13Soluciones a los ejercicios y problemas PÁGINA 250

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "13Soluciones a los ejercicios y problemas PÁGINA 250"

Transcripción

1 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P dm P cm a) b) 8 m 17 m 1 a) π 5 78,5 dm b) m P π 5 31,4 dm P m 3 a) b) 5 dm 7 dm 9, dm m 11 dm 10 mm a) dm b) mm P , , dm P mm 4 a) b) 6 cm 9,5 cm 18 cm 5,4 hm 8 hm 15 hm a) cm b) 8 5,4 75,6 hm P 9, cm P hm

2 5 a) b) 47 mm 30 mm 30,4 mm 3 cm,1 cm Pág. 57 mm a) mm b) 5 3,1 15,75 cm P ,4 164,8 mm P cm 6 a) b) 5 dam 4 dam 6 km 9 dam a) dam b) π 3 14,13 km P dam P π ,4 dm 7 a) b) 7, cm 6 cm 15 cm 1 cm 36 cm 43 cm 0 cm a) 8 6 7, 17,8 cm b) cm P cm P cm 8 a) b) 1 8 m 7 mm a) π 15 π 8 505,54 m b) 7 π 3,5 10,53 mm P π 15 + π 8 144,44 m P π 3,5 49,98 mm

3 9 a) b) Pág. 3 9,9 km 3 km 4 km 10 8 mm a) 7 7 π 3 17,43 km b) π ,m P π ,9,61 km P π ,4 mm a) b) 1 m 8,6 hm 0, 5 hm 7 hm a) π 1,5 π 1 0,98 m 4 4 P π 1,5 + π 1 + 0,5 + 0,5 4,9 m 4 4 b) π 5 37,1 hm 4 P π , ,45 hm M EDIR Y CALCULAR ÁREAS Y PERÍMETROS En cada una de las siguientes figuras coloreadas halla su área y su perímetro. Para ello, tendrás que medir algún elemento (lado, diagonal, radio ). 11 a) b),4 cm 1, cm a) 5,76 cm b) 4,5 cm P 9,6 cm P 7,54 cm

4 1 a) b) Pág. 4 cm cm,4 cm a) 4,8 cm b) 3,5 cm P 8,8 cm P 8 cm 13 a) b) 1,6 cm 3,5 cm, cm cm,7 cm 0,5 cm a) 4,3 cm b) 1,77 cm P 8,5 cm P 8,41 cm 1,8 cm PÁGINA a) b) 3 cm 1,7 cm 60 1,6 cm 1,7 cm 1,5 cm 3,1 cm 1,6 cm,9 cm 1,5 cm, cm a) 7,8 cm b) 3,3 cm P 11,1 cm P 7,4 cm Á REAS Y PERÍMETROS DE FIGURAS PLANAS 15 Aquí tienes las áreas de varios cuadrados. Di, en cada caso, cuánto mide el lado. ÁREA DEL CUADRADO 16 cm 5 cm 36 mm 100 dam LADO ÁREA DEL CUADRADO LADO 16 cm 4 cm 5 cm 15 cm 36 mm 6 mm 100 dam 10 dam

5 16 Averigua cuánto mide la altura de un rectángulo de 40 m de superficie y de base. Pág m a 40 a 8 m 5 La altura del rectángulo mide 8 m. 17 Halla el área de un trapecio cuyas bases miden 1 cm y 0 cm, y su altura, 10 cm cm El área del trapecio es 160 cm. 18 Las medidas de los lados de un trapecio rectángulo son a 9 m, b, c 1 m y d 4 m. Los lados paralelos son a y c. Halla su área. 4 m 9 m 1 m Área m El área del trapecio es 4 m 19 Las bases de un trapecio isósceles miden 6 cm y 14 cm; la altura, 8 cm, y otro de sus lados, 10 cm. Calcula el perímetro y el área de la figura cm P cm 0 El área de un triángulo es de 66 cm ; sus lados miden a 0 cm, b 11 cm y c 13 cm. Calcula sus tres alturas y su perímetro. a m a 0 0 m 13 m a 11 P cm 66 0 a a 0 3,3 cm a a 13 5,08 cm a a 11 6 cm 11

