Problemas Tema 1: Señales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas Tema 1: Señales"

Transcripción

1 Curso Académico Problemas Tema : Señales PROBLEMA. Una señal continua (t) se muestra en siguiente figura. Dibuje y marque cuidadosamente cada una de las siguientes señales [Prob.. del Oppenheim]: a) ( t ) b) ( t) d) ( t + ) e) ( t / ) c) [ ( t) + ( t) ] u( t) 4 f) ( t) [ δ ( t + 3 / ) δ ( t 3 / )] PROBLEMA. Una señal discreta se muestra en siguiente figura. Dibuje y marque cuidadosamente cada una de las siguientes señales [Prob.. del Oppenheim]: a) [n-4] b) [3-n] c) [3n] n d) [3n+] e) [n]u[3-n] f) [ n] + ( ) [ n] g) [ n ] [ n ] δ h) [(n-) ] PROBLEMA 3. Realice las transformaciones de señal indicadas en cada caso: t a) Siendo (t) = u(t) - u(t - ), calcule (t), y (-t). b) Siendo (t) = u(t + ) - u(t - ), calcule (t - ) y (t + 3). c) Siendo (t) = u(t + ) - u(t - 3), calcule (t) + y (t) -. PROBLEMA 4. Calcule la parte par y la parte impar de las siguientes señales continuas [Prob..3 del Oppenheim]:

2 Curso Académico PROBLEMA 5. Calcule la parte par y la parte impar de las siguientes señales discretas [Prob..4 del Oppenheim]: Problema 6. Determinar si cada una de las siguientes señales es o no periódica. Si la señal es periódica, especifique su periodo fundamental [Prob..9,.0,. y.5 del Oppenheim]. a) t je j 0 ( ) = t b) ( t) e d) 4[ ] n = 3e j n 3π ( + / )/ 5 f) 6 ( t) = cos( 0t + ) sen( 4t ) g) 7[ ] π n = + e e j4 n/ 7 jπn/ 5 e) 5[ ] ( j) t = + c) 3[ ] n = 3e j n 3/ 5( + / ) h) 8 ( t) = [ cos( t π / 3) ] n e j 7π = n PROBLEMA 7. Sean las señales en tiempo continuo siguientes. [Febrero 003]. cos π t π 4 3 π t 8 π 6 ( t) = + ; ( t) = sen a) Son señales periódicas? Cuál es el periodo fundamental de cada una? Cuál es el periodo fundamental de (t) = (t) + (t)? b) Sea la señal 3 (t) = (t) + (t) + 5. Determine su periodo fundamental. PROBLEMA 8. Sean las señales en tiempo discreto siguientes. [Septiembre 003]. cos π π 4 3 π 8 π [ n] = n + ; [ n] = sen n a) Razonar si son señales periódicas o no, y en caso de que lo sean, decir cuál es el periodo fundamental de cada una. b) Sea la señal 3 [n] = [n] + [n] + 5. Determine su periodo fundamental.

3 Curso Académico PROBLEMA 9. Sea una señal continua (t) y una secuencia discreta [n] tales que: j j j0t j0n ( t) = e ; [ n] = e a) Estudie la periodicidad de ambas señales. b) Calcule el módulo de (t), (t). c) Calcule la parte imaginaria de (t), Im{(t)}. PROBLEMA 0. Dada la siguiente señal, (t). a) Obtenga la epresión analítica y la representación gráfica de su derivada. b) Eprese la señal (t) en función de escalones. PROBLEMA. Considere la señal discreta siguiente [Prob.. del Oppenheim]: [ ] = δ [ ] n n k Determine los valores de los enteros M y n 0 de manera que [n] se eprese como: k = 3 [ n] = u[ Mn n 0 ] PROBLEMA. Considere una señal periódica [Prob..4 del Oppenheim]: 0 t ( t) = < t < con periodo T =. La derivada de esta señal está relacionada con el tren de impulsos con periodo T =. Puede demostrarse que: g( t) = δ ( t k) k = d( t) dt = A g( t t ) + A g( t t ) Determine los valores de A, t, A y t. 3

4 Curso Académico PROBLEMA 3. Determinar los valores de la potencia media y la energía para cada una de las siguientes señales [Prob..3 del Oppenheim]: a) (t)= e -t u(t) b) (t) = e j(t+π/4) c) 3 (t) = cos (t) d) [n] = (/) n u[n] e) [n] = e j(π/n+π/8) f) 3 [n] = cos((π/4)n) PROBLEMA 4. Considere la señal continua ( t) = δ ( t + ) δ ( t ). Calcule el valor de la energía para la señal [Prob..3 del Oppenheim]: PROBLEMA 5. Considere la señal continua: t y( t) = ( τ ) dτ ( t) = cos( 6π t) + sen( π t 6π ) + a) Determine si (t) es periódica. Caso de serlo, determine su periodo fundamental. b) Calcule el valor medio de (t). c) Calcule la potencia de (t). PROBLEMA 6. Dada la secuencia discreta: 5 [ n] = δ [ n 5k] δ [ n 5k] δ [ n 3 k] k= a) Calcule el valor medio de [n]. b) Calcule la potencia de [n]. c) Calcule la parte impar de [n]. k= k= PROBLEMA 7. Considere el siguiente par de señales continuas: ( t) = u( t ) + ( t 3) u( t 3) + ( 5 t) u( t 5) u( t 6) u( t 7) a) Calcule la energía de (t). b) Escriba la señal y(t) en función de (t). t 5 c) Calcule la señal z ( t) = u( t 0) u( t 5). Estudie su simetría. 4

5 Curso Académico PROBLEMA 8. Considere la señal de la figura [Septiembre 004]. (t) t Represente gráficamente las siguientes señales. a) ( t) = d( t) dt b) ( t) ( t) ( ) d t = + dt 3 t = t 4 + t + 4 c) ( ) ( ) ( ) t 4 t = d) ( ) PROBLEMA 9. Considere el esquema de procesado de señal de la figura. [Septiembre 006]. a) Para la señal (t), analice la periodicidad y la simetría, y calcule su valor medio, su energía y su potencia. b) Construya la señal 5 (t). c) Para la señal 5 (t), analice la periodicidad y la simetría, y calcule su valor medio y su potencia. 5

6 Curso Académico Soluciones PROBLEMA. t PROBLEMA 3. a) (t) = u(t) - u(t ); = u(t) - u(t 4); (-t) = u(t + ) - u(t). b) (t - ) = u(t) - u(t 3); (t + 3) = u(t + 4) - u(t + ); c) u(t + ) - u(t - 3) + ; u(t + ) - u(t -3) -. 6

7 Curso Académico PROBLEMA 4. PROBLEMA 5. PROBLEMA 6. a) (t) periódica, de periodo T = π/0 sg.; b) (t) no es periódica; c) 3 [n] periódica, de periodo N = ; d) 4 [n] periódica, de periodo N = 0; e) 5 [n] no es periódica; f) 6 (t) periódica, de periodo T = π sg.; g) 7 [n] periódica, de periodo N = 35; h) 8 (t) periódica, de periodo T = π/ sg. PROBLEMA 7. a) (t) periódica, de periodo T = 8 sg.; (t) periódica, de periodo T = 6 sg.; (t) periódica, de periodo T = 6; b) T = 6. PROBLEMA 8. a) [n] periódica, de periodo N = 8; [n] periódica, de periodo N = 6; (n) periódica, de periodo N = 6; b) N = 6. PROBLEMA 9. a) [n] no es periódica; (t) periódica, de periodo T = π/5 sg.; b) (t) =; c) Im{(t)} = sen(0t + 3π/4). 7

8 Curso Académico ( t) = d PROBLEMA 0. a) δ(t + ) - δ (t + ) - δ (t) + δ (t - ) + δ (t - ) - δ (t - 3); dt b) (t) = u(t + ) - u(t + ) - u(t) + u(t - ) + u(t - ) - u(t - 3) PROBLEMA. M = -; n 0 = -3. PROBLEMA. A = 3, t = 0; A = -3, t =. PROBLEMA 3. a) P = 0 W, E = 0,5 J (definida en energía); b) P = W, E = (definida en potencia); c) P = 0,5 W, E = (definida en potencia); d) P = 0 W, E = 4/3 J (definida en energía); e) P = W, E = (definida en potencia); (f) P = 0,5 W, E = (definida en potencia). PROBLEMA 4. E = 4 J. PROBLEMA 5. a) (t) periódica, de periodo T = /3 sg.; b) ; c) 7/ W. PROBLEMA 6. a) 0; b) 3/0 W; c) 0. t 5 PROBLEMA 7. a) E = 68/3 J; b) y ( t) = ; c) z(t) tiene simetría impar. 8

apuntes señales SEÑALES Y SISTEMAS 1.- Representar convenientemente a la señal de entrada x 3.- Obtener la salida usando el método mas apropiado

apuntes señales SEÑALES Y SISTEMAS 1.- Representar convenientemente a la señal de entrada x 3.- Obtener la salida usando el método mas apropiado SEÑALES Y SISTEMAS 2.1.-INTRODUCCION: Tal y como se dijo anteriormente, los sistemas de comunicación eléctrica son los que han tenido más éxito debido a que logran la mayor eficiencia al transmitir mas

Más detalles

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal Señales y Sistemas Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas Señales El procesamiento de señales es el objeto de la asignatura, así que no vendría mal comentar

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias

SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias SEÑALES Y SISTEMAS - AÑO 2015 Práctica 1: Señales Determinísticas e Introducción a las Señales Aleatorias 1. Impulsos continuos y discretos a) Enuncie la propiedad de extracción de la delta de Dirac. b)

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Señales y Sistemas II

Señales y Sistemas II 1 Señales y Sistemas II Módulo I: Señales y Sistemas Discretos Contenido de este módulo 2 1.- Tipos de señales y operaciones básicas 2.- Tipos de sistemas y sus propiedades 3.- Respuesta impulsiva y convolución

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

Tema 1: Señales y Sistemas

Tema 1: Señales y Sistemas c Luis Vielva, Grupo de Tratamiento Avanzado de Señal. Dpt. Ingeniería de Comunicaciones. Universidad de Cantabria. Señales y sistemas. Tema 1: Señales y Sistemas. OpenCourseWare p. 1/58 Tema 1: Señales

Más detalles

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2) SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos Asignatura: SISTEMAS LINEALES Curso académico: 2007/2008 Código: 590000804 Créditos: 6 Curso: 2 Horas/Semana:4 Teoría + 0 Laboratorio Departamento: ICS Objetivos 1() Para todas las titulaciones OBJETIVOS

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

Análisis de Sistemas Lineales: segunda parte

Análisis de Sistemas Lineales: segunda parte UCV, Facultad de Ingeniería, Escuela de Ingeniería Eléctrica. Análisis de Sistemas Lineales: segunda parte Ebert Brea 7 de marzo de 204 Contenido. Análisis de sistemas en el plano S 2. Análisis de sistemas

Más detalles

TEMAS 4 LAS FUNCIONES ELEMENTALES

TEMAS 4 LAS FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES MATEMÁTICAS CCSSI º Bach. TEMAS 4 LAS FUNCIONES ELEMENTALES Son funciones? EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.

Más detalles

Señales: Tiempo y Frecuencia PRÁCTICA 1

Señales: Tiempo y Frecuencia PRÁCTICA 1 Señales: Tiempo y Frecuencia PRÁCTICA 1 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 1 Señales: Tiempo y Frecuencia 1. Objetivo El objetivo de esta primera práctica es revisar: las principales

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado!

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado! El Producto escalar para las comunicaciones (parte ) Luca Mar9no Apuntes no revisados Cuidado! Producto Escalar El producto escalar, también conocido como producