FUNDAMENTOS DE DATA WAREHOUSE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNDAMENTOS DE DATA WAREHOUSE"

Transcripción

1 FUNDAMENTOS DE DATA WAREHOUSE 1. Qué es Data Warehouse? El Data Warehouse es una tecnología para el manejo de la información construido sobre la base de optimizar el uso y análisis de la misma utilizado por las organizaciones para adaptarse a los vertiginosos cambios en los mercados. Su función esencial es ser la base de un sistema de información gerencial, es decir, debe cumplir el rol de integrador de información proveniente de fuentes funcionalmente distintas (Bases Corporativas, Bases propias, de Sistemas Externos, etc.) y brindar una visión integrada de dicha información, especialmente enfocada hacia la toma de decisiones por parte del personal jerárquico de la organización. Un Datawarehouse es una base de datos corporativa que se caracteriza por integrar y depurar información de una o más fuentes distintas, para luego procesarla permitiendo su análisis desde infinidad de perspectivas y con grandes velocidades de respuesta. Es un sitio donde se almacena de manera integrada toda la información resultante de la operatoria diaria de la organización. Además, se almacenan datos estratégicos y tácticos con el objetivo de obtener información estratégica y táctica que pueden ser de gran ayuda para aplicar sobre las mismas técnicas de análisis de datos encaminadas a obtener información oculta (Data Mining). Esta información incluye movimientos que modifican el estado del negocio, cualquier interacción que se tenga con los clientes y proveedores, y cualquier dato adicional que ayude a comprender la evolución del negocio. Esta tecnología ayuda a la organización a responder preguntas esenciales para la toma de decisiones que le permitan obtener ventajas competitivas y mejorar su posición en el mercado en el que operan. Algunas de las preguntas podrían ser: Cuál es el perfil de mis clientes? Cómo es su comportamiento? Cuál es la rentabilidad que me deja? Cuál es el riesgo que corro con él? Qué servicios y productos utiliza y cómo puedo incrementarlos? Etc.

2 2. Características de un Data Warehouse. Integrado. Los datos almacenados en el datawarehouse deben integrarse en una estructura consistente, por lo que las inconsistencias existentes entre los diversos sistemas operacionales deben ser eliminadas. La información suele estructurarse también en distintos niveles de detalle para adecuarse a las distintas necesidades de los usuarios. La integración de datos se muestra de muchas maneras: en convenciones de nombres consistentes, en la medida uniforme de variables, en la codificación de estructuras consistentes, en atributos físicos de los datos consistentes, fuentes múltiples y otros. En la siguiente imagen podemos ver cómo se maneja la información en distintas aplicaciones y lo que buscamos con la integración seria escoger de todas un estándar de información para que uniformice los datos y se introduzcan al repositorio

3 Temático. Sólo los datos necesarios para el proceso de generación del conocimiento del negocio se integran desde el entorno operacional. Los datos se organizan por temas para facilitar su acceso y entendimiento por parte de los usuarios finales. Por ejemplo, todos los datos sobre clientes pueden ser consolidados en una única tabla del datawarehouse. De esta forma, las peticiones de información sobre clientes serán más fáciles de responder dado que toda la información reside en el mismo lugar. En la siguiente imagen se muestra cómo se maneja un sistema de información orientada a sus aplicaciones y otra temática una diferencia importante entre estas está en la interrelación de la información. Los datos operacionales (aplicaciones) mantienen una relación continua entre dos o más tablas basadas en una regla comercial. Las del data warehouse miden espectros de tiempo y las relaciones encontradas en la data warehouse (podremos indagar en toda la información pasada relacionada entre todas las aplicaciones).

4 De tiempo variante. El tiempo es parte implícita de la información contenida en un datawarehouse. En los sistemas operacionales, los datos siempre reflejan el estado de la actividad del negocio en el momento presente. Por el contrario, la información almacenada en el datawarehouse sirve, entre otras cosas, para realizar análisis de tendencias. Por lo tanto, el datawarehouse se carga con los distintos valores que toma una variable en el tiempo para permitir comparaciones. Los datos históricos son de poco uso en el procedimiento operacional. La información del depósito por el contrario, debe incluir los datos históricos para usarse en la identificación y evaluación de tendencias. 1. La más simple es que la información representa los datos sobre un horizonte largo de tiempo - desde cinco a diez años. El horizonte de tiempo representado para el ambiente operacional es mucho más corto - desde valores actuales hasta sesenta a noventa días. Las aplicaciones que tienen un buen rendimiento y están disponibles para el procesamiento de transacciones, deben llevar una cantidad mínima de datos si tienen cualquier grado de flexibilidad. Por ello, las aplicaciones operacionales tienen un corto horizonte de tiempo, debido al diseño de aplicaciones rígidas. 2. La segunda manera en la que se muestra el tiempo variante en el data warehouse está en la estructura clave. Cada estructura clave en el data warehouse contiene, implícita o explícitamente, un elemento de tiempo como día, semana, mes, etc. El elemento de tiempo está casi siempre al pie de la clave concatenada, encontrada en el data warehouse. En ocasiones, el elemento de tiempo existirá implícitamente, como el caso en que un archivo completo se duplica al final del mes, o al cuarto.

5 3. La tercera manera en que aparece el tiempo variante es cuando la información del data warehouse, una vez registrada correctamente, no puede ser actualizada. La información del data warehouse es, para todos los propósitos prácticos, una serie larga de "snapshots" (vistas instantáneas). Por supuesto, si los snapshots de los datos se han tomado incorrectamente, entonces pueden ser cambiados. Asumiendo que los snapshots se han tomado adecuadamente, ellos no son alterados una vez hechos. En algunos casos puede ser no ético, e incluso ilegal, alterar los snapshots en el data warehouse. Los datos operacionales, siendo requeridos a partir del momento de acceso, pueden actualizarse de acuerdo a la necesidad. No Volátil. El almacén de información de un datawarehouse existe para ser leído, pero no modificado. La información es por tanto permanente, significando la actualización del datawarehouse la incorporación de los últimos valores que tomaron las distintas variables contenidas en él sin ningún tipo de acción sobre lo que ya existía. La información es útil sólo cuando es estable. Los datos operacionales cambian sobre una base momento a momento. La perspectiva más grande, esencial la manipulación básica de los datos que ocurre en el data warehouse es mucho más simple. Hay dos únicos tipos de operaciones: la carga inicial de datos y el acceso a los mismos. No hay actualización de datos (en el sentido general de actualización) en el depósito, como una parte normal de procesamiento. Hay algunas consecuencias muy importantes de esta diferencia básica, entre el procesamiento operacional y del data warehouse. En el nivel de diseño, la necesidad de ser precavido para actualizar las anomalías no es un factor en el data warehouse, ya que no se hace la actualización de datos. Esto significa que en el nivel físico de diseño, se pueden tomar libertades para optimizar el acceso a los datos, particularmente al usar la normalización y de normalización física. Como se puede observar en la imagen en la base de datos operacional la actualización (actualizar, borrar y modificar) se hace regularmente, mientras en el data warehouse sea una sola actualización esto hace que cuando tengamos que tomar una decisión con esta información tengamos seguridad de esta.

6 3. Ventajas de un Data Warehouse Datawarehouse proporciona una información de gestión accesible, correcta, uniforme y actualizada. Proporciona un menor coste en la toma de decisiones, una mayor flexibilidad ante el entorno, un mejor servicio al cliente y permite el rediseño de los procesos. Entre las ventajas tenemos: - Proporciona información clave para la toma de decisiones empresariales. - Mejora la calidad de las decisiones tomadas. - Especialmente útil para el medio y largo plazo. - Son sistemas relativamente sencillos de instalar si las fuentes de datos y los objetivos están claros. - Muy útiles para el almacenamiento de análisis y consultas de históricos. - Proporciona un gran poder de procesamiento de información. - Permite una mayor flexibilidad y rapidez en el acceso a la información. - Facilita la toma de decisiones en los negocios. - Las empresas obtienen un aumento de la productividad. - Proporciona una comunicación fiable entre todos los departamentos de la empresa. - Mejora las relaciones con los proveedores y los clientes.

7 - Permite conocer qué está pasando en el negocio, es decir, estar siempre enterado de los buenos y malos resultados. - Transforma los datos en información y la información en conocimiento - Permite hacer planes de forma más efectiva. - Reduce los tiempos de respuesta y los costes de operación. 4. Desventajas de un Data Warehouse Las empresas que utilizan data warehouse son fundamentalmente aquellas que manejan grandes volúmenes de datos relativos a clientes, compras, marketing, transacciones, operaciones, como lo son las empresas de telecomunicaciones, transporte, Turismo, fabricación de bienes de consumo masivo etc. Entre las desventajas tenemos: - No es muy útil para la toma de decisiones en tiempo real debido al largo tiempo de procesamiento que puede requerir. En cualquier caso la tendencia de los productos actuales (junto con los avances del hardware) es la de solventar este problema convirtiendo la desventaja en una ventaja. - Requiere de continua limpieza, transformación e integración de datos. - Mantenimiento. - En un proceso de implantación puede encontrarse dificultades ante los diferentes objetivos que pretende una organización. - Una vez implementado puede ser complicado añadir nuevas fuentes de datos. - Requieren una revisión del modelo de datos, objetos, transacciones y además del almacenamiento. - Tienen un diseño complejo y multidisciplinar. - Requieren una reestructuración de los sistemas operacionales. - Tienen un alto coste. - Requieren sistemas, aplicaciones y almacenamiento específico 5. Estructura de un Data Warehouse En la estructura de un data warehouse encontraremos 4 niveles de esquematización los cuales forman la metadata, estos niveles se diferencian x el nivel de síntesis o depuracion de información requerida por la empresa que lo usa y son:

8 Detalle de datos antiguos ( históricos). Es aquella que se almacena sobre alguna forma de almacenamiento masivo. No es frecuentemente accesada y se almacena a un nivel de detalle, consistente con los datos detallados actuales. Mientras no sea prioritario el almacenamiento en un medio de almacenaje alterno, a causa del gran volumen de datos unido al acceso no frecuente de los mismos, es poco usual utilizar el disco como medio de almacenamiento. Detalle de datos actuales. En gran parte, el interés más importante radica en el detalle de los datos actuales, debido a que: Estos datos reflejan las ocurrencias más recientes, las cuales son de gran interés Son voluminosos, ya que se almacenan al más bajo nivel de granularidad (no están procesados). Casi siempre se almacena en disco, al cual se tiene fácil acceso, aunque su administración sea costosa y compleja Datos ligeramente resumidos. Es aquella que proviene desde un bajo nivel de detalle encontrado al nivel de detalle actual. Este nivel el data warehouse casi siempre se almacena en disco. Los puntos en los que se basa el diseñador para construirlo son: Que la unidad de tiempo se encuentre sobre la esquematización hecha. Qué contenidos (atributos) tendrá la data ligeramente resumida. Datos completamente resumidos. El siguiente nivel de datos encontrado en el data warehouse es el de los datos completamente resumidos. Estos datos son compactos y fácilmente accesibles por lo general son indicadores que son usados con más frecuencia para el análisis gerencial.

9 Metadata. El componente final del data warehouse es el de la metadata. De muchas maneras la metadata se sitúa en una dimensión diferente al de otros datos del data warehouse, debido a que su contenido no es tomado directamente desde el ambiente operacional. La metadata juega un rol especial y muy importante en el data warehouse y es usada como: Un directorio para ayudar al analista a ubicar los contenidos del data warehouse. Una guía para el mapping de datos de cómo se transforma, del ambiente operacional al de data warehouse. Una guía de los algoritmos usados para la esquematización entre el detalle de datos actual, con los datos ligeramente resumidos y éstos, con los datos completamente resumidos, etc. La metadata juega un papel mucho más importante en un ambiente data warehousing que en un operacional clásico. A fin de recordar los diferentes niveles de los datos encontrados en el data warehouse, considere el ejemplo mostrado en la Figura.

10 El detalle de ventas antiguas son las que se encuentran antes de Todos los detalles de ventas desde 1982 (o cuando el diseñador inició la colección de los archivos) son almacenados en el nivel de detalle de datos más antiguo. El detalle actual contiene información desde 1992 a 1993 (suponiendo que 1993 es el año actual). En general, el detalle de ventas no se ubica en el nivel de detalle actual hasta que haya pasado, por lo menos, veinticuatro horas desde que la información de ventas llegue a estar disponible en el ambiente operacional. En otras palabras, habría un retraso de tiempo de por lo menos veinticuatro horas, entre el tiempo en que en el ambiente operacional se haya hecho un nuevo ingreso de la venta y el momento cuando la información de la venta haya ingresado al data warehouse. El detalle de las ventas son resumidas semanalmente por línea de subproducto y por región, para producir un almacenamiento de datos ligeramente resumidos. El detalle de ventas semanal es adicionalmente resumido en forma mensual, según una gama de líneas, para producir los datos completamente resumidos. La metadata contiene (al menos): La estructura de los datos Los algoritmos usados para la esquematización El mapping desde el ambiente operacional al data warehouse La información adicional que no se esquematiza es almacenada en el data warehouse. En muchas ocasiones, allí se hará el análisis y se producirá un tipo u otro de resumen. El único tipo de esquematización que se almacena permanentemente en el data warehouse, es el de los datos que son usados frecuentemente. En otras palabras, si un analista produce un resumen que tiene una probabilidad muy baja de ser usado nuevamente, entonces la esquematización no es almacenada en el data warehouse.

