de l región limitd por ls curvs y=x e y=x / entre x=- y x= (Soluc:/ u ) 6. Clculr el áre del recinto limitdo por ls rects y=x, y=x y l práol y=x (Soluc: 7/6 u ) 7. Clculr el áre limitd por l gráfic de l función f(x)=ln x, el eje x y l rect tngente dich gráfic en el punto x=e. (Soluc: (e-)/ u ) 8. Se consider l función y=x / ) Diujr l gráfic. ) Clculr l rect tngente en x= l gráfic diujd y clculr el áre limitd por dich gráfic, l tngente y el eje x. (Soluc: tngente: x-y-=0; áre=/5 u ) 9. Hllr el áre limitd por l curv x=6-y y el eje y (Soluc: 56/ u ) 40. Hllr el vlor de l constnte pr que l función f(x)=x -x +x teng por tngente en el origen l isectriz del primer cudrnte. Clculr entonces el áre de l región limitd por es tngente y l gráfic de f. (Soluc: =; 4/ u ) 4. Hllr el vlor del prámetro pr que el áre limitd por ls gráfics de ls funciones f (x) = x y f (x)=x / en el primer cudrnte se igul tres uniddes. (Soluc: =) Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

11 4. Siendo que el áre comprendid entre l curv y = x y l rect y=x es, clculr el vlor de. = (Soluc: ) 4. Clculr el vlor de siendo que el áre comprendid entre l práol y=x +x y l rect y+x=0 es 6 (Soluc: =5) Hllr el áre del recinto limitdo por f(x)= x Soluc : -4 y ) g(x)=4. Diujr dicho recinto. ) g(x)=x+. Ídem. c) g(x)=5. Ídem. 45. Diujr el recinto limitdo por ls gráfics de y=x, y=x / e y=-x+6 en el er cudrnte, y hllr su áre. (Soluc: 59/8 u ) Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

12 Volumen de revolución: 46. (S) Clculr el volumen del cuerpo que se otiene l girr l curv y = +x en torno l eje x, entre x=0 y x=. (Soluc: π /8 u ) 47. (S) Clculr el volumen del sólido de revolución otenido l girr lrededor del eje x el recinto limitdo por l gráfic de l función y= x senx, 0 x π, y el eje x. (Soluc: π /4 u ) Función integrl: 48. (S) Hllr el punto del intervlo [0,] en el que l función F(x) = x t dt lcnz su vlor mínimo. (Sol: x=) 0 + t 49. (S) Se x t F(x) = dt 0 e. Hllr el vlor de F'(0). (Soluc: F'(0)=) 50. (S) Se F(x) l función definid por (Soluc: x=0) x e -x- t e F(x) = dt. Hllr los puntos en que se nul l función F'(x). Texto jo licenci Crtive Commons: se permite su utilizción didáctic sí como su reproducción impres o digitl siempre y cundo se respete l mención de su utorí, y se sin ánimo de lucro. En otros csos se requiere el permiso del utor

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e. MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por

Más detalles

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D

Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) x D INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

Tema 11. La integral definida

Tema 11. La integral definida Mtemátics II (Bchillerto de Ciencis) Análisis: Integrl definid 5 Integrl definid: áre jo un curv Tem L integrl definid L integrl definid permite clculr el áre del recinto limitdo, en su prte superior por

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas)

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas) ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA APLICACIONES DE LA INTEGRAL DEFINIDA CÁLCULO DE ÁREAS Y VOLÚMENES (De revolución) A. Cálculo

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Fundamentos matemáticos. Tema 7 Integración. Aplicaciones

Fundamentos matemáticos. Tema 7 Integración. Aplicaciones Fundmentos mtemáticos Grdo en Ingenierí grícol y del medio rurl Tem 7 Integrción. Aplicciones José Brrios Grcí Deprtmento de Análisis Mtemático Universidd de L Lgun jrrios@ull.es 16 Licenci Cretive Commons

Más detalles

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real.

