Aplicaciones de la Probabilidad en la Industria

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones de la Probabilidad en la Industria"

Transcripción

1 Tercera parte Aplicaciones de la Probabilidad en la Industria Dr Enrique Villa Diharce CIMAT, Guanajuato, México Verano de probabilidad y estadística CIMAT Guanajuato,Gto Julio 2010

2 Cartas de control Carta R La carta R monitorea la variabilidad de un proceso Esta carta muestra las variaciones de los rangos de las muestras La línea central es el promedio de los rangos y los límites de control son usualmente los límites tres veces la desviación de los rangos LC : R LCI 3d : 1 d 2 3 R = D 3 R LCI : 1 + 3d d 2 3 R = D 4 R

3 Cartas X y R Cuando construimos las cartas X y R, es común hacerlo simultaneamente a partir de un conjunto histórico de datos Aquí, lo más conveniente es empezar con la construcción de la carta R, ya que los límites de la carta X dependen de una estimación de la desviación estándar del proceso, el cual se obtiene a partir de una carta R Si la carta R muestra que la variabilidad del proceso esta fuera de control, lo mejor es controlar la variabilidad antes que construir la carta X

4 Cartas de control Carta S La carta S monitorea la variabilidad de un proceso, es similar a la carta R, solo que ahora se calculan y grafican las desviaciones estándar para cada grupo La línea central es el promedio de las desviaciones estándar de los m subgrupos y los límites de control son usualmente los límites tres veces la desviación de las desviaciones estándar LC : S LCI : 1 LCS : 1+ 3 c 4 3 c 4 1 c c 2 4 S S

5 Cartas de control Carta S En muestras pequeñas, el rango y la desviación estándar tienen un comportamiento similar En muestras grandes, sin embargo, la ocurrencia de un valor extremo produce un rango grande, pero tiene un efecto menor sobre la desviación estándar Como la distribución de S es no simétrica, se puede construir una carta S, con límites de probabilidad en lugar de los límites tres sigma Asumiendo que 2 ( n 1) S 2 ~ χ( 1), 2 n σ Entonces 2 P χ 2 ( n 1) S 2 < < χ 2 (1 α / 2, σ ( α / 2, n 1) n 1) = 1 α

6 Cartas de control luego, 2 χ( α / 2, n 1) P σ < S < σ n 1 de aquí, los límites se definen como 2 χ(1 α / 2, n n 1 = 1 α 2 2 χ( α / 2, n 1) χ(1 α / 2, n 1) LCI = σ, LCS = σ n 1 n 1 Como antes tomamos como estimación de sigma a S / c 4 Finalmente, la carta S con límites de probabilidad queda definida como, LC = S, LCI = LCS S c = 4 S c χ 2 ( α / 2, n 1) n 1 χ, 2 (1 α / 2, n 1) n 1 1)

7 Cartas de control Factores para la construcción de las cartas de control n A2 d D3 D4 c 3 3 d

8 Cálculo por simulación (en lenguaje R) de factores d2 y c4 que se usan en la construcción de las cartas de control #ESTIMACIÓN DE LA CONSTANTE d2 W <- 0; nn < ; n <- 3 for (i in 1:nn) { DATOS <- rnorm(n); RANGO <- range(datos) W <- W + (RANGO[2]-RANGO[1])/1 } d2 <- W/nn ; d #ESTIMACIÓN DE LA CONSTANTE c4 W <- 0; nn < ; n <- 3 for (i in 1:nn) { DATOS <- rnorm(n); W <- W + stdev(datos) } c4 <- W/nn ; c4

9 Ejemplo Árbol de levas En el departamento de ensamble de motores de una planta automotriz, se tiene que una de las partes del motor, el árbol de levas, debe tener una longitud de 600mm(+/-)2mm para cumplir con las especificaciones de ingeniería Hay un problema crónico con la longitud del árbol de levas, ya que se sale de especificaciones, y crea un problema de reducción del rendimiento de la línea de producción y altas tasas de retrabajo y desperdicio El supervisor del departamento quiere correr cartas de medias y rangos para monitorear esta característica, durante un mes Para esto recibe 20 muestras de tamaño 5 del proveedor Estas observaciones se muestran en la siguiente tabla

10 Tabla Muestras de longitudes (en mm) de árboles de levas

11 Ejemplo Árbol de levas Tabla Cartas de medias y rangos para las longitudes de árboles de levas

12 Ejemplo Árbol de levas En la figura anterior se muestran las gráficas de medias y rangos para las longitudes de los árboles de levas Los promedios de las medias y los rangos son y 372 respectivamente El promedio de las medias se encuentra dentro de las especificaciones, lo mismo ocurre con las medias excepto para las muestras 2 y 14, que están por arriba del limite superior de control y la muestra 9, que está en el límite inferior de control El promedio de los rangos es algo grande, considerando que máxima variación permitida es de (+/-)2 mm, hay un exceso de variación en el proceso Después de una investigación con el responsable del proceso, se llegó a la identificación de causas asignables para las muestras 2 (falla de maquina) y 14 (error del operador), más no para la nueve Luego se eliminaron las muestras 2 y 14, obteniendo nuevamente las cartas de medias y rangos que se muestran a continuación

13 Ejemplo Árbol de levas Tabla Cartas de medias y rangos para las longitudes de árboles de levas, después de eliminar los grupos 2 y 14, que tenían causas asignables identificadas

14 Ejemplo Árbol de levas Una vez que eliminamos los subgrupos 2 y 14, ya no tenemos señales de fuera de control, en ambas cartas Observamos ahora que el promedio de las medias ha disminuido, pero el promedio de los rangos ha aumentado Esto se debe a las magnitudes de las observaciones eliminadas, los subgrupos tenian poca variabilidad pero valores grandes Como ya no hay señales de fuera de control, el proceso es estable y podemos ahora iniciar el monitoreo del proceso, tomando periódicamente muestras de 5 arboles de levas Las medias y los rangos de las muestras se graficarán en cartas de medias y de rangos, usando los límites que se muestran en la última figura

15 Cartas de control Ejemplo: Diametros de cilindros Chen et al (2001) presentan un conjunto de medidas de los diámetros interiores de cilindros de un tipo de motor El conjunto de datos esta formado por 35 muestras de tamaño n=5 recolectadas cada media hora Estos datos que aparecen en la siguiente tabla, son los tres últimos dígitos de los valores reales medidos de la forma 35205, 35202, 35204, etc, es decir en la tabla tenemos, 205, 202, 204 Interesa establecer un control estadístico de este proceso mediante cartas X y R Primero realizamos un análisis retrospectivo del proceso a partir de los 35 subgrupos Para cada subgrupo se calculan la media y el rango

16 Tabla Diámetros interiores de cilindros Últimos tres digitos m x1 x2 x3 x4 x5 m x1 x2 x3 x4 x

17 Cartas de control Se promedian las medias y los rangos para obtener X R = = (1 35) (1 35) 35 i= 1 35 i= 1 X R i i = = Estos valores corresponden a las líneas centrales de las cartas de medias y rangos respectivamente Los límites de control se construyen de acuerdo al procedimiento descrito anteriormente En la siguiente gráfica se muestran las dos cartas de control La carta X muestra estabilidad en la media del proceso En la carta R los puntos 6 y 16 exceden el límite de control superior Una investigación mostró que los dos puntos correspondían a tiempos en que el operador regular se ausentaba y dejaba un reemplazo con menos experiencia, a cargo de la producción

18 Gráfica Cartas X y R para los diámetros de las 35 muestras

19 Cartas de control Después de haber encontrado la causa de la gran variabilidad de estos subgrupos, se eliminan los dos puntosy se recalculan de nuevo los límites de control para ambas cartas La siguiente gráfica presenta las cartas X y R luego de eliminar los puntos 6 y 16 Se observa que la variabilidad ha sido controlada, así que se pasa ahora a controlar la media del proceso Una investigación mostró que los dos puntos correspondían a tiempos en que el operador regular se ausentaba y dejaba un reemplazo con menos experiencia, a cargo de la producción La carta de medias muestra dos puntos fuera de los límites de control, correspondientes a los subgrupos 1 y 11 del conjunto original de datos

20 Gráfica Cartas X y R después de eliminar los subgrupos 6 y 16

21 Cartas de control El análisis de estos puntos produjo los siguientes resultados: El subgrupo 1 ocurre a las 8:00 am y corresponde al arranque de la producción, cuando las maquinas están frías El otro subgrupo ocurre a la 1:00 pm y corresponde al arranque de la linea de producción inmediatamente después del descanso del almuerzo y cuando las maquinas han sido apagadas por cambio de herramienta Como se encontraron causas asignables, estos puntos se eliminan y las cartas se vuelven a calcular En la siguiente figura aparecen estas dos cartas

22 Gráfica Cartas X y R resultantes al finalizar la Fase I

23 Cartas de control Se observa en esta última gráfica que ambas cartas exhiben control estadístico Se puede concluir que el proceso esta bajo control respecto de su variabilidad y valor medio, finalizando el análisis de la Fase I Se retienen estos últimos límites de control para utilizarlos en el control del proceso en línea

24 Subgrupos racionales El primer paso en el establecimiento de cartas de medias y rangos, es la selección de las muestras Es importante que todas las muestras sean muestras racionales (o subgrupos racionales) Esto es, grupos de observaciones cuya variación, solo es atribuible a las causas comunes Cuando tomamos las muestras, minimizando la ocurrencia de causas especiales dentro de ellas, maximizamos la oportunidad de detectar causas especiales cuando estas ocurren entre las muestras Muestrear de diferentes máquinas, muestrear durante períodos extendidos de tiempo, y muestrear productos combinados de diferentes fuentes, no son métodos racionales de muestreo y deben evitarse

25 Subgrupos racionales El tamaño de los subgrupos se rige por los siguientes principios: Los subgrupos deben de reflejar solo las causas comunes Los subgrupos deben asegurar la presencia de la distribución normal para las medias muestrales Los subgrupos deben garantizar una alta capacidad de detección de causas especiales o asignables Los subgrupos deben ser suficientemente pequeños para facilitar su medición y reducir el costo de operación Cuando estas consideraciones se toman en cuenta, frecuentemente, el tamaño de los subgrupo, resulta ser entre 3 y 6 Usualmente se toman cinco observaciones en cada muestra,

26 Subgrupos racionales Frecuencia de muestreo La frecuencia de muestreo, debe considerarse cuidadosamente, ya que cuando un proceso se muestrea con una frecuencia muy baja, las cartas de medias y rangos resultan ser de poca utilidad para identificar y resolver problemas Algunos puntos que vale la pena tomar en cuenta pare determinar la frecuencia de muestreo son: Naturaleza general de la estabilidad del proceso La frecuencia con que se presentan eventos en el proceso (cambios de turno, de materia prima, de condiciones ambientales) Costo del muestreo

27 Reglas para detección de señales de alarma En algún momento se propuso agregar a las cartas mecanismos de detección de señales fuera de control, más rápidamente El manual de Western Electric (1956) sugirió un conjunto de reglas de decisión para detectar patrones no aleatorios en las cartas de control El problema con la adición de estas reglas de detección de señales fuera de control, es que aumenta bastante el número de falsas alarmas y puede ser muy complicado estar revisando frecuentemente el proceso para encontrar las causas de las señales

28 PRUEBA 1 Un punto fuera de los límites de control LSC LC LIC A+ B+ C+ C- B - A - X X PRUEBA 2Nueve puntos consecutivos todos por arriba o por abajo de la linea central LSC LC LIC A+ B+ C+ C- B - A - X PRUEBA 3 Seis puntos consecutivos con un ascenso o d esc enso c o nsta nte LSC LC LIC A+ B+ C+ C- B - A - X X PRUEBA 4Catorce puntos alternandose hacia abajo y arriba LSC LC LIC A+ B+ C+ C- B - A - X PRUEBA 5 Dos de tres puntos consecutivos en la zona A LSC LC LIC A+ B+ C+ C- B - A - X X PRUEBA 6Cuatro de cinco puntos consecutivos en la zona B o más allá de ella LSC LC LIC A+ B+ C+ C- B - A - X X PRUEBA 7 Quince puntos consecutivos en la zona C (por abajo y arriba de la linea central) LSC LC LIC A+ B+ C+ C- B - A - X PRUEBA 8 Ocho puntos consecutivos en ambos lados de la linea central con ningún punto en la zona C LSC LC LIC A+ B+ C+ C- B - A - X

Control Estadístico de la Calidad. Gráficos de Control. Estadistica Básica

Control Estadístico de la Calidad. Gráficos de Control. Estadistica Básica Control Estadístico de la Calidad Gráficos de Control Estadistica Básica Control de Calidad Calidad significa idoneidad de uso, Es la interacción de la calidad: Del diseño Nivel de desempeño, de confiabilidad

Más detalles

Los Gráficos de Control de Shewart

Los Gráficos de Control de Shewart Los Gráficos de Control de Shewart La idea tradicional de inspeccionar el producto final y eliminar las unidades que no cumplen con las especificaciones una vez terminado el proceso, se reemplaza por una

Más detalles

HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS

HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS Ing. Claudia Santo Directora de Metrología Científica e Industrial 17/05/2016 MEDELLÍN, COLOMBIA MEDIR Cómo sabemos que nuestras meciones son correctas?

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

Unidad V. Control Estadístico de la Calidad

Unidad V. Control Estadístico de la Calidad UNIVERSIDAD NACIONAL DE INGENIERÍA UNI- NORTE - SEDE REGIONAL ESTELÍ Unidad V. Control Estadístico de la Calidad Objetivos Reconocer los principios estadísticos del control de calidad. Explicar la forma

Más detalles

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-)

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD INGENIERIA DE TELECOMUNICACIONES TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) 1. Un proceso industrial fabrica

Más detalles

CONTROL ESTADISTICO DE LA CALIDAD

CONTROL ESTADISTICO DE LA CALIDAD CICLO 2012-II Módulo: Unidad: 4 Semana: 4 CONTROL ESTADISTICO DE LA CALIDAD Ing. Enrique Montenegro Marcelo GRAFICOS DE CONTROL ORIENTACIONES Al finalizar este capitulo el alumno deberá poder construir

Más detalles

Programa: Tecnología en Control de Calidad

Programa: Tecnología en Control de Calidad CARTAS (EJERCICIOS) 1. En un cierto proceso de fabricación, una de las operaciones consiste en efectuar un corte en una pieza de plástico. Dicho corte debe tener una profundidad especificada en los planos.

Más detalles

Aprender a construir gráficos X-S y conocer sus limitaciones.

Aprender a construir gráficos X-S y conocer sus limitaciones. Objetivos Aprender a construir gráficos X-R y conocer sus limitaciones. Aprender a construir gráficos X-S y conocer sus limitaciones. Comprender la relación entre los Gráficos de Control y el intervalo

Más detalles

Cómo funciona el Diagrama de Control

Cómo funciona el Diagrama de Control Cómo funciona el Diagrama de Control Capítulo 4 Control Estadístico de Calidad Modelo del sistema de control de proceso ( con retroalimentación ) VOZ DEL PROCESO METODOS ESTADÍSTICOS Personal Equipo Materiales

Más detalles

Control Estadístico de Procesos (SPC) para NO estadísticos.

Control Estadístico de Procesos (SPC) para NO estadísticos. Control Estadístico de Procesos (SPC) para NO estadísticos. - Sesión 3ª de 4 - Impartido por: Jaume Ramonet Fernández Ingeniero Industrial Superior PMP (PMI ) Consultoría y Formación Actitud requerida

Más detalles

LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD.

LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD. Procesos: Siempre tienen variabilidad LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD. Alfredo Serpell Ingeniero civil industrial UC Phd University of Texas

Más detalles

Gráfico de Control T-Cuadrada Multivariada

Gráfico de Control T-Cuadrada Multivariada Gráfico de Control T-Cuadrada Multivariada STATGRAPHICS Rev. 25/04/2007 Resumen El procedimiento Gráfico de Control T-Cuadrada Multivariada crea diagramas de control para dos o más variables numéricas.

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

1. Los datos siguientes dan el número de ensambles de rodamiento y sello

1. Los datos siguientes dan el número de ensambles de rodamiento y sello 3 2 EJERCICIOS 55 3 2 Ejercicios 1. Los datos siguientes dan el número de ensambles de rodamiento y sello disconformes en muestras de tamaño 100. Construir una carta de control para la fracción disconforme

Más detalles

TEMA 3: Control Estadístico de la Calidad

TEMA 3: Control Estadístico de la Calidad TEMA 3: Control Estadístico de la Calidad 1. Introducción al control de la calidad. 2. Métodos de mejora de la calidad 3. Gráficos de control de Shewhart: Gráficos c Gráficos np Gráficos X y R 4. Interpretación

Más detalles

Para controlar los procesos en tiempo real, la herramienta de base estadística, más significativa, es la carta de control.

Para controlar los procesos en tiempo real, la herramienta de base estadística, más significativa, es la carta de control. Control estadístico de los procesos Denominamos proceso a una serie de transformaciones destinadas a transformar entradas (materias primas, insumos, información, etc) en salidas (productos elaborados,

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Los gráficos p, 100p y u difieren de los gráficos np y c en que los

Más detalles

Rendimiento de un activo

Rendimiento de un activo Rendimiento de un activo Es la ganancia o pérdida total que experimenta el propietario de una inversión en un periodo de tiempo específico. Se obtiene como el cambio en el valor del activo más cualquier

Más detalles

07/12/2009 CARACTERÍSTICAS PRINCIPALES GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN

07/12/2009 CARACTERÍSTICAS PRINCIPALES GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN GRAFICOS DE CONTROL POR ATRIBUTOS DEFINICIÓN Son Gráficos de Control basados en la observación de la presencia o ausencia de una determinada característica, o de cualquier tipo de defecto en el producto,

Más detalles

1 PROPOSITO Establecer el procedimiento para el cálculo de límites de control por variables.

1 PROPOSITO Establecer el procedimiento para el cálculo de límites de control por variables. CALCULO DE LIMITES PAA LAS CATAS DE CONTOL PO VAIABLES Por S. Carpio 1 POPOSITO Establecer el procedimiento para el cálculo de límites de control por variables. 2 ALCANCE Aplicable a las cartas de control

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL Total GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Por unidad Los gráficos p, 100p y u difieren de los gráficos

Más detalles

LOS GRÁFICOS DE CONTROL

LOS GRÁFICOS DE CONTROL CAPÍTULO IX LOS GRÁFICOS DE CONTROL 9.1 INTRODUCCIÓN En cualquier proceso de generación de productos o servicios, sin importar su buen diseño y/o mantenimiento cuidadoso, siempre existirá cierto grado

Más detalles

Control Estadístico de Procesos Capacidad de Proceso

Control Estadístico de Procesos Capacidad de Proceso Control Estadístico de Procesos Capacidad de Proceso Un proceso de fabricación es un conjunto de equipos, materiales, personas y métodos de trabajo que genera un producto fabricado. Maquinaria Métodos

Más detalles

Unidad 5 Control Estadístico de la Calidad. Administración de Operaciones III

Unidad 5 Control Estadístico de la Calidad. Administración de Operaciones III Unidad 5 Control Estadístico de la Calidad Administración de Operaciones III 1 Contenido 1. Antecedentes del control estadístico de la calidad 2. Definición 3. Importancia y aplicación 4. Control estadístico

Más detalles

ACTIVIDAD 3: Intervalos de Confianza para 1 población

ACTIVIDAD 3: Intervalos de Confianza para 1 población ACTIVIDAD 3: Intervalos de Confianza para 1 población CASO 3-1: REAJUSTE DE MÁQUINAS Trabajamos como supervisores de una máquina dedicada a la producción de piezas metálicas cuya longitud sigue una distribución

Más detalles

Hln 1 = 160 In 1 = horas. R (1600)(0 223) 2(1600)(0.223) = [ ]. Il

Hln 1 = 160 In 1 = horas. R (1600)(0 223) 2(1600)(0.223) = [ ]. Il 17-1 Un dado de extrusión se emplea para producir ficaciones en las barras son 0.5035 ± 0.0010 barras de aluminio. El diámetro de las barras pulgadas. Los valores dados son los últimos es una característica

Más detalles

CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL

CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL Universidad Nacional Agraria La Molina IA-406 Hidrología Aplicada CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL 1. Longitud necesaria de registro Diversos

Más detalles

Control Estadístico de Procesos Parte 1. María Guadalupe Russell Noriega. Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa.

Control Estadístico de Procesos Parte 1. María Guadalupe Russell Noriega. Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa. Control Estadístico de Procesos Parte María Guadalupe Russell Noriega. Facultad de Ciencias Físico-Matemáticas Universidad Autónoma de Sinaloa. V Verano de Probabilidad y Estadística, CIMAT. Del al 6 de

Más detalles

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes Objetivos Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos Epígrafes Introducción a los Gráficos p, np. Interpretación Gráficos c y u. Interpretación 2-1 Gráfico

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Gráfico de Medias Móviles (MA)

Gráfico de Medias Móviles (MA) Gráfico de Medias Móviles (MA) Resumen El procedimiento Gráfico de Medias Móviles crea cuadros de control para una sola variable numérica donde los datos se han recolectado ya sea individualmente o en

Más detalles

Gráficos X-Bar y S. StatFolio de Muestra: xbarschart.sgp

Gráficos X-Bar y S. StatFolio de Muestra: xbarschart.sgp Gráficos X-Bar y S Resumen El procedimiento Gráficos X-Bar y S crea gráficos de control para una simple variable numérica cuando los datos han sido recabados en subgrupos. Crea un Gráfico X-bar para monitorear

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

CAPÍTULO VII EVALUACIÓN DE LA CAPACIDAD DEL PROCESO

CAPÍTULO VII EVALUACIÓN DE LA CAPACIDAD DEL PROCESO CAPÍTULO VII EVALUACIÓN DE LA CAPACIDAD DEL PROCESO [133] CAPÍTULO VII EVALUACIÓN DE LA CAPACIDAD DEL PROCESO Una vez ajustado el proceso y disminuido su variación se evalúa la capacidad del proceso. Un

Más detalles

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal

Más detalles

( x) Distribución normal

( x) Distribución normal Distribución normal por Oliverio Ramírez La distribución de probabilidad más importante es sin duda la distribución normal (o gaussiana), la cual es de tipo continuo. La distribución de probabilidad para

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

La clave para un mejor control en SEIS SIGMA: Ing. Luis Aranda

La clave para un mejor control en SEIS SIGMA: Ing. Luis Aranda La clave para un mejor control en SEIS SIGMA: Ing. Luis Aranda Qué SPC? SPC (Statistical Process Control) CEP (Control Estadístico de Proceso) El SPC es una herramienta estadística que nos permite analizar,

Más detalles

CARTAS DE CONTROL. Control Estadístico de la Calidad. Tuesday, August 5, 14

CARTAS DE CONTROL. Control Estadístico de la Calidad. Tuesday, August 5, 14 CARTAS DE CONTROL Control Estadístico de la Calidad PROCESOS PRODUCTIVOS Los procesos productivos son incapaces de producir dos unidades de producto exactamente iguales. Esto se debe a un sin número de

Más detalles

ESTUDIO DE LA CONFIABILIDAD DE LAS PRUEBAS DE SELECCIÓN UNIVERSITARIA ADMISIÓN 2013

ESTUDIO DE LA CONFIABILIDAD DE LAS PRUEBAS DE SELECCIÓN UNIVERSITARIA ADMISIÓN 2013 ESTUDIO DE LA CONFIABILIDAD DE LAS PRUEBAS DE SELECCIÓN UNIVERSITARIA ADMISIÓN 2013 Andrés Antivilo B. Paola Contreras O. Jorge Hernández M. Documento de trabajo Nº04 /14 Santiago, abril de 2014 Índice

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD

EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD GRÁFICAS DE CONTROL POR VARIABLES Ejemplo 1 Gráfica X Calculando la desviación estándar Para Gráfica x cuando se conoce s Límite superior de control (LSC)

Más detalles

ELABORACIÓN DE CARTAS DE CONTROL X BARRA S EN EL LABORATORIO DE METROLOGÍA DE VARIABLES ELÉCTRICAS DE LA UNIVERSIDAD TECNOLÓGICA DE PEREIRA

ELABORACIÓN DE CARTAS DE CONTROL X BARRA S EN EL LABORATORIO DE METROLOGÍA DE VARIABLES ELÉCTRICAS DE LA UNIVERSIDAD TECNOLÓGICA DE PEREIRA Scientia et Technica Año XV, No 41, Mayo de 2009.. ISSN 0122-1701 241 ELABORACIÓN DE CARTAS DE CONTROL X BARRA S EN EL LABORATORIO DE METROLOGÍA DE VARIABLES ELÉCTRICAS DE LA UNIVERSIDAD TECNOLÓGICA DE

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

Telos ISSN: Universidad Privada Dr. Rafael Belloso Chacín Venezuela

Telos ISSN: Universidad Privada Dr. Rafael Belloso Chacín Venezuela Telos ISSN: 1317-0570 wileidys.artigas@urbe.edu Universidad Privada Dr. Rafael Belloso Chacín Venezuela Orlandoni Merli, Giampaolo Gestión de la Calidad: Control Estadístico y Seis Sigma Telos, vol. 14,

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

Estadísticas básicas y medidas epidemiológicas para la Investigación en Salud Pública

Estadísticas básicas y medidas epidemiológicas para la Investigación en Salud Pública Enfoque científico de la Salud Pública Estadísticas básicas y medidas epidemiológicas para la Investigación en Salud Pública Dr. Luis Gabriel Montes de Oca Lemus Objetivos Analizar las estadísticas de

Más detalles

Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos. Cómo cumplir con requisitos de la ISO 15189

Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos. Cómo cumplir con requisitos de la ISO 15189 Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos Cómo cumplir con requisitos de la ISO 15189 Calidad en mediciones químicas Validación de métodos Estoy midiendo lo que intentaba

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.

MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO. DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente

Más detalles

IND-LAB-CAL INSPECCIÓN POR VARIABLES

IND-LAB-CAL INSPECCIÓN POR VARIABLES INSPECCIÓN POR VARIABLES 1.- OBJETIVO El objetivo del presente laboratorio es que el estudiante conozca y pueda establecer planes y procedimientos para la inspección por variables. Se utilizará como norma

Más detalles

Cuáles son las características aleatorias de la nueva variable?

Cuáles son las características aleatorias de la nueva variable? Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

SCAN WHITE PAPER CONSIDERACIONES BÁSICAS EN LA SUPERVISIÓN Y CONTROL DE PROCESOS INDUSTRIALES

SCAN WHITE PAPER CONSIDERACIONES BÁSICAS EN LA SUPERVISIÓN Y CONTROL DE PROCESOS INDUSTRIALES SCAN WHITE PAPER CONSIDERACIONES BÁSICAS EN LA SUPERVISIÓN Y CONTROL DE PROCESOS INDUSTRIALES Septiembre, 2001 PARTE I 1. INTRODUCCION En el competitivo mercado de hoy, el éxito de cualquier negocio depende

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD

Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Práctica 5.Métodos descriptivos para determinar la normalidad 1 Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Objetivos: En esta práctica utilizaremos el paquete SPSS para determinar si

Más detalles

Gráfico de Desgaste de Herramientas

Gráfico de Desgaste de Herramientas Gráfico de Desgaste de Herramientas Resumen El procedimiento Gráfico de Desgaste de Herramientas crea cuadros de control para una sola variable numérica donde se espera que cambien las cantidades en un

Más detalles

DATOS: 1. DIÁMETRO D (diámetro nominal del cilindro 15 mm): a) Instrumento utilizado: micrómetro de rango 0-25 mm y apreciación 0.01 mm.

DATOS: 1. DIÁMETRO D (diámetro nominal del cilindro 15 mm): a) Instrumento utilizado: micrómetro de rango 0-25 mm y apreciación 0.01 mm. METROLOGIA E INGENIERIA DE CALIDAD 1 EJERCICIO 1 (Modelo resuelto) Se desea determinar el volumen del cilindro hueco de la figura y su correspondiente incertidumbre expandida para un intervalos de confianza

Más detalles

Pruebas de hipótesis

Pruebas de hipótesis Pruebas de hipótesis Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Prueba de hipótesis Uno de los objetivos de la estadística es hacer

Más detalles

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial

Más detalles

3 ANALISIS DESCRIPTIVO DE LOS DATOS

3 ANALISIS DESCRIPTIVO DE LOS DATOS 3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3

Más detalles

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS Gestor de Calidad Página: 1 de 5 1. Propósito Establecer una guía para el cálculo de la incertidumbre asociada a las mediciones de los ensayos que se realizan en el. Este procedimiento ha sido preparado

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

IND-LAB-CAL Gráficos de Control Variables CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES

IND-LAB-CAL Gráficos de Control Variables CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES CONTROL DE PROCESOS - GRAFICOS DE CONTROL - CARACTERÍSTICAS TIPO VARIABLES 1.- OBJETIVO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos

Más detalles

Histograma y Grafico de Control

Histograma y Grafico de Control 2014 Histograma y Grafico de Control Sustentantes: Sabrina Silvestre 2011-0335 Juan Emmanuel Sierra Santos 2011-0367 Rosa Stefany Flech Mesón 2011-0436 Docente: Ing.MS Eliza N. González Universidad Central

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.

INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 9 Experimentación y presentación de datos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de experimentación y determinación

Más detalles

Estadística Inferencial. Sesión 2. Distribuciones muestrales

Estadística Inferencial. Sesión 2. Distribuciones muestrales Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral

Más detalles

un valor de prueba conocido y sea X y SX

un valor de prueba conocido y sea X y SX 5. PRUEBAS DE HIPÓTESIS PARAMÉTRICAS CONTENIDOS: OBJETIVOS: 5... Prueba de hipótesis para una media. 5.. Prueba de hipótesis para una proporción. 5..3 Prueba de hipótesis para la varianza. 5..4 Prueba

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

DISEÑO DE EXPERIMENTOS

DISEÑO DE EXPERIMENTOS DISEÑO DE EXPERIMENTOS Dr. Héctor Escalona hbescalona@yahoo.com hbeb@xanum.uam.mx Diseño de 1. Introducción al diseño de 2. Herramientas de inferencia estadística 3. para la comparación de dos tratamientos

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

PROCEDIMIENTO PARA LAS ACCIONES PREVENTIVAS DEL SISTEMA DE GESTIÓN DE CALIDAD DE LA PAOT REVISIÓN Y APROBACIÓN

PROCEDIMIENTO PARA LAS ACCIONES PREVENTIVAS DEL SISTEMA DE GESTIÓN DE CALIDAD DE LA PAOT REVISIÓN Y APROBACIÓN PROCEDIMIENTO PARA LAS ACCIONES REVISIÓN Y APROBACIÓN Fecha de Publicación: 16 de Enero de 2006 Fecha de Inicio de Vigencia: 16 de Enero de 2006.0 Revisado por: Nombre Puesto Fecha Firma Ma. del Carmen

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

CARACTERÍSTICAS DE CALIDAD LIMITES DE ESPECIFICACIÓN gr gr gr

CARACTERÍSTICAS DE CALIDAD LIMITES DE ESPECIFICACIÓN gr gr gr Objetivo El objetivo del presente laboratorio es que el estudiante conozca y pueda establecer planes de inspección de características tipo variables. Se utilizará como norma base la MIL-STD 414 o su equivalente

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Práctica 8: Test de hipótesis

Práctica 8: Test de hipótesis : Test de hipótesis 1. Un director de manufactura debe convencer a la gerencia que un nuevo método de fabricación reduce los costos, antes de poder implementarlo. El método actual funciona con un costo

Más detalles

Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra

Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia Universidad

Más detalles

CAPÍTULO 4 CAPACIDAD DEL PROCESO

CAPÍTULO 4 CAPACIDAD DEL PROCESO APÍTULO 4 APAIDAD DEL PROESO APÍTULO 4 APAIDAD DEL PROESO En este capítulo se hace una evaluación de la situación actual de la producción de la tapa de las guanteras para el coche modelo Jetta A4. Para

Más detalles

1 Estudios del sistema de medición para datos continuos

1 Estudios del sistema de medición para datos continuos Contenido 1 Estudios del sistema de medición para datos continuos Objetivos Determinar qué tan adecuados son los sistemas de medición. Entender la diferencia entre los estudios R&R del sistema de medición

Más detalles

República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo

República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo METODOLOGÍA DEL DISEÑO DE MUESTREO Encuesta entre Empresas no Financieras 2013 1. El

Más detalles

Estadística Inferencial. Sesión 4. Estimación por intervalos

Estadística Inferencial. Sesión 4. Estimación por intervalos Estadística Inferencial. Sesión 4. Estimación por intervalos Contextualización. Como se definió en la sesión anterior la estimación por intervalos es utilizada para medir la confiabilidad de un estadístico.

Más detalles

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones

bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones TERCER GRADO bloque i Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando

Más detalles

CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I

CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I Bloque I Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando procedimientos

Más detalles

Bases curriculares. Números y operatoria. Utilizar potencias de base 10 con exponente. Potencias, raíces y logaritmos

Bases curriculares. Números y operatoria. Utilizar potencias de base 10 con exponente. Potencias, raíces y logaritmos Bases curriculares Educación Básica Contenido 6. Básico 7. Básico Números y operatoria Potencias, raíces y logaritmos Números naturales. Realizar cálculos que involucren las cuatro operaciones. Demostrar

Más detalles

Gráficos EWMA. Ejemplo StatFolio: ewmachart.sgp

Gráficos EWMA. Ejemplo StatFolio: ewmachart.sgp Gráficos EWMA Resumen El procedimiento del Gráfico EWMA (Exponentially Weighted Moving Average - Promedios Móviles Exponencialmente Ponderados) construye un gráfico de control para una sola variable numérica

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES PROCESO Maquinaria Métodos Materias Primas Proceso Producto Mano de Obra Condiciones Ambientales VARIACIÓN Fundamentalmente, las cinco fuentes más importantes de

Más detalles

MÉTODO DE ENSAYO PARA MEDIR EL DETERIORO DE GEOTEXTILES A LA EXPOSICIÓN DE LUZ ULTRAVIOLETA Y AGUA, (APARATO DEL TIPO ARCO XENON). I.N.V.

MÉTODO DE ENSAYO PARA MEDIR EL DETERIORO DE GEOTEXTILES A LA EXPOSICIÓN DE LUZ ULTRAVIOLETA Y AGUA, (APARATO DEL TIPO ARCO XENON). I.N.V. MÉTODO DE ENSAYO PARA MEDIR EL DETERIORO DE GEOTEXTILES A LA EXPOSICIÓN DE LUZ ULTRAVIOLETA Y AGUA, (APARATO DEL TIPO ARCO XENON). I.N.V. E 910 07 1. OBJETO 1.1 Esta norma de ensayo se puede utilizar para

Más detalles

Método del Rango y Promedio (Estudio del Calibrador - Variables)

Método del Rango y Promedio (Estudio del Calibrador - Variables) STATGRAPHICS Rev. 9/14/006 Método del Rango y Promedio (Estudio del Calibrador - Variables) Resumen El Método del Rango y Promedio estima la repetibilidad y reproducibilidad de un sistema de medición basado

Más detalles