11 6. Flujo de datos de un Data Warehouse El DW posee un flujo de datos estándar y generalizado, el cual puede apreciarse mejor en la siguiente figura. Cuando la información ingresa al depósito de datos se almacena a nivel de Detalle de datos actuales. Los datos permanecerán allí hasta que ocurra alguno de los tres eventos siguientes: Sean borrados del depósito de datos. Sean resumidos, ya sea a nivel de Datos ligeramente resumidos o a nivel de Datos altamente resumidos. Sean archivados a nivel de Detalle de datos históricos. 7. Redundancia de un Data Warehouse Debido a que el DW recibe información histórica de diferentes fuentes, sencillamente se podría suponer que existe una repetición de datos masiva entre el ambiente DW y el operacional. Por supuesto, este razonamiento es superficial y erróneo, de hecho, hay una mínima redundancia de datos entre ambos ambientes. Para entender claramente lo antes expuesto, se debe considerar lo siguiente:

12 Los datos del ambiente operacional se filtran antes de pertenecer al DW. Existen muchos datos que nunca ingresarán, ya que no conforman información necesaria o suficientemente relevante para la toma de decisiones. El horizonte de tiempo es muy diferente entre los dos ambientes. El almacén de datos contiene un resumen de la información que no se encuentra en el ambiente operacional. Los datos experimentan una considerable transformación, antes de ser cargados al DW. La mayor parte de los datos se alteran significativamente al ser seleccionados, consolidados y movidos al depósito. En vista de estos factores, se puede afirmar que, la redundancia encontrada al cotejar los datos de ambos ambientes es mínima, ya que generalmente resulta en un porcentaje menor del 1%. 8. Arquitectura de un Data Warehouse En este punto y teniendo en cuenta que ya se han detallado claramente las características generales del Data Warehousing, se definirán y describirán todos los componentes que intervienen en su arquitectura o ambiente. A través del siguiente gráfico se explicitará la estructura del Data Warehousing: Tal y como se puede apreciar, el ambiente está formado por diversos elementos que interactúan entre sí y que cumplen una función específica dentro del sistema.

13 Básicamente, la forma de operar del esquema superior se resume de la siguiente manera: Los datos son extraídos desde aplicaciones, bases de datos, archivos, etc. Esta información generalmente reside en diferentes tipos de sistemas, orígenes y arquitecturas y tienen formatos muy variados. Los datos son integrados, transformados y limpiados, para luego ser cargados en el DW. Principalmente, la información del DW se estructura en cubos multidimensionales, ya que estos preparan esta información para responder a consultas dinámicas con una buena performance. Pero también pueden utilizarse otros tipos de estructuras de datos para representar la información del DW, como por ejemplo Business Models. acceden a los cubos multidimensionales, Business Models (u otro tipo de estructura de datos) del DW utilizando diversas herramientas de consulta, exploración, análisis, reportes, etc. 9. Data Mart Un Datamart es una base de datos departamental, especializada en el almacenamiento de los datos de un área de negocio específica. Se caracteriza por disponer la estructura óptima de datos para analizar la información al detalle desde todas las perspectivas que afecten a los procesos de dicho departamento. Un datamart puede ser alimentado desde los datos de un datawarehouse, o integrar por si mismo un compendio de distintas fuentes de información.

14 Por tanto, para crear el datamart de un área funcional de la empresa es preciso encontrar la estructura óptima para el análisis de su información, estructura que puede estar montada sobre una base de datos OLTP, como el propio datawarehouse, o sobre una base de datos OLAP. La designación de una u otra dependerá de los datos, los requisitos y las características específicas de cada departamento. De esta forma se pueden plantear dos tipos de datamarts: Datamart OLAP. Se basan en los populares cubos OLAP, que se construyen agregando, según los requisitos de cada área o departamento, las dimensiones y los indicadores necesarios de cada cubo relacional. El modo de creación, explotación y mantenimiento de los cubos OLAP es muy heterogéneo, en función de la herramienta final que se utilice. Datamart OLTP. Pueden basarse en un simple extracto del datawarehouse, no obstante, lo común es introducir mejoras en su rendimiento (las agregaciones y los filtrados suelen ser las operaciones más usuales) aprovechando las características particulares de cada área de la empresa. Las estructuras más comunes en este sentido son las tablas report, que vienen a ser fact-tables reducidas (que a gregan las dimensiones oportunas), y las vistas materializadas, que se construyen con la misma estructura que las anteriores, pero con el objetivo de explotar la reescritura de queries (aunque sólo es posibles en algunos SGBD avanzados, como Oracle). Los datamarts que están dotados con estas estructuras óptimas de análisis presentan las siguientes ventajas: Poco volumen de datos Mayor rapidez de consulta Consultas SQL y/o MDX sencillas Validación directa de la información Facilidad para la historización de los datos De acuerdo a las operaciones que se deseen o requieran desarrollar, los datamarts pueden adoptar las siguientes arquitecturas: Top-Down: primero se define el data warehouse y luego se desarrollan, construyen y cargan los DM a partir del mismo. En la siguiente figura se encuentra detallada esta arquitectura:

15 Como se puede apreciar, el DW es cargado a través de procesos ETL y luego este alimenta a los diferentes DM, cada uno de los cuales recibirá los datos que correspondan al tema o departamento que traten. Esta forma de implementación cuenta con la ventaja de no tener que incurrir en complicadas sincronizaciones de hechos, pero requiere una gran inversión y una gran cantidad de tiempo de construcción. Bottom-Up: en esta arquitectura, se definen previamente los DM y luego se integran en un DW centralizado. La siguiente figura presenta esta implementación. Los DM se cargan a través de procesos ETL, los cuales suministrarán la información adecuada a cada uno de ellos. En muchas ocasiones, los DM son implementados sin que exista el DW, ya que tienen sus mismas características pero con la particularidad de que están enfocados en un tema específico. Luego de que hayan sido creados y cargados todos los DM, se procederá a su integración con el depósito. La ventaja que trae aparejada este modelo es que cada DM se crea y pone en funcionamiento en un corto lapso de tiempo y se puede tener una pequeña solución a un costo no tan elevado. Luego que todos los DM estén puestos en marcha, se puede decidir si

16 construir el DW o no. El mayor inconveniente está dado en tener que sincronizar los hechos al momento de la consolidación en el depósito. 10. Bases de datos OLAP vs OLTP OLAP - On-Line Analytical Processing. Los sistemas OLAP son bases de datos orientadas al procesamiento analítico. Este análisis suele implicar, generalmente, la lectura de grandes cantidades de datos para llegar a extraer algún tipo de información útil: tendencias de ventas, patrones de comportamiento de los consumidores, elaboración de informes complejos etc. Este sistema es típico de los datamarts. El acceso a los datos suele ser de sólo lectura. La acción más común es la consulta, con muy pocas inserciones, actualizaciones o eliminaciones. Los datos se estructuran según las áreas de negocio, y los formatos de los datos están integrados de manera uniforme en toda la organización. El historial de datos es a largo plazo, normalmente de dos a cinco años. Las bases de datos OLAP se suelen alimentar de información procedente de los sistemas operacionales existentes, mediante un proceso de extracción, transformación y carga (ETL). OLTP - On-Line Transactional Processing. Los sistemas OLTP son bases de datos orientadas al procesamiento de transacciones. Una transacción genera un proceso atómico (que debe ser validado con un commit, o invalidado con un rollback), y que puede involucrar operaciones de inserción, modificación y borrado de datos. El proceso transaccional es típico de las bases de datos operacionales. El acceso a los datos está optimizado para tareas frecuentes de lectura y escritura. (Por ejemplo, la enorme cantidad de transacciones que tienen que soportar las BD de bancos o hipermercados diariamente). Los datos se estructuran según el nivel aplicación (programa de gestión a medida, ERP o CRM implantado, sistema de información departamental...). Los formatos de los datos no son necesariamente uniformes en los diferentes departamentos (es común la falta de compatibilidad y la existencia de islas de datos).

17 El historial de datos suele limitarse a los datos actuales o recientes. Definición Objetivos Alineación de datos Integración de datos Historia Acceso y manipulación de datos Patrones de Uso Perfil de Usuario OLAP Procesamiento Analítico en Línea - Asistir en el análisis del negocio - Identificando tendencias, comparando periodos, - Gestiones, mercados, índices mediante el almacenamiento de datos. - Están alineados por dimensión - Los datos son organizados definiendo dimensiones del negocio. - Se focaliza en el cumplimiento de requerimientos del análisis del negocio. - Los datos deben ser integrados. - Son conocidos como datos derivados o DSS, dado que provienen de sistemas transaccionales y sistemas de archivos maestros. Almacenan tanta historia como sea necesario para el análisis del negocio, son guardados por 2 a 5 años, retienen valores para cada periodo en la Base de Datos. - Tienen una carga y acceso masivo de datos, la carga y refresco es batch (bulk copy). - La validación de datos se realiza antes o después de la carga, se realizan sentencias de Select sobre varios registros y tablas. - Patrón de uso liviano con picos de uso eventuales en el tiempo. - Los picos de uso suceden diario o semanal El perfil de usuario corresponde a la comunidad gerencial para la toma de decisiones. OLTP Procesamiento de Transacciones En Línea - Asistir a aplicaciones específicas. - Mantener integridad de los datos - Están alineados por aplicación. - Se focaliza en el cumplimiento de requerimientos de una aplicación especial o una tarea específica. - Los datos no están integrados. - Son calificados como datos primitivos, operacionales. - Son estructurados independientemente uno de otros. - Son almacenados en diferentes formatos de archivos. - Pueden residir en diferentes plataformas de hardware o RDBMS. Retienen datos para 60 o 90 días después son resguardados por administradores de B.D en almacenamientos secundarios. - Realizan manipulación de datos registro por registro con inserts, updates y deletes. - Necesitan rutinas de validación y transacciones a nivel de registro. - Patrón de uso constante - Requiere grandes cantidades de recursos consumiendo solo el tiempo referido a la transacción. El perfil de usuario corresponde a los que interactúan con dichos sistemas, puesto que es la comunidad operativa.

18 11. Fundamentos de Data Mining El datamining (minería de datos), es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto. Básicamente, el datamining surge para intentar ayudar a comprender el contenido de un repositorio de datos. Con este fin, hace uso de prácticas estadísticas y, en algunos casos, de algoritmos de búsqueda próximos a la Inteligencia Artificial y a las redes neuronales. De forma general, los datos son la materia prima bruta. En el momento que el usuario les atribuye algún significado especial pasan a convertirse en información. Cuando los especialistas elaboran o encuentran un modelo, haciendo que la interpretación que surge entre la información y ese modelo represente un valor agregado, entonces nos referimos al conocimiento. Aunque en datamining cada caso concreto puede ser radicalmente distinto al anterior, el proceso común a todos ellos se suele componer de cuatro etapas principales:

19 Determinación de los objetivos. Trata de la delimitación de los objetivos que el cliente desea bajo la orientación del especialista en data mining. Preprocesamiento de los datos. Se refiere a la selección, la limpieza, el enriquecimiento, la reducción y la transformación de las bases de datos. Esta etapa consume generalmente alrededor del setenta por ciento del tiempo total de un proyecto de data mining. Determinación del modelo. Se comienza realizando unos análisis estadísticos de los datos, y después se lleva a cabo una visualización gráfica de los mismos para tener una primera aproximación. Según los objetivos planteados y la tarea que debe llevarse a cabo, pueden utilizarse algoritmos desarrollados en diferentes áreas de la Inteligencia Artificial. Análisis de los resultados. Verifica si los resultados obtenidos son coherentes y los coteja con los obtenidos por los análisis estadísticos y de visualización gráfica. El cliente determina si son novedosos y si le aportan un nuevo conocimiento que le permita considerar sus decisiones. Carga de trabajo en las fases de un proyecto de datamining En resumen, el datamining se presenta como una tecnología emergente, con varias ventajas: por un lado, resulta un buen punto de encuentro entre los investigadores y las personas de negocios; por otro, ahorra grandes cantidades de dinero a una empresa y abre nuevas oportunidades de negocios. Además, no hay duda de que trabajar con esta tecnología implica cuidar un sinnúmero de detalles debido a que el producto final involucra "toma de decisiones".

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

DATA WAREHOUSE DATA WAREHOUSE

DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE Autor: Roberto Abajo Alonso Asignatura: Sistemas Inteligentes, 5º Curso Profesor: José Carlos González Dep. Ing. Sistemas Telemáticos, E.T.S.I. Telecomunicación Universidad

Más detalles

Business Intelligence

Business Intelligence 2012 Business Intelligence Agenda Programas Diferencias de OLTP vs OLAP Arquitectura de una solución de BI Tecnologías Microsoft para BI Diferencias entre OLTP v/s OLAP Alineación de Datos OLTP Datos organizados

Más detalles

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI INTRODUCCIÓN Se habla en multitud de ocasiones de Business Intelligence, pero qué es realmente? Estoy implementando en mi organización procesos de Business

Más detalles

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

REPOSITORIO COR O P R OR O A R T A I T VO V

REPOSITORIO COR O P R OR O A R T A I T VO V REPOSITORIO CORPORATIVO Repositorio Corporativo Que es? Antecedentes? Por que lo necesito? Multiplicidad de sistemas Retraso en obtención de reportes Info 3 Info 2 Info 1 Redundancia Inconsistencia de

Más detalles

Sistema de análisis de información. Resumen de metodología técnica

Sistema de análisis de información. Resumen de metodología técnica Sistema de análisis de información Resumen de metodología técnica Tabla de Contenidos 1Arquitectura general de una solución de BI y DW...4 2Orígenes y extracción de datos...5 2.1Procesos de extracción...5

Más detalles

FACULTAD DE INGENIERÍA. Bases de Datos Avanzadas

FACULTAD DE INGENIERÍA. Bases de Datos Avanzadas FACULTAD DE INGENIERÍA Ingeniería en Computación Bases de Datos Avanzadas Datawarehouse Elaborado por: MARÍA DE LOURDES RIVAS ARZALUZ Septiembre 2015 Propósito Actualmente las empresas necesitan contar

Más detalles

Data Warehousing - Marco Conceptual

Data Warehousing - Marco Conceptual Data Warehousing - Marco Conceptual Carlos Espinoza C.* Introducción Los data warehouses se presentan como herramientas de alta tecnología que permiten a los usuarios de negocios entender las relaciones

Más detalles

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Inteligencia de Negocios Introducción Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Agenda 1.Introducción 2.Definición 3.ETL 4.Bodega de Datos 5.Data Mart

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición (cont.) Un Data Warehouse es una colección de

Más detalles

CAPÍTULO 2 DATA WAREHOUSES

CAPÍTULO 2 DATA WAREHOUSES CAPÍTULO 2 DATA WAREHOUSES Un Data Warehouse (DW) es un gran repositorio lógico de datos que permite el acceso y la manipulación flexible de grandes volúmenes de información provenientes tanto de transacciones

Más detalles

SQL Server Business Intelligence parte 1

SQL Server Business Intelligence parte 1 SQL Server Business Intelligence parte 1 Business Intelligence es una de las tecnologías de base de datos más llamativas de los últimos años y un campo donde Microsoft ha formado su camino a través de

Más detalles

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Comunicación para Tecnimap 2010. EL BI APLICADO AL ANÁLISIS DE LAS VISITAS TURÍSTICAS Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Autor:

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

PORTFOLIO APLICA.DÀT. Business Intelligence. Que veo y que hay

PORTFOLIO APLICA.DÀT. Business Intelligence. Que veo y que hay Soluciones de Gestión para extraer provecho de los datos. (Business Intelligence, Cuadro de Mando i Calidad de datos) Que veo y que hay PORTFOLIO Business Intelligence Tiene infinidad de datos. No tiene

Más detalles

Capítulo 2 Tecnología data warehouse

Capítulo 2 Tecnología data warehouse Capítulo 2 Tecnología data warehouse El objetivo de éste capítulo es mostrar la tecnología data warehouse (DW) como una herramienta para analizar la información. Este capítulo se encuentra organizado de

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS Integrante: Profesor: Maximiliano Heise Luis Ríos Fecha de entrega: miércoles 18 de abril de 2012

Más detalles

Botón menú Objetivo de la Minería de datos.

Botón menú Objetivo de la Minería de datos. Titulo de Tutorial: Minería de Datos N2 Botón menú: Introducción. Las instituciones y empresas privadas coleccionan bastante información (ventas, clientes, cobros, pacientes, tratamientos, estudiantes,

Más detalles

Tecnologías de la Información en la Gestión Empresarial

Tecnologías de la Información en la Gestión Empresarial Tecnologías de la Información en la Gestión Empresarial 1 Sesión No.8 Nombre: Procesos de Negocio y Gestión en Business Intelligence Objetivo: Al término de la sesión, el alumno ilustrará un proceso de

Más detalles

Informática II Ing. Industrial. Data Warehouse. Data Mining

Informática II Ing. Industrial. Data Warehouse. Data Mining Data Warehouse Data Mining Definición de un Data Warehouses (DW) Fueron creados para dar apoyo a los niveles medios y altos de una empresa en la toma de decisiones a nivel estratégico en un corto o mediano

Más detalles

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes Capítulo 4 Arquitectura para análisis de información propuesta 4.1 Arquitectura Zombi es una arquitectura que proporciona de manera integrada los componentes necesarios para el análisis de información

Más detalles

Sistemas de Información para la Gestión. UNIDAD 2: RECURSOS DE TI Información y Aplicaciones

Sistemas de Información para la Gestión. UNIDAD 2: RECURSOS DE TI Información y Aplicaciones UNIDAD 2: RECURSOS DE TI Información y Aplicaciones UNIDAD 2: RECURSOS DE TI Información y Aplicaciones 1. La Información: Propiedades de la Información. Sistemas de Información. Bases de Datos. 2. Administración

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza (raqueltl@unizar.es) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

ARQUITECTURA DE UNA BODEGA DE DATOS

ARQUITECTURA DE UNA BODEGA DE DATOS ARQUITECTURA DE UNA BODEGA DE DATOS Estructura de contenidos INTRODUCCIÓN... 3 1. ARQUITECTURA DE UNA BODEGA DE DATOS... 3 1.1 PROPIEDADES... 3 1.2 ARQUITECTURA DE UNA CAPA... 4 1.3 ARQUITECTURA DE DOS

Más detalles

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS 1. RESEÑA HISTORICA Las exigencias competitivas del mercado hacen que las organizaciones busquen mecanismos

Más detalles

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura. Monografía de Adscripción: Data Warehouse

Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura. Monografía de Adscripción: Data Warehouse Universidad Nacional del Nordeste Facultad de Ciencias Exactas y Naturales y Agrimensura Monografía de Adscripción: Data Warehouse Rojas, Mariana Isabel LU: 38382 Prof. Director: Mgter. David Luis La Red

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE PRESENTACIÓN Ramón Díaz Hernández Gerente (1.990) Nuestro Perfil Inversión permanente en formación y nuevas tecnologías. Experiencia en plataforma tecnológica IBM (Sistema Operativo

Más detalles

Nociones de Data Warehousing

Nociones de Data Warehousing Nociones de Data Warehousing 1 Presentación Prefacio 1. ASPECTOS TEORICOS o 1.1 Introducción al Concepto Data Warehousing o 1.2 Sistemas de Información o 1.2.1 Sistemas Técnico-operacionales o 1.2.2 Sistemas

Más detalles

Tecnologías de Información y Comunicación II CLASE 10

Tecnologías de Información y Comunicación II CLASE 10 Tecnologías de Información y Comunicación II CLASE 10 Medidas Una medida es un tipo de dato cuya información es usada por los analistas (usuarios) en sus consultas para medir la perfomance del comportamiento

Más detalles

Fundamentos de Data Warehouse

Fundamentos de Data Warehouse Mendez, A., Mártire, A., Britos, P. Y Garcia-Martínez, R. Centro de Actualización Permanente en Ingeniería del Software Escuela de Postgrado Instituto Tecnológico de Buenos Aires Av. Eduardo Madero 399

Más detalles

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas para la Gestión Unidad 3 Aplicaciones de Sistemas U.N.Sa. Facultad de Cs.Económicas SIG 2010 UNIDAD 3: APLICACIONES DE SISTEMAS Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración

Más detalles

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II Carlos A. Olarte Bases de Datos II Contenido 1 Introducción 2 OLAP 3 Data Ware Housing 4 Data Mining Introducción y Motivación Cómo puede analizarse de forma eficiente volúmenes masivos de datos? La consulta,

Más detalles

Datawarehouse. Ing. Adan Jaimes Jaimes. Datawarehouse

Datawarehouse. Ing. Adan Jaimes Jaimes. Datawarehouse 1 Ing. Adan Jaimes Jaimes 2 Conceptos : Repositorio completo de datos, donde se almacenan datos estratégicos, tácticos y operativos, al objeto de obtener información estratégica y táctica Data-Marts: Repositorio

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios Sistemas de Información para la Gestión UNIDAD 2: Infraestructura de Tecnología de la Información Unidad 2 Infraestructura de Tecnología de la Información Estructura de TI y tecnologías emergentes. Estructura

Más detalles

Business Intelligence

Business Intelligence BUSINESS INTELLIGENCE El poder de la información. Business Intelligence Los mercados actuales son cada vez más competitivos, lo que obliga a las empresas a aumentar su capacidad de reacción y adaptación

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS

ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS ANEXO F ARQUITECTURAS DE INTELIGENCIA DE NEGOCIOS 1. Realizado por: Stephanie Herrera Bautista 2. Introducción: 2.1. Propósito: Se busca realizar el planteamiento de las diversas arquitecturas que se pueden

Más detalles

INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2

INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2 Programa de Capacitación y Certificación. INTELIGENCIA DE NEGOCIOS CON SQL SERVER 2008 R2 Contenido PERFIL DE UN ESPECIALISTA EN BASES DE DATOS.... 3 6231. MANTENIENDO UNA BASE DE DATOS DE SQL SERVER 2008

Más detalles

INTRODUCCIÓN. Desde un inicio, las bases de datos se convirtieron en una herramienta fundamental de

INTRODUCCIÓN. Desde un inicio, las bases de datos se convirtieron en una herramienta fundamental de INTRODUCCIÓN Desde un inicio, las bases de datos se convirtieron en una herramienta fundamental de control y manejo de las operaciones comerciales. Fue así como en unos pocos años en grandes empresas y

Más detalles

Mejores prácticas para el éxito de un sistema de información. Uno de los problemas de información dentro de las empresas es contar con datos

Mejores prácticas para el éxito de un sistema de información. Uno de los problemas de información dentro de las empresas es contar con datos ANEXO VI. Mejores prácticas para el éxito de un sistema de información Uno de los problemas de información dentro de las empresas es contar con datos importantes del negocio y que éstos estén aislados

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios Universidad Nacional de Salta Facultad de Ciencias Económicas, Jurídicas y Sociales Sistemas de Información para la Gestión Fundamentos de la Inteligencia de Negocios Administración de Bases de Datos e

Más detalles

Metodología para el Modelamiento De un Datawarehouse AMDE. Fundamentos de un Proyecto De. www.e-cronia.com. www.e-cronia.com. www.eduardoleyton.

Metodología para el Modelamiento De un Datawarehouse AMDE. Fundamentos de un Proyecto De. www.e-cronia.com. www.e-cronia.com. www.eduardoleyton. Metodología para el Modelamiento De un Datawarehouse Fundamentos de un Proyecto De Almacenamiento Masivo de Datos Estratégicos AMDE 1 EL PROPOSITO DE LA TECNOLOGIA INFORMATICA VA MAS ALLA DE SIMPLEMENTE

Más detalles

Unidad 5. Conceptos y Estructuras de Archivos

Unidad 5. Conceptos y Estructuras de Archivos Unidad 5 Conceptos y Estructuras de Archivos En todos los tiempos y más aún en la era en que vivimos, el hombre tiene cada vez mas necesidad de consultar una mayor cantidad de información para poder desarrollar

Más detalles

ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS

ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS Base de Datos ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS Una base de datos es un conjunto de elementos de datos que se describe a sí mismo, con relaciones entre esos elementos, que presenta

Más detalles

TECNOLÓGICAS EMPRESAS

TECNOLÓGICAS EMPRESAS SOLUCIONES TECNOLÓGICAS INTEGRALES PARA LAS EMPRESAS Por: Ivonne Rodríguez CONTENIDO 1. Problemas actuales en las empresas 2. Bussines Intelligence 3. Capa: Data Warehouse 4. Capa: BI en el campo empresarial

Más detalles

Almacén de datos - concepto. Arquitectura de un sistema de almacén de datos

Almacén de datos - concepto. Arquitectura de un sistema de almacén de datos Almacén de datos - concepto Almacén de datos (Bodega de Datos, Data warehouse) es una integrada colección de datos que contiene datos procedentes de sistemas del planeamiento del recurso de la empresa

Más detalles

INTELIGENCIA DE NEGOCIOS

INTELIGENCIA DE NEGOCIOS INTELIGENCIA DE NEGOCIOS En tiempos de incertidumbre financiera, la toma de decisiones basada en información es crucial para sobrevivir en el mundo de los negocios. Empresas de todas las industrias dependen

Más detalles

Business Intelligence

Business Intelligence Business Intelligence Definición Business Intelligence es una aproximación estratégica para identificar, vigilar, comunicar y transformar, sistemáticamente, signos e indicadores en información activa en

Más detalles

Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008

Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008 Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008 Introducción Aunque la estrategia de adquisiciones que Oracle ha seguido en los últimos años siempre ha buscado complementar y fortalecer nuestra oferta

Más detalles

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 ANEXO A - Plan de Proyecto 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 2.- Diagrama de Gantt de la Solución DIAGRAMA DE GANTT- FASE INICIAL DOCUMENTACION Y ANALISIS2 DIAGRAMA DE GANTT- FASE FINAL

Más detalles

APLICANDO INTELIGENCIA DE NEGOCIOS EN EL RETAIL FINANCIERO

APLICANDO INTELIGENCIA DE NEGOCIOS EN EL RETAIL FINANCIERO APLICANDO INTELIGENCIA DE NEGOCIOS EN EL RETAIL FINANCIERO Slide 2 Temario Cómo agregar valor con el análisis de la Información? Cuáles son las Mejores Prácticas en el mundo? Por qué un Datamart/Datawarehouse

Más detalles

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 FLUJO DE CAPACITACIÓN Prerrequisitos Fundamentos de Programación Sentencias SQL Server 2012 Duración: 12 horas 1. DESCRIPCIÓN

Más detalles

Innovación para su Contact Center. Reporting Manager. Descubra el valor de negocio de sus datos y la actividad del Contact Center

Innovación para su Contact Center. Reporting Manager. Descubra el valor de negocio de sus datos y la actividad del Contact Center Innovación para su Contact Center Reporting Manager Descubra el valor de negocio de sus datos y la actividad del Contact Center ÍNDICE DATA SHEET 1. Introducción... 3 2. Características principales...

Más detalles

DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA

DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA 147 DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA RICARDO LUJÁN SALAZAR INSTITUTO NACIONAL DE ESTADÍSTICA, GEOGRAFÍA E INFORMÁTICA (INEGI) MÉXICO 148 Data warehouse

Más detalles

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Es un conjunto de conceptos y metodologías para mejorar la toma de decisiones.

Más detalles

Servicio Business Intellingence integrado con Data Management & Big Data Del dato al conocimiento

Servicio Business Intellingence integrado con Data Management & Big Data Del dato al conocimiento Servicio Business Intellingence integrado con & Big Del dato al conocimiento Servicio BI integral: Business Intelligence es la habilidad para transformar los datos en información, y la información en conocimiento,

Más detalles

Licencia GNU FDL. Detalle del cambio. Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Versión incial. 05/11/2009

Licencia GNU FDL. Detalle del cambio. Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Versión incial. 05/11/2009 Licencia GNU FDL Copyright 2009 Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Se otorga permiso para copiar, distribuir y/o modificar este documento bajo los términos de la Licencia

Más detalles

Data Warehousing. Introducción. Facultad de Ingeniería Escuela de Ingeniería de Sistemas y Computación

Data Warehousing. Introducción. Facultad de Ingeniería Escuela de Ingeniería de Sistemas y Computación Data Warehousing Introducción Introducción Indice (I) Propiedades de un dw Arquitectura de procesos en un sistema de data warehousing Puntos clave Diseño de la base de datos de un data warehouse Indice

Más detalles

ANEXO C Documento de Extracción. 1. Objetivo. 2. Alcance. 3. Arquitectura de la Extracción

ANEXO C Documento de Extracción. 1. Objetivo. 2. Alcance. 3. Arquitectura de la Extracción ANEXO C Documento de Extracción 1. Objetivo El objetivo del documento de extracción es presentar aquellas características que se mencionan de manera general en el documento de tesis. Aquí se enfoca directamente

Más detalles

SISTEMA DE INFORMACION DE GESTION DE TARJETAS DE CREDITO USANDO DATA MART E INTELIGENCIA DE NEGOCIOS PARA EL AREA COMERCIAL DEL BANCO RIPLEY PERU

SISTEMA DE INFORMACION DE GESTION DE TARJETAS DE CREDITO USANDO DATA MART E INTELIGENCIA DE NEGOCIOS PARA EL AREA COMERCIAL DEL BANCO RIPLEY PERU SISTEMA DE INFORMACION DE GESTION DE TARJETAS DE CREDITO USANDO DATA MART E INTELIGENCIA DE NEGOCIOS PARA EL AREA COMERCIAL DEL BANCO RIPLEY PERU AGENDA INTRODUCCION PLANTEAMIENTO METODOLOGICO ANTECEDENTES

Más detalles

BI BUSINESS INTELLIGENCE

BI BUSINESS INTELLIGENCE ESCUELA SUPERIOR POLITECNICA DEL LITORAL MAESTRÍA EN SISTEMAS DE INFORMACION GERENCIAL 7 ma. PROMOCIÓN BI BUSINESS INTELLIGENCE Grupo No. 1 Geannina Aguirre Henry Andrade Diego Maldonado Laura Ureta MATERIA:

Más detalles

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Redundancia e inconsistencia de datos: Puesto que los archivos que mantienen almacenada la información son creados por

Más detalles

Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas

Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas José Antonio Peláez Ruiz Ministerio de Administraciones Públicas Alfonso Martín Murillo BG&S

Más detalles

RECURSOS DE TI Aplicaciones - Bibliografía FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS

RECURSOS DE TI Aplicaciones - Bibliografía FUNDAMENTOS DE LA INTELIGENCIA DE NEGOCIOS Sistemas de Información para la Gestión UNIDAD 3: RECURSOS DE TECNOLOGÍA DE INFORMACIÓN Aplicaciones UNIDAD 2: RECURSOS DE TI Aplicaciones 1. Administración de bases de datos e información: Sistemas de

Más detalles

TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN. Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres

TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN. Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres Sistemas Informacionales Sistemas informacionales: Sistemas de

Más detalles

Business Intelligence

Business Intelligence Business Intelligence Curso 2012-2013 Departamento de Lenguajes y Sistemas Informáticos II http://www.kybele.es ISI/SI - 1 Introducción Nuestra misión: Hacer inteligente el negocio Buenos días. Soy Negocio.

Más detalles

Arquitectura de Aplicaciones

Arquitectura de Aplicaciones 1 Capítulo 13: Arquitectura de aplicaciones. - Sommerville Contenidos del capítulo 13.1 Sistemas de procesamiento de datos 13.2 Sistemas de procesamiento de transacciones 13.3 Sistemas de procesamiento

Más detalles

VENTAJAS DEL USO DE HERRAMIENTAS DE ETL SOBRE ANSI SQL

VENTAJAS DEL USO DE HERRAMIENTAS DE ETL SOBRE ANSI SQL VENTAJAS DEL USO DE HERRAMIENTAS DE ETL SOBRE ANSI SQL LIC. DIEGO KRAUTHAMER PROFESO R ADJUNTO INTERINO UNIVERSIDAD ABIERTA INTERMERICANA (UAI) SEDE BUENOS AIRES COMISION DE INVESTIGACION Abstract El presente

Más detalles

MÁRKETING & VENTAS DOSSIER

MÁRKETING & VENTAS DOSSIER MÁRKETING & VENTAS Conozca las ventajas que los proyectos de business intelligence pueden aportar a la toma de decisiones LA INDUSTRIALI- ZACIÓN DE LA INFORMACIÓN DIRECTIVA: BUSINESS INTELLIGENCE Josep

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza

Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza IBM Software Information Management White Paper Cómo aprovechar la potencia de la analítica avanzada con IBM Netezza Un enfoque de appliance simplifica el uso de la analítica avanzada Cómo aprovechar la

Más detalles

Cuáles son algunos de los padecimientos que enfrentan las empresas hoy día?

Cuáles son algunos de los padecimientos que enfrentan las empresas hoy día? Qué es Inteligencia de Negocios? Una interesante definición para inteligencia de negocios o BI, por sus siglas en inglés, según el Data Warehouse Institute, lo define como la combinación de tecnología,

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE INGENIERÍA ESCUELA DE SISTEMAS DISERTACIÓN DE TESIS PREVIO A LA OBTENCIÓN DEL TÍTULO DE

PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE INGENIERÍA ESCUELA DE SISTEMAS DISERTACIÓN DE TESIS PREVIO A LA OBTENCIÓN DEL TÍTULO DE PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE INGENIERÍA ESCUELA DE SISTEMAS DISERTACIÓN DE TESIS PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN SISTEMAS GUÍA PARA IMPLEMENTAR UNA SOLUCION

Más detalles

Sistemas de Data Warehousing

Sistemas de Data Warehousing Federación Médica del Interior (FEMI) Sociedad Uruguaya de Informática en la Salud (SUIS) Información en Salud Edición 2009 Sistemas de Data Warehousing Dr. Ing. Adriana Marotta (In.Co - F.Ing - UDELAR)

Más detalles

Introducción a Bases de Datos

Introducción a Bases de Datos de a M. -Tastets Universidad de Concepción,Chile www.inf.udec.cl\ andrea andrea@udec.cl II Semestre - 2007 y del s: Sistemas de y del s: de y del s: Objetivos de la Unidad Dar a conocer las características,

Más detalles

Capítulo 5. Cliente-Servidor.

Capítulo 5. Cliente-Servidor. Capítulo 5. Cliente-Servidor. 5.1 Introducción En este capítulo hablaremos acerca de la arquitectura Cliente-Servidor, ya que para nuestra aplicación utilizamos ésta arquitectura al convertir en un servidor

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS COORDINACIÓN DE EXTENSIÓN

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS COORDINACIÓN DE EXTENSIÓN UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS COORDINACIÓN DE EXTENSIÓN PROPUESTA PARA INTRODUCIR CURSOS DE EXTENSIÓN, DIPLOMADOS, SERVICIOS Y ACTUALIZACIONES TÉCNICAS Y PROFESIONALES Nombre (s)

Más detalles

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Económicas Departamento de Sistemas Asignatura: INTELIGENCIA DE NEGOCIOS Código: 715 Plan 1997 Cátedra: DEPARTAMENTO DE SISTEMAS Carrera: Licenciado en

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE Técnicas, herramientas y aplicaciones María Pérez Marqués Business Intelligence. Técnicas, herramientas y aplicaciones María Pérez Marqués ISBN: 978-84-943055-2-8 EAN: 9788494305528

Más detalles

3.3.3 Tecnologías Mercados Datos

3.3.3 Tecnologías Mercados Datos 3.3.3 Tecnologías Mercados Datos TECNOLOGIAS DATAMART: Aspect Data Mart es una solución completa de reportes para la empresa, que le proporciona un mayor entendimiento de las operaciones de sus negocios

Más detalles

Carlos Araujo Herrera 1, Vicente Jama Lozano 2. Litoral, Profesor de ESPOL desde 2001.

Carlos Araujo Herrera 1, Vicente Jama Lozano 2. Litoral, Profesor de ESPOL desde 2001. DESARROLLO E IMPLANTACIÓN DE UN SISTEMA DE INFORMACIÓN ORIENTADO HACIA EL CONTROL DE CALIDAD DE PROVEEDORES PARA PLANTAS INDUSTRIALES EN LA CIUDAD DE GUAYAQUIL Carlos Araujo Herrera 1, Vicente Jama Lozano

Más detalles

UN PASEO POR BUSISNESS INTELLIGENCE

UN PASEO POR BUSISNESS INTELLIGENCE UN PASEO POR BUSISNESS INTELLIGENCE Ponentes: Agreda, Rafael Chinea, Linabel Agenda Sistemas de Información Transaccionales Qué es Business Intelligence? Usos y funcionalidades Business Intelligence Ejemplos

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA CENTRO DE EXTENSIÓN Y PROYECCIÓN SOCIAL

UNIVERSIDAD NACIONAL DE INGENIERÍA CENTRO DE EXTENSIÓN Y PROYECCIÓN SOCIAL UNIVERSIDAD NACIONAL DE INGENIERÍA CENTRO DE EXTENSIÓN Y PROYECCIÓN SOCIAL AREA DE CURSOS DE ESPECIALIZACIÓN EN TECNOLOGÍAS DE LA INFORMACIÓN TALLER DE INVESTIGACION EN INTELIGENCIA DE NEGOCIOS CON LA

Más detalles

Aplicar Tecnologías Emergentes de Base de Datos para construir soluciones de Inteligencia de Negocios de soporte a la Toma de Decisiones

Aplicar Tecnologías Emergentes de Base de Datos para construir soluciones de Inteligencia de Negocios de soporte a la Toma de Decisiones Nombre de la asignatura: Inteligencia de Negocios Créditos: 3-2-5 Aportación al perfil Analizar, modelar, desarrollar, implementar y administrar sistemas de información para aumentar la productividad y

Más detalles

Tecnologías de Información y Comunicación II.

Tecnologías de Información y Comunicación II. INGENIERÍA EN INFORMÁTICA Tecnologías de Información y Comunicación II. INFORME: ETL y Modelo Estrella. NOMBRE : Ruben Chura, Andony Pavez. CARRERA : Ingeniería en Informática. ASIGNATURA : Tecnologías

Más detalles

RESUMEN DE LA SOLUCIÓN CA ERwin Modeling. Cómo puedo gestionar la complejidad de los datos y mejorar la agilidad empresarial?

RESUMEN DE LA SOLUCIÓN CA ERwin Modeling. Cómo puedo gestionar la complejidad de los datos y mejorar la agilidad empresarial? RESUMEN DE LA SOLUCIÓN CA ERwin Modeling Cómo puedo gestionar la complejidad de los datos y mejorar la agilidad empresarial? CA ERwin Modeling ofrece una perspectiva centralizada sobre las definiciones

Más detalles

Tecnología aplicada a la toma de decisiones o malas decisiones en tecnología?

Tecnología aplicada a la toma de decisiones o malas decisiones en tecnología? Tecnología aplicada a la toma de decisiones o malas decisiones en tecnología? DUTI 2007 LA PLATA AGOSTO 2007 Ernesto Chinkes Facultad de Ciencias Económicas Universidad de Buenos Aires Esquema del trabajo

Más detalles

Plantillas Empresariales de ibaan Decision Manager. Guía del usuario de BAAN IVc Sales

Plantillas Empresariales de ibaan Decision Manager. Guía del usuario de BAAN IVc Sales Plantillas Empresariales de ibaan Decision Manager Una publicación de: Baan Development B.V. P.O.Box 143 3770 AC Barneveld Países Bajos Impreso en los Países Bajos Baan Development B.V. 2002. Reservados

Más detalles

1.La Tecnología Datawarehousing. 1.1 Fundamento.

1.La Tecnología Datawarehousing. 1.1 Fundamento. 1.La Tecnología Datawarehousing 1.1 Fundamento. Los sistemas de Data Warehousing son el centro de la arquitectura de los Sistemas de Información de los 90's. Han surgido como respuesta a la problemática

Más detalles

Business Intelligence. Octubre 2007 1

Business Intelligence. Octubre 2007 1 Business Intelligence 1 1. Introducción al Business intelligence Qué es? En qué nivel de negocio se aplica? 2. Componentes del BI Esquema de una solución BI DataWarehouse Query & Reporting OLAP Cuadro

Más detalles

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM?

Pero que es el Data Mining? Como esta tecnología puede resolver los problemas diarios de las organizaciones? Cuál es el ciclo de vida de un DM? Introducción En vista de los comentarios y sugerencias que nos hicieron, via mail y por chat, sobre la posibilidad de la creación de nuevo conocimiento, he creido conveniente introducir el tema Data Mining

Más detalles

ETL: Extractor de datos georreferenciados

ETL: Extractor de datos georreferenciados ETL: Extractor de datos georreferenciados Dr. Juan Pablo Díaz Ezcurdia Doctor Honoris Causa Suma Cum Laude Master en Telecomunicaciones Master en Gestión Educativa Coordinador de la comisión de CSIRT de

Más detalles

IBM Cognos Enterprise: Inteligencia de negocio y gestión del rendimiento potente y escalable

IBM Cognos Enterprise: Inteligencia de negocio y gestión del rendimiento potente y escalable : Inteligencia de negocio y gestión del rendimiento potente y escalable Puntos destacados Dota a los usuarios de su organización de las capacidades de business intelligence y de gestión del rendimiento

Más detalles

Cómo empezar? Fernando Quesada abcq Solutions fquesada@abcqsolutions.com

Cómo empezar? Fernando Quesada abcq Solutions fquesada@abcqsolutions.com Cómo empezar? Fernando Quesada abcq Solutions fquesada@abcqsolutions.com Retos Actuales BI: Una Analogía - Definición Que no es BI Requisitos Fundamentales para Aprovechar BI Algunos Conceptos de TI (Tecnología

Más detalles

ALMACENES PARA GESTIÓN MASIVOS.... ALMACENES PARA GESTIÓN MASIVOS 1 ALMACENES PARA GESTIÓN MASIVOS 2 EL OBJETIVO ES EL ANÁLISIS PARA EL SOPORTE EN LA TOMA DE DECISIONES. GENERALMENTE, LA INFORMACIÓN QUE

Más detalles

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a:

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a: Oracle Business Intelligence Enterprise Edition 11g. A lo largo de los siguientes documentos trataré de brindar a los interesados un nivel de habilidades básicas requeridas para implementar efectivamente

Más detalles