6 1 Los lados de un triángulo rectángulo miden 15 dm, 8 dm y 17 dm. Calcula su área y la altura sobre la hipotenusa. Pág. 6 8 dm a h 17 dm 15 dm dm 17 a 10 h 8 a h 10 7,06 dm 17 Calcula el área y el perímetro de un heágono regular de 6 mm de lado y 5, mm de apotema , 93,6 mm P mm 3 En una circunferencia de 4 cm de radio trazamos una cuerda de 34 cm. Halla el área del segmento circular sabiendo que el ángulo central correspondiente es de cm 90 O 4 cm A TRIÁNGULO cm A CÍRCULO π ,64 cm A SEGMENTO CIRCULAR 1 A CÍRCULO A TRIÁNGULO 1 808, ,16 cm Calcula el área de la zona coloreada. 5 cm 4 cm 3 cm ( ) 5 0 cm

7 5 Calcula el área y el perímetro de las figuras coloreadas. Pág. 7 a) 31 m 3 37 m 49 m 40 m b) 54 m 7 cm c), a) 3 31 m 37 m 4 m 49 m 6 m 40 m 54 m m P m b) π 7 51,9 cm 3 P π ,65 cm 3 c) 5 5 P π,5 31,4 m

8 6 Halla el perímetro y el área de las siguientes figuras: a) A Pág. 8 O B OB 11 cm AB 8 cm b) C B ì 60 AB 10 m AC 8,7 cm A a) cm P cm b) Como el triángulo es equilátero (ya que A ì 60 ), AB BC 10 m. π ,7 8,83 m 360 P π ,47 m PÁGINA 5 7 El perímetro del cuadrado rojo interior es de 3 cm. Cuál es el perímetro del cuadrado negro eterior? Observación: l l Como vemos en la observación, el lado del cuadrado rojo interior es la mitad del del cuadrado azul. Por el mismo motivo, el lado del cuadrado negro eterior es el doble del del cuadrado azul. Así, el lado del cuadrado negro es cuatro veces el lado del cuadrado rojo. El perímetro del cuadrado negro será cuatro veces el perímetro del cuadrado rojo, es decir, cm.

9 8 Halla el área de la parte coloreada sabiendo que el diámetro de la circunferencia grande es de 6 cm. Pág. 9 Radio circunferencia grande: R 3 cm Radio circunferencias pequeñas: r 1 cm π 3 7 π 1 π 6,8 cm 9 Cuál de los tres triángulos tiene mayor área (azul, naranja o verde)? Justifica la respuesta. Todos los triángulos tienen la misma área ya que la base y la altura son iguales para todos ellos. 30 A y B son puntos fijos. El punto C puede estar situado en cualquier lugar de la circunferencia. C C C A B Dónde lo pondrás si quieres que el área del triángulo ABC sea la mayor posible? Pondremos C en el punto más alto de la circunferencia C para que el área sea lo mayor posible. Esto es porque con la misma base, cuanto mayor sea la altura, mayor será el área del triángulo. A B

10 Á REAS Y PERÍMETROS UTILIZANDO EL TEOREMA DE PITÁGORAS Pág. 10 En cada una de las siguientes figuras coloreadas halla su área y su perímetro. Para ello, tendrás que calcular el valor de algún elemento (lado, diagonal, apotema, ángulo ). Si no es eacto, halla una cifra decimal. 31 a) b) 6 m 7 m a) a 6,5 9,75 5, 6 m 6 5,5 a 13,8 m P m, b) m 7 m m P m 3 a) b) 5 cm 13 cm 53 m 90 m a) a m 13 cm 5 cm cm P cm b) m 4 53 m m P m 33 a) b) 99 m 15 cm

11 a) m , ,5 70 m m P m Pág. 11 b) , cm 15 cm 15 cm π 1, π ,7 cm P π 1, + π 15 7,3 cm 34 a) b) 110 cm 73 cm 18 cm 98 cm 89 cm a) cm 55 cm 73 cm cm P cm b) 18 cm cm cm 80 cm 98 cm P cm 35 a) 53 dam b) 4 dm 41 dam 71 dam 8 dm 5,6 dm 41 dam a) 53 dam dam 9 dam 71 dam dam 41 dam P dam b) 3, dm,4 dm 4 dm 4,4 10, ,6 3, 1,8 dm 5,6 dm P 5, , 0,8 dm

12 36 a) 1 m b) 10, m 5 cm 48 cm 5 cm Pág. 1 a) 1 m 10, 6 68,04 8, m 10, m 1 8, 5 46 m P m b) cm 5 cm 6 m 4 cm 5 cm cm P cm PÁGINA a) b) m 8 mm a) ,7 m π ,7 8,8 m m P π , 360 b) () ,6 mm 3,6 3,6 3,6 3,6 8 mm 13 mm P 8 + 3,6 3, mm 38 Calcula la diagonal de un cuadrado de 8 cm de perímetro. 7 cm 7 cm l 8 : 4 7 cm ,9 cm La diagonal del cuadrado mide 9,9 cm.

13 39 Halla el perímetro de un rombo cuyas diagonales miden 4 cm y 40 cm. Pág cm l 0 cm l cm P cm 40 Los lados paralelos de un trapecio rectángulo miden 110 m y 30 m, y el lado oblicuo mide 89 m. Determina su perímetro y su área. 30 m m 89 m m 80 m 110 m P m 41 Halla el área de un triángulo equilátero de 60 dam de perímetro. l 60 : 3 0 dam 0 dam ,3 dam 0 17,3 173, dam 10 dam 4 Los lados de un triángulo miden 45 cm, 8 cm y 53 cm. Comprueba si es o no un triángulo rectángulo, halla su área y calcula la altura sobre el lado más largo cm ; cm Como , es un triángulo rectángulo cm a h 8 a h ,9 cm 53 La altura sobre la hipotenusa mide 11,9 cm. 43 Un heágono regular está inscrito en una circunferencia de 6 cm de radio. Halla el área del recinto comprendido entre ambas figuras.

14 3 cm 6 cm a Pág. 14 a , cm A HEXÁGONO 6 6 5, 93,6 cm A CÍRCULO π 6 113,04 cm A RECINTO A CÍRCULO A HEXÁGONO 19,44 cm 44 Es regular este octógono?. Calcula su área y su perímetro. 1 cm 1 cm El octógono no es regular ya que algunos lados miden 1 cm y otros 1,4 cm. El área de un cuadrado de 1 cm de lado es 1 cm. El octógono está formado por 5 cuadrados de 1 cm y cuatro mitades. Esto es: Área cm 45 Calcula el perímetro y el área de esta figura: 8 m 1 m 8 m 18 m 4 m 8 m 4 m ,77 m A RECTÁNGULO m 18 m 10 m 8 m A TRAPECIO A 1/ CÍRCULO π 4 5,1 m A TOTAL A RECTÁNGULO + A TRAPECIO A 1/ CÍRCULO ,1 170,88 m P ,77 + π ,33 m

15 46 Halla el perímetro y el área de esta figura: Pág dm 6 dm 6 dm 10 dm dm A TRIÁNGULO dm A 1/ CÍRCULO GRANDE π 1 6,08 dm A 1/ CÍRCULO PEQUEÑO π 5 39,5 dm A TOTAL , ,5 385,5 dm P 6 + π 5 + π 1 79,38 dm 47 Calcula las dimensiones y el área de cada una de las siguientes secciones de un cubo: a) 6 cm b) 6 cm 3 cm 3 cm 6 cm 3 cm 6 cm 6 cm a) ,4 cm 4,4 6 5,44 cm 6 cm P 6 + 4,4 0,48 cm b) 6 cm ,71 cm 6, ,6 cm P 6, ,4 cm

16 48 Determina el perímetro y el área de la siguiente figura: Pág m 13 m 3, 4 m 1 13 m y z 1 + 3,5 156,5 1, 3, 3 y z A m ; A m ; A 3 3,5 1 1 m m P 3, ,5 36 m 49 La figura roja no es un rombo, pero tiene las diagonales perpendiculares. Justifica que también puedes calcular su área mediante la fórmula: D d d 8 m m D A RECTÁNGULO D d m Como vemos, A 1 A ; A 3 A 4 ; A 5 A 6 ; A 7 A 8 8 Por esto el área de la figura roja es la mitad del área del rectángulo. Así: A RECTÁNGULO A FIGURA D d m

17 50 Un salón cuadrado tiene una superficie de 50 m. Hemos de embaldosarlo con losetas cuadradas de 5 cm de lado (se llaman losetas de 5 Ò 5). Cuántas losetas son necesarias? A LOSETA cm A SALÓN 50 m cm Para cubrir el salón se necesitan losetas. 65 Pág Para cubrir un patio rectangular, se han usado 540 baldosas de 600 cm cada una. Cuántas baldosas cuadradas de 0 cm de lado serán necesarias para cubrir el patio, idéntico, de la casa vecina? El patio tiene un área de cm 3,4 m. La superficie de una baldosa de 0 cm de lado es cm. Por tanto, se necesitan baldosas de 0 cm de lado para cubrir el patio. 400

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón:

PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón: PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO Halla la superficie y el perímetro del recinto marrón: Calcula el perímetro y el área de esta figura: Calcula el perímetro y el área de esta figura:

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales. TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón:

PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón: PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón: 2 ) Calcula el perímetro y el área de esta figura: 3 ) Calcula el perímetro y el área de

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 179

8Soluciones a los ejercicios y problemas PÁGINA 179 PÁGIN 179 Pág. 1 T eorema de Pitágoras 1 Calcula el área del cuadrado verde en cada uno de los siguientes casos: 14 cm 2 45 m2 60 m 2 30 cm 2 = 44 cm 2 = 15 m 2 2 Cuál es el área de los siguientes cuadrados?:

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa.

C 1 2 +C 2. 2 = h 2. El teorema de Pitágoras solo se aplica a triángulos rectángulos y relaciona los catetos con la hipotenusa. TEMA 8: TEOREMA DE PITÁGORAS. SEMEJANZA TEOREMA DE PITÁGORAS Un triángulo rectángulo es aquel que tiene un ángulo recto. A los lados que forman el ángulo recto se les llama catetos y al lado mayor, hipotenusa.

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

FÓRMULAS - FIGURAS PLANAS

FÓRMULAS - FIGURAS PLANAS SUPERFICIES (Círculo F. circulares) 1 FÓRMULAS - FIGURAS PLANAS L. circunferencia = 2 r = d 2 r x n o L. del arco = 360 o r d n o distancia = L x n o vueltas r = L : 2 d = L : n o vueltas = distancia :

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

13 LONGITUDES Y ÁREAS

13 LONGITUDES Y ÁREAS 1 LONGITUDES Y ÁREAS EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras. a),5 cm b) cm cm cm cm a) p,5 8 5 1 cm b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

Tema 15. Perímetros y áreas

Tema 15. Perímetros y áreas Matemáticas Ejercicios 1º ESO BLOQUE V: GEOMETRÍA Tema 15. Perímetros y áreas 1. Expresa en metros: a) 2000 mm b) 2 hm c) 1 dm e) 0,1 km c) 50 dam 2 d) 0,02 km 2 2. Transforma las siguientes unidades:

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

Áreas de figuras planas

Áreas de figuras planas Áreas de figuras planas ÁREA DEL TRIÁNGULO El área del triángulo es igual al semiproducto de la base por su altura. b A = b x Ejemplo: 4 cm 15 cm A = 15 x 4 = 30 cm 1 Calcula el área de los siguientes

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 139

6Soluciones a los ejercicios y problemas PÁGINA 139 ÁGIN 9 ág. RTI Figuras semejantes uáles de estas figuras son semejantes? uál es la razón de semejanza? F F F F es semejante a F. La razón de semejanza es. a) Son semejantes los triángulos interior y eterior?

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

Perímetros y áreas. La visión del ciego

Perímetros y áreas. La visión del ciego 11 Perímetros y áreas La visión del ciego El soldado miraba con lástima al anciano ciego que, apoyado en su bastón, tomaba el sol mientras sus ojos extintos intuían la posición del astro en el horizonte.

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

Figuras planas, propiedades métricas

Figuras planas, propiedades métricas Figuras planas, propiedades métricas Contenidos 1. Ángulos en la circunferencia Ángulo central y ángulo inscrito 2. Semejanza Figuras semejantes Semejanza de triángulos, criterios 3. Triángulos rectángulos

Más detalles

4, halla sen x y tg x. 5

4, halla sen x y tg x. 5 TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva

Más detalles

a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos

a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos TEMA 6.- GEOMETRÍA Y SEMEJANZA 1.- ÁNGULOS Y TRIÁNGULOS. Ángulo recto Ángulo llano Ángulo agudo Ángulo obtuso (mide 90º) (mide 180º) (mide menos de 90º) (mide más de 90º) Tipos de ángulos Ángulos complementarios

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar

Más detalles

, calcule el área del triángulo ABN.