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real. 7.. Clculr el desrrollo de Tylor de grdo en = de l función f () = te t dt, y utilizrlo pr clculr proimdmente, te t dt. Dr un estimción del error cometido. ( 997). 7.. Clculr el siguiente ite funcionl cos

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Cálculo de volúmenes II: Método de los casquetes cilíndricos

Cálculo de volúmenes II: Método de los casquetes cilíndricos Sesión 6 II: Método de los csquetes cilíndricos Tems Método de los csquetes cilíndricos pr clculr volúmenes de sólidos de revolución. Cpciddes Conocer y plicr el método de los csquetes esféricos pr clculr

Más detalles

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contenido: Integrl definid: (1º) Aplicción:

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Tema 12. Integrales impropias

Tema 12. Integrales impropias Tem 2. Integrles impropis Jun Medin Molin 3 de mrzo de 2005 Introducción En este tem trtremos el estudio de ls integrles impropis que pueden ser de dos tipos, integrles donde el intervlo de integrción

Más detalles

LA INTEGRAL DEFINIDA Y SUS APLICACIONES

LA INTEGRAL DEFINIDA Y SUS APLICACIONES Integrl Definid y Aplicciones LA INTEGRAL DEFINIDA Y SUS APLICACIONES Autores: Pco Mrtínez (jmrtinezos@uoc.edu), Ptrici Molinàs (pmolins@uoc.edu), Ángel A. Jun (junp@uoc.edu). ESQUEMA DE CONTENIDOS Aplicciones

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

UNIDAD 4: INTEGRAL DEFINIDA

UNIDAD 4: INTEGRAL DEFINIDA UNIDAD 4: INTEGRAL DEFINIDA ÍNDICE DE LA UNIDAD.- INTRODUCCIÓN.....- SUMAS SUPERIORES E INFERIORES....- LA INTEGRAL DEFINIDA.... 4.- PROPIEDADES DE LA INTEGRAL DEFINIDA... 5.- TEOREMA FUNDAMENTAL DEL CÁLCULO

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

TREN DE PASAJEROS TREN DE MERCANCÍAS (en horas)

TREN DE PASAJEROS TREN DE MERCANCÍAS (en horas) Unidd. L integrl definid Resuelve Págin Dos trenes Un tren de psjeros un tren de mercncís slen de l mism estción, por l mism ví en idéntic dirección, uno trs otro, csi simultánemente. Ests son ls gráfics

Más detalles

Para funciones de una variable, el área que encierra la gráfica de la función sobre un intervalo se puede medir con

Para funciones de una variable, el área que encierra la gráfica de la función sobre un intervalo se puede medir con Integrción sore conjuntos sencillos - Fernndo Sánchez - - Pr funciones de un vrile, el áre que encierr l gráfic de l función sore un intervlo se puede medir con f ( ) I [, ] En el cso de funciones de dos

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Unidad 12: LA INTEGRAL DEFINIDA. II. Consumo de energía eléctrica (gráfica potencia-tiempo)

Unidad 12: LA INTEGRAL DEFINIDA. II. Consumo de energía eléctrica (gráfica potencia-tiempo) Unidd : LA INTEGRAL DEFINIDA..- ÁREA BAJO UNA CURVA Significdo de lguns áres Hy infinidd de funciones etríds del mundo rel (científico, económico, ) pr ls cules tiene especil relevnci el áre jo su gráfic.

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

vectores Componentes de un vector

vectores Componentes de un vector Vectores Un vector es un segmento orientdo. Está formdo por se representn: - con un flech encim v - en un eje de coordends - el módulo: es l longitud del origen l extremo - l dirección: es l rect que contiene

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos. BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

TEMA 13: INTEGRAL DEFINIDA

TEMA 13: INTEGRAL DEFINIDA TEMA : INTEGRAL DEFINIDA..- El problem de clculr el áre bjo un curv El problem de clculr el áre limitd por lguns curvs fue borddo, por los mtemáticos griegos, desde bstntes siglos trás. El método empledo

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Integrales 171. Tema 8. Integrales. , es fácil hallar su derivada F (x)

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Integrales 171. Tema 8. Integrales. , es fácil hallar su derivada F (x) Mtemátics Aplicds ls Ciencis Sociles II Análisis: Integrles 7 Concepto de integrl indefinid Tem 8 Integrles L derivd de un función permite conocer l ts de vrición (el cmio instntáneo) de un determindo

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Aplicaciones de la integral definida.

Aplicaciones de la integral definida. Cálculo Mtemático. Práctic 6. Curso 29-21. AMRP. 1 Aplicciones de l integrl definid. Práctic 6 (Específic de l signtur de Cálculo Mtemático en E.U.A.T.) (Práctic elord prtir de ls relizds en cursos nteriores

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x)

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x) rte Vriles letoris. Vriles letoris continus En l sección nterior se considerron vriles letoris discrets, o se vriles letoris cuo rngo es un conjunto finito o infinito numerle. ero h vriles letoris cuo

Más detalles

CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva

CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva CAPÍTULO 1 L integrl 1.3 Cálculo proimdo del áre de un región pln jo un curv etommos en est sección el prolem del cálculo de áres, introduciendo lguns simplificciones notciones que nos permitirán resolverlo.

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles