La segunda observación permite reformular el problema de una manera más simple:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La segunda observación permite reformular el problema de una manera más simple:"

Transcripción

1 Problema partición Enunciado A: dados N enteros positivos, N>1, decir si estos pueden dividirse en dos grupos cuya suma sea la misma. Ejemplo: si el conjunto es {1,2,3,9,2,11,4}, una forma de partirlo en dos grupos con suma igual es {2,3,2} y {11,4,9,1}. Dos observaciones interesantes son: 1. Si la suma de todos los números es impar, el problema no tiene solución 2. Si la suma de todos los números es K, un número par, bastará con saber si hay UN subconjunto cuya suma sea K/2. La segunda observación permite reformular el problema de una manera más simple: Enunciado alternativo: dados N enteros positivos, establecer si de estos se puede sacar un subconjunto cuya suma sea K/2. Este enunciado es más simple porque se trata de encontrar un conjunto y no dos. Para lo que sigue en este documento M es K/2 y el conjunto de enteros positivos es A={k,k 1,k 2,...,k N-1 } Los algoritmos solución se pueden diseñar de varias formas. A continuación de presentan algunas: Solución exhaustiva o de fuerza bruta Básicamente consiste en generar todos los subconjuntos posibles y verificar si alguno de ellos cumple que sus elementos suman M. Se usará una cadena binaria b,b 1,b 2,...,b N-1 para representar cada uno de los subconjuntos de A. La convención de la representación es que si b j es 1, entonces k j está en el subconjunto representado. La siguiente tabla ilustra la biyección entre cadenas binarias de longitud 3 y subconjuntos de A={9,7,2}. Cadena binaria Subconjunto representado 1 {2} 1 {7} 11 {7,2} 1 {9} 11 {9,2} 11 {9,7} 111 {9,7,2} La generación exhaustiva de los subconjuntos de A se reduce a generar todas las cadenas binarias de longitud A. La verificación de uno cualquiera de estos subconjuntos consiste simplemente en establecer si la suma de sus elementos es M. Los algoritmos correspondientes son los siguientes: 1

2 PROCEDIMIENTO generar(ent_sal elegidos: arreglo [] de entero; ENT N: entero) (* OBJ: calcular el siguiente subconjunto para el problema PARTICIÓN, es decir, la siguiente cadena binaria PRE: elegidos[..n-1] es un vector de ceros y unos. Hay por lo menos un cero POS: elegidos CODIFICA el siguiente subconjunto *) k:entero k N-1; MQ (elegidos[k]=1) haga // recorre la cadena de derecha a izquierda... elegidos[k] // mientras haya unos k k-1 FinMQ elegidos[k] 1; //... una vez encuentra un,lo cambia a 1 FinPROCEDIMIENTO FUNCION verificar(ent cifras: arreglo [] de entero; ENT N,meta: entero; ENT elegidos: arreglo [] de entero):booleano (* OBJ: verificar si el SUBCONJUNTO codificado en elegidos[..n-1] es solución PRE: cifras[k]>, para todo k tal que <=k<n. POS: retorna True, si el SUBCONJUNTO codificado es solución. Retorna False, en otro caso *) suma,i:entero suma i MQ (i<n) haga SI(elegidos[i]=1) suma suma + cifras[i] i i+1 FinMQ Devolver (suma=meta) Ahora, el algoritmo principal que soluciona el problema es el siguiente: FUNCION solex(ent cifras: arreglo [] de entero; ENT N,meta: entero; ENT_SAL elegidos: arreglo [] de entero):booleano (* OBJ: obtener la solución del problema PARTICION por método exhaustivo PRE: cifras[k]>, para todo todo k tal que <=k<n. POS: retorna True, si encuentra una solución. Retorna False en otro caso *) cont, posibles: entero exito: booleano elegidos //inicializa el vector elegidos en cero. exito False cont 1 posibles 2 N MQ ( exito cont<posibles) generar(elegidos,n) exito verificar(cifras,n,meta,elegidos) cont cont+1 FinMQ Devolver exito Note que, en caso de haber solución, este algoritmo deja en elegidos[..n-1] la codificación de una partición apropiada. 2

3 Solución recursiva (divide y vencerás) Básicamente consiste en expresar la solución del problema original como una combinación de las soluciones de algunos problemas más pequeños, de la misma naturaleza del original. El problema original habla de saber si hay un subconjunto de A={k,k 1, k 2,...,k N-1 } que sume un número objetivo M. La búsqueda de la solución se puede pensar como una secuencia de decisiones D D 1...D N-1, tal que en la decisión D j se resuelve si el número k j se incluye o no en el subconjunto buscado. La siguiente figura muestra cómo cambiarían las dos variables del problema después de tomar la decisión D. {k,k 1, k 2,...,k N-1 }, M k va en la solución k no va en la solución {k 1, k 2,...,k N-1 }, M-k {k 1, k 2,...,k N-1 }, M El rectángulo de la parte superior de la figura muestra las variables del problema en su estado inicial: el conjunto de elementos sobre los cuales no se ha tomado ninguna decisión y el número objetivo inicial, M. Los dos rectángulos de la parte inferior muestran lo que puede suceder después de tomar decisión sobre k. En el rectángulo de la izquierda están las variables del problema después de resolver que k está en el conjunto solución. En el rectángulo de la derecha están las variables del problema después de resolver que k no está en el conjunto solución. Note que CUALQUIER solución potencial incluye a k en el subconjunto o no lo incluye. (no existen otras opciones para k.) Los tres rectángulos muestran estados del mismo problema. Además, los dos de la parte inferior representan instancias más pequeñas porque el conjunto de números es más pequeño y/o el número objetivo es menor. Observe que si se resuelven los dos problemas que pueden resultar de tomar la decisión D, sería fácil usar estas dos soluciones para dar respuesta al problema original: bastaría calcular la disyunción de las soluciones obtenidas. Ahora, las dos soluciones necesarias se pueden obtener recursivamente dado que los dos subproblemas son de la misma naturaleza del original, es decir son versiones o instancias más pequeñas del original Si se establece que partir(a,s) expresa si hay o no un subconjunto de A cuya suma es S, la siguiente definición recursiva formaliza la discusión anterior partir({k,k 1, k 2,...,k N-1 },M) partir({k 1,k 2,...,k N-1 },M-k ) partir({k 1,k 2,...,k N-1 },M) 3

4 Enseguida se da la definición recursiva completa, incluidos los casos de base de la recursión. Además, esta se refiere a una decisión cualquiera D j ( j<n), y el conjunto se reemplaza por el índice del elemento sobre el cual se toma decisión. partir(j,s) expresa si hay o no un subconjunto de {k j,k j+1,...,k N-1 } cuya suma es S partir(j,s) False si j=n [caso en el que el conjunto queda vacío] partir(j,s) True si j<n y S= [caso en el que el número objetivo es ] partir(j,s) partir(j+1,s) si j<n y k j >S partir(j,s) partir(j+1,s-k j ) partir(j+1,s) si j<n y k j <S La anterior definición se traduce de manera directa en un algoritmo recursivo. FUNCION partir(ent cifras: arreglo [] de entero; ENT j,n,meta: entero; ENT_SAL elegidos: arreglo [] de entero): booleano (* OBJ: obtener la solución del problema PARTICION por método recursivo PRE: <=j<=n. cifras[k]>, para todo <=k<n. meta>=. POS: retorna True si hay solución. Retorna False en otro caso. Si hay solución, elegidos[..n-1] CODIFICA un subconjunto solución mediante una cadena binaria *) temp: booleano SI(j=N) (* no hay más números en el conjunto *) Devolver False SI (meta=) Devolver True SI (cifras[j]>meta) (* el número sobre el cual se está decidiendo es mayor que el objetivo *) Devolver partir(cifras,j+1,n,meta,elegidos) elegidos[j] 1 (* registra que el número cifras[j] va en el subconjunto solución *) temp partir(cifras,j+1,n,meta-cifras[j],elegidos) SI (temp) Devolver True elegidos[j] (* registra que el número cifras[j] no va en el subconjunto solución *) Devolver partir(cifras,j+1,n,meta,elegidos) Note que, en caso de haber solución, este algoritmo deja en elegidos[..n-1] la codificación de una partición apropiada. POR HACER: i) estimar la complejidad temporal de este algoritmo y compararlo contra la del algoritmo exhaustivo, y ii) verificar si este algoritmo repite o hace cálculos innecesarios. Solución de programación dinámica Básicamente consiste en diseñar un proceso iterativo que calcule la ecuación recursiva obtenida, y lo haga de una manera más rápida. La ecuación en cuestión es: partir(j,s) expresa si hay o no un subconjunto de {k j,k j+1,...,k N-1 } cuya suma es S 4

5 partir(j,s) False si j=n partir(j,s) True si j<n y S= partir(j,s) partir(j+1,s) si j<n y k j >S partir(j,s) partir(j+1,s-k j ) partir(j+1,s) si j<n y k j <S Normalmente, la técnica de programación dinámica requiere la definición de estructuras de datos adicionales que sirvan para almacenar algunos resultados intermedios con el objeto de evitar que se repitan cálculos o que se hagan algunos innecesarios. Recuerde que el problema se trata de saber si hay un subconjunto de A={k,k 1, k 2,...,k N-1 } cuyos elementos sumen un número objetivo M. Lo primero que se recomienda, para obtener una solución de programación dinámica es hacer el diagrama de necesidades (o invariante) para la recurrencia partir(j,s): M S S-k j j j+1 N En este caso, el plano cartesiano ilustra que el valor de la función booleana (recurrente) partir en (j,s) se puede calcular fácilmente si se tiene calculada la recurrencia en los puntos (j+1,s) y (j+1,s-k j ). Dicho de otra forma, para calcularla en el punto (j,s) se necesita o se requiere tenerla calculada en los puntos (j+1,s) y (j+1,s-k j ). Ahora, si los cálculos se guardan en una gran matriz de dimensión (M+1)x(N+1), de tipo booleano, entonces esta debería llenarse de derecha a izquierda y de abajo hacia arriba, como se ilustra enseguida, con excepción de la primera fila y la última columna: M S S-k j j j+1 N 5

6 Si se sigue el orden de cálculo mencionado, en el momento en que se quiere calcular el valor de la celda (S,j) de la matriz (marcada con líneas horizontales) ya estarán calculadas las celdas necesarias (casillas rayadas diagonalmente), también estarán calculadas todas las casillas sombreadas, y faltarán por calcular las casillas blancas. El resultado estará en la casilla (M,), dado que allí estará el valor de partir(,m) que, según la definición, dice si hay o no un subconjunto de {k,k 1,...,k N-1 } cuya suma es M. El siguiente algoritmo define la matriz y la llena en el orden establecido arriba. FUNCION solprogdin(ent cifras: arreglo [] de entero; ENT N,M: entero): booleano (* OBJ: obtener la solucion del problema PARTICION por programación dinámica PRE: cifras[k]>, para todo k>= y k<n. N<MAX y M<MAX POS: retorna True, si encuentra una solución. retorna False en otro caso *) mat: matriz[max][max] de booleano s,j: entero PARA s HASTA M HACER mat[s][n] False PARA j HASTA N HACER mat[][j] True PARA(j N-1 HASTA HACER PARA s 1 HASTA M HACER SI (cifras[j]>s) mat[s][j] mat[s][j+1] SI (cifras[j] s) mat[s][j] mat[s][j+1] mat[s-cifras[j]][j+1] Devolver mat[m][] POR HACER: i) estimar la complejidad temporal de este algoritmo y compararlo contra la del algoritmo exhaustivo y la del algoritmo recursivo, ii) El anterior algoritmo es mejorable en espacio: se puede usar un par de vectores de tamaño M+1, en vez de una matriz, y iii) rehaga este algoritmo para que, durante el llenado de la matriz, también se vaya haciendo el registro de una solución (arreglo elegidos) 6

Programación Dinámica 1

Programación Dinámica 1 Programación Dinámica 1 El método de programación dinámica sirve para resolver problemas combinando las soluciones de subproblemas. Normalmente es usada para resolver problemas de optimización. Al construir

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos

Más detalles

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo. Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter

Más detalles

MAXIMOS Y MINIMOS RELATIVOS

MAXIMOS Y MINIMOS RELATIVOS MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

El determinante de una matriz se escribe como. Para una matriz, el valor se calcula como:

El determinante de una matriz se escribe como. Para una matriz, el valor se calcula como: Materia: Matemática de 5to Tema: Definición de Determinantes Marco Teórico Un factor determinante es un número calculado a partir de las entradas de una matriz cuadrada. Tiene muchas propiedades e interpretaciones

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

1.- Para cada uno de los siguientes problemas escribir el diagrama de flujo y el pseudocódigo de un programa que lo resuelva:

1.- Para cada uno de los siguientes problemas escribir el diagrama de flujo y el pseudocódigo de un programa que lo resuelva: 1.- Para cada uno de los siguientes problemas escribir el diagrama de flujo y el a) Problema: pedir la base y la altura de un triángulo y escribir su superficie. b) Problema: pedir cuatro números enteros

Más detalles

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura: 4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES EL PROBLEMA DE OBTENER LOS CEROS O RAÍCES DE UNA ECUACIÓN ALGEBRAICA O TRASCENDENTE, ES UNO DE LOS REQUERIDOS MAS FRECUENTEMENTE, DEBIDO A ELLO

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

Grafos. Amalia Duch Brown Octubre de 2007

Grafos. Amalia Duch Brown Octubre de 2007 Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido

Más detalles

10.4 Sistemas de ecuaciones lineales

10.4 Sistemas de ecuaciones lineales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 001 y MATE 02 Clase #11: martes, 14 de junio de 2016. 10.4 Sistemas de ecuaciones lineales

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013

Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer

Más detalles

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES Ignacio López Torres. Reservados todos los derechos. Prohibida la reproducción total o parcial de esta obra, por cualquier medio electrónico

Más detalles

Tema 9. Algoritmos sobre listas. Programación Programación - Tema 9: Algoritmos sobre listas

Tema 9. Algoritmos sobre listas. Programación Programación - Tema 9: Algoritmos sobre listas Tema 9 Algoritmos sobre listas Programación 2015-2016 Programación - Tema 9: Algoritmos sobre listas 1 Tema 9. Algoritmos sobre listas Algoritmos sobre Arrays. Búsqueda. Inserción. Ordenación. Programación

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

A l g o r i t m o y E s t r u c t u r a d e D a t o s Ing. en Sistemas de Información 1º año

A l g o r i t m o y E s t r u c t u r a d e D a t o s Ing. en Sistemas de Información 1º año Trabajo práctico Nº 5 (Resolución de problemas Arreglos bidimensionales ). Realiza el programa en Lenguaje C correspondiente. 1- Qué hay de incorrecto en los siguientes códigos? int main() { int x,y; int

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

SISTEMAS DE NUMERACION

SISTEMAS DE NUMERACION SISTEMAS DE NUMERACION INTRODUCCION El número de dígitos de un sistema de numeración es igual a la base del sistema. Sistema Base Dígitos del sistema Binario 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

Algoritmos glotones. mat-151

Algoritmos glotones. mat-151 Algoritmos glotones (greedy) mat-151 Alonso Ramirez Manzanares Computación y Algoritmos 04.06.2009 Algoritmos glotones Algoritmos utilizados en problemas de optimización. Estos algoritmos siguen típicamente

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21 Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está

Más detalles

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x

Más detalles

Problemas de Recursividad

Problemas de Recursividad Problemas de Recursividad Problema 1. El factorial de un número entero n 0, denotado como n!, se define! como!!! i = 1 2 n cuando n > 0, y 0! = 1. Por ejemplo 6! = 1 2 3 4 5 6 = 720 Diseñad una método

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo Algoritmos En general, no hay una definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un número finito de pasos convierten

Más detalles

Problema de las N Reinas. Resolución paralela

Problema de las N Reinas. Resolución paralela Problema de las N Reinas Resolución paralela Indice Introducción al problema Representación y Soluciones Resolución secuencial Resolución paralela Conclusiones Bibliografía 2 3 Introducción Introducción

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

LA ALEGRIA DE MULTIPLICAR

LA ALEGRIA DE MULTIPLICAR LA ALEGRIA DE MULTIPLICAR Octavio Montoya$ Profesor Universidad del Tolima t January 22, 2010 Abstract En este documento se presentan dos formas didácticas y divertidas de multiplicar números enteros.

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

Proyecto Guao ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS

Proyecto Guao ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS Un modelo a escala de un auto de carreras está en proporción 1:x a un auto de carreras real. La longitud del modelo es unidades y la longitud del automóvil

Más detalles

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales Curso-0 1 Introducción a los Sistemas Digitales Conceptos básicos de matemática aplicada a los sistemas digitales 2 Contenidos Conjuntos numéricos Notación científica Redondeo Logaritmos Resumen 3 Conjuntos

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

Algoritmos y programas. Algoritmos y Estructuras de Datos I

Algoritmos y programas. Algoritmos y Estructuras de Datos I Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de

Más detalles

Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS

Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS Capitulo 4. DECISIONES BAJO RIESGO TEORIA DE JUEGOS INTRODUCCIÓN En el mundo real, tanto en las relaciones económicas como en las políticas o sociales, son muy frecuentes las situaciones en las que, al

Más detalles

Ecuaciones Diofánticas

Ecuaciones Diofánticas 2 Ecuaciones Diofánticas (c) 2011 leandromarin.com 1. Introducción Una ecuación diofántica es una ecuación con coeficientes enteros y de la que tenemos que calcular las soluciones enteras. En este tema

Más detalles

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011 Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................

Más detalles

Series aritméticas. ó La suma de los primeros n términos en una serie se representa por S n. . Por ejemplo: S 6

Series aritméticas. ó La suma de los primeros n términos en una serie se representa por S n. . Por ejemplo: S 6 LECCIÓN CONDENSADA 9.1 Series aritméticas En esta lección aprenderás terminología y notación asociada con series descubrirás una fórmula para la suma parcial de una serie aritmética Una serie es la suma

Más detalles

5.2. Sistemas de codificación en binario

5.2. Sistemas de codificación en binario 5.2. Sistemas de codificación en binario 5.2.1. Sistemas numéricos posicionales [ Wakerly 2.1 pág. 26] 5.2.2. Números octales y hexadecimales [ Wakerly 2.2 pág. 27] 5.2.3. Conversión general de sistemas

Más detalles

Guía práctica de estudio 06: Lenguaje binario

Guía práctica de estudio 06: Lenguaje binario Guía práctica de estudio 06: Lenguaje binario Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 06: Lenguaje binario

Más detalles

Resolución de problemas mediante ecuaciones.

Resolución de problemas mediante ecuaciones. Resolución de problemas mediante ecuaciones. 1.- La suma de un número con el doble de ese mismo número es 72. Cuál es ese número? 2.- Un señor compró 2 kilos de papas y 3 de tomates. El kilo de papas costaba

Más detalles

Representación de números enteros: el convenio exceso Z

Representación de números enteros: el convenio exceso Z Representación de números enteros: el convenio exceso Z Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior d

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Semestre I-2014.

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Semestre I-2014. Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Semestre I-2014 Práctica #3 1) Qué es un latch? Qué es un flip-flop? 2) Si se aplican

Más detalles

Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos

Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos Algoritmos y Estructuras de Datos I 1 cuatrimestre de 009 Departamento de Computación - FCEyN - UBA Programación funcional - clase Tipos algebraicos Tipos algebraicos y abstractos ya vimos los tipos básicos

Más detalles

Tema II: Metodología para la construcción de programas

Tema II: Metodología para la construcción de programas Tema II: Metodología para la construcción de programas Semestre: A-2012 Profesora: Nelly García Mora Agenda 1. Definición 2. Análisis E P S 3. Construcción de Algoritmos 4. Diagramas de Flujo 5. Codificación

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel

Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel Ing Jesús Javier Cortés Rosas M en A Miguel Eduardo González Cárdenas M en A Víctor D Pinilla Morán Facultad de Ingeniería,

Más detalles

ARREGLOS Y MATRICES 1. Arreglos

ARREGLOS Y MATRICES 1. Arreglos ARREGLOS Y MATRICES 1. Arreglos Un arreglo es una estructura de datos, o más técnicamente, un espacio de memoria que permite almacenar una colección de elementos, todos del mismo tipo. Conviene imaginar

Más detalles

SISTEMAS INFORMÁTICOS PROGRAMACION I - Contenidos Analíticos Ing. Alejandro Guzmán M. TEMA 2. Diseño de Algoritmos

SISTEMAS INFORMÁTICOS PROGRAMACION I - Contenidos Analíticos Ing. Alejandro Guzmán M. TEMA 2. Diseño de Algoritmos TEMA 2 Diseño de Algoritmos 7 2. DISEÑO DE ALGORITMOS 2.1. Concepto de Algoritmo En matemáticas, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latín, dixit algorithmus

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

Algoritmos. Autor: José Ángel Acosta Rodríguez

Algoritmos. Autor: José Ángel Acosta Rodríguez Autor: 2006 ÍNDICE Página Índice 1 Problema 1. Movimiento de figuras geométricas.2 Problema 2. Conversión decimal a binario....3 Problema 3. Secuencias binarias..4 Problema 4. Conversión a binario a octal...

Más detalles

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función Sobre la pantalla principal de DERIVE distinguimos: 1) La barra del menú 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función UNIDAD DOCENTE DE MATEMÁTICAS

Más detalles

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética 12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.

Más detalles

ULADECH Escuela Profesional de Contabilidad

ULADECH Escuela Profesional de Contabilidad Fórmulas Las fórmulas son ecuaciones que efectúan cálculos con los valores de las celdas de la hoja de cálculo. Una fórmula comienza por un signo igual (=). Son operaciones entre celdas, o combinaciones

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Cadenas de Markov. José Antonio Camarena Ibarrola

Cadenas de Markov. José Antonio Camarena Ibarrola Cadenas de Markov José Antonio Camarena Ibarrola Definiciones elementales El proceso discreto cadena de Markov si se cumple es denominado es la probabilidad de que en el tiempo k, el proceso esté en el

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Curso de Programación 1

Curso de Programación 1 Curso de Programación 1 Plan 97 Búsqueda y Ordenación Métodos de búsqueda Existen aplicaciones en las cuales es necesario consultar si un elemento se encuentra dentro de un array. A continuación veremos

Más detalles

Distinguir las diferentes estructuras de repetición utilizadas en problemas con bucles: mientras, repetir mientras, para.

Distinguir las diferentes estructuras de repetición utilizadas en problemas con bucles: mientras, repetir mientras, para. ESTRUCTURAS ITERATIVAS 1 ESTRUCTURAS ITERATIVAS OBJETIVOS Aprender a resolver problemas mediante la ejecución repetida de una secuencia de proposiciones llamados bucle o estructuras repetitivas o iterativas.

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles

Alonso Ramírez Manzanares Computación y Algoritmos 10.03

Alonso Ramírez Manzanares Computación y Algoritmos 10.03 Recursividad mat-151 1 Ejercicio de recursión: dibujando una regla Queremos dibujar las marcas de diferentes tamaños de una regla. Marcas grandes cada 1/2 cm, marcas más pequeñas cada 1/4 cm... hasta una

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

TUTORIAL PSEINT. Ing. Ronald Rentería Ayquipa. Fundamentos de Programación

TUTORIAL PSEINT. Ing. Ronald Rentería Ayquipa. Fundamentos de Programación TUTORIAL PSEINT Ing. Ronald Rentería Ayquipa Fundamentos de Programación PSEINT Página Oficial: http://pseint.sourceforge.net/ Es un software que interpreta pseudocódigo. Permite la generación de diagramas

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Ejemplo de formato condicional según contenido de la celda

Ejemplo de formato condicional según contenido de la celda Pág. 1 Ejemplos con formato condicional con OpenOffice.org 3 Calc El formato condicional resulta de gran importancia porque permite que las celdas tomen propiedades diferentes dependiendo del contenido.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN

MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN Cuando se analiza un conjunto de datos, normalmente muestran una tendencia a agruparse o aglomerarse alrededor de un punto central. Para describir ese conjunto

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

4 CAJA DE POLINOMIOS C A P Í T U L O 4.1 MANUAL BÁSICO DE LA CAJA DE POLINOMIOS

4 CAJA DE POLINOMIOS C A P Í T U L O 4.1 MANUAL BÁSICO DE LA CAJA DE POLINOMIOS C A P Í T U L O 4 CAJA DE POLINOMIOS Por: Jhon Fredy Saavedra Delgado Licenciatura en Matemáticas Universidad del Tolima jfredymatematico@gmail.com En este capítulo se mostrará el manejo básico del demo

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Capítulo 1. Algoritmos, diagramas de flujo y programas.

Capítulo 1. Algoritmos, diagramas de flujo y programas. Capítulo 1. Algoritmos, diagramas de flujo y programas. 1.1 Problemas y algoritmos 1.2 Diagramas de flujo 1.2.1 Reglas para la construcción de diagramas de flujo 1.3 Conceptos fundamentales 1.3.1 Tipos

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos, simbolizados por C, son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c

Más detalles

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 secundaria Eje temático: MI Contenido: 7.2.7 Identificación y resolución de situaciones de proporcionalidad directa

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE

Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de

Más detalles

SIMPLIFICACIÓN DE FUNCIONES LÓGICAS

SIMPLIFICACIÓN DE FUNCIONES LÓGICAS LABORATORIO # 4 Realización: SIMPLIFICACIÓN DE FUNCIONES LÓGICAS 1. OBJETIVOS Los objetivos de este laboratorio es que Usted, aprenda a: Simplificar funciones utilizando mapas de Karnaugh Utilizar compuertas

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

Soluciones - Tercer Nivel Juvenil

Soluciones - Tercer Nivel Juvenil SOIEDD EUTORIN DE MTEMÁTI ETP LSIFITORI "VII EDIIÓN DE LS OLIMPIDS DE L SOIEDD EUTORIN DE MTEMÁTI" Soluciones - Tercer Nivel Juvenil 01 de abril de 010 1. Una mesa cuadrada tiene 1 m de lado. uál es el

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Acuerdo 286 Matemáticas

Acuerdo 286 Matemáticas Acuerdo 286 Matemáticas Habilidad Matemática Fausto Zarate Melchor Habilidad Matemática. La habilidad matemática se compone de dos tipos de habilidad: la espacial y la numérica. a) Representación del espacio.

Más detalles

Longitud Lado 1 Longitud Lado 2 Perímetro Área. En base a lo anterior, Cuál es la decisión que debe tomar Romualdo?

Longitud Lado 1 Longitud Lado 2 Perímetro Área. En base a lo anterior, Cuál es la decisión que debe tomar Romualdo? 1 EL PROBLEMA DEL GALLINERO Romualdo tiene un rancho muy extenso y quiere construir un gallinero para la crianza de sus gallinas. Remigio, su yerno, le ha regalado 40 metros de malla para gallinero. Romualdo

Más detalles

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico Materia: Matemática de 5to Tema: Método de Cramer Marco Teórico El determinante se define de una manera aparentemente arbitraria, sin embargo, cuando se mira a la solución general de una matriz, el razonamiento

Más detalles

Guía práctica de estudio 06: Lenguaje binario

Guía práctica de estudio 06: Lenguaje binario Guía práctica de estudio 06: Lenguaje binario Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 06: Lenguaje binario

Más detalles