, calcule el área del triángulo ABN. Universidad Peruana de iencias plicadas (UP) Perímetros y Áreas ompuestas 1. alcule el área de un triángulo isósceles si el ángulo desigual mide 30º y los lados iguales miden 8m. 30º 8 m 8 m. alcule el

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?

1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas

Más detalles

Clasifi cación de polígonos

Clasifi cación de polígonos Clasifi cación de polígonos Cuándo un polígono es regular? Marca la opción correcta. Sus ángulos son iguales. Sus lados son iguales. Sus lados y sus ángulos son iguales. Sus diagonales son iguales. Escribe

Más detalles

EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE

EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

15 Figuras y cuerpos

15 Figuras y cuerpos 15 Figuras y cuerpos 1 Longitudes 1 Determinar la altura de un triángulo equilatero de lado 4. Calcula su radio y su apotema 4 m 2 Un puente levadizo de entrada a un castillo tiene 6 metros de longitud.

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

open green road Guía Matemática tutora: Jacky Moreno .co

open green road Guía Matemática tutora: Jacky Moreno .co Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado.

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado. REPARTIDO Nº 6 1) Calcular la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 8 cm respectivamente. 2) Si la hipotenusa de un triángulo rectángulo mide 13 cm y uno de sus catetos

Más detalles

CENAFE MATEMÁTICAS POLÍGONOS

CENAFE MATEMÁTICAS POLÍGONOS POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:

Más detalles

Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA.

Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 2. Hoja 1 Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. 1. Un solar de forma triangular tiene dos lados de longitudes 140,5 m y 170,6 m, y el

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

(26)2x(3x 4) (1 3x)$(1 +x) = 2

(26)2x(3x 4) (1 3x)$(1 +x) = 2 Resuelve las siguientes ecuaciones ECUACIONES, INECUACIONES Y SISTEMAS. (1)25x 4 29x 2 +4 =0 (2)x 4 5x 2 +4 =0 (3)x 4 a(a +b)x 2 +a 3 b =0 (4)(x 2 5)$(x 2 3) =0 (5)x +2 = 4x +13 (6) x 1 12 = 2 x+1 (7)

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución:

1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución: 1.- Resuelve las siguientes ecuaciones: 2.-Resuelve las siguientes ecuaciones: 3.- En el último examen de Matemáticas mi amigo Juan sacó tres puntos menos que yo, y la nota de mi amiga Sara fue el doble

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS Diseñada por: Esp. María Cristina Marín Valdés INSTITUCIÓN EDUCATIVA EDUARDO FERNÁNDEZ BOTERO Área de Matemáticas Amalfi 2011 ÁREA Y PERÍMETRO

Más detalles

Medida directa y medida indirecta de una longitud

Medida directa y medida indirecta de una longitud Página 37 Medida directa y medida indirecta de una longitud 1. Conociendo la altura del edificio, a = 108 m, y la distancia que hay desde P a su base, d = 45 m, podemos calcular la longitud, l, del cable

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

EJERCICIOS PARA REPASAR EL TEMA SE SEMEJANZA

EJERCICIOS PARA REPASAR EL TEMA SE SEMEJANZA EJERCICIOS PARA REPASAR EL TEMA SE SEMEJANZA 1. Un muro proyecta una sombra de 3 m al mismo tiempo que un bastón de 1, m proyecta una sombra de 97 cm. Calcula la altura del muro. Puesto que se trata de

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando

Más detalles

Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas.

Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. Boletín de Actividades. Figuras Planas: Polígonos, Circunferencia y Círculo. Áreas y Perímetros de figuras complejas. 1.- Escribe el nombre de las siguientes líneas. 2.- Qué ángulos forman dos rectas perpendiculares?

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA N PÁGINA: 1 de 5 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: Duración: 8 HORAS Asignatura: Geometría ESTÁNDAR: Generalizo procedimientos de cálculo válidos para

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

I.E.S VICENTE ALEIXANDRE BARBATE

I.E.S VICENTE ALEIXANDRE BARBATE 1. Calcula el área y el perímetro de estas figuras:. Un sector circular mide 80 y tiene 10 de radio. Cuál es su área y su perímetro? 3. El área de la zona sombreada es de 35. Cuál es la superficie del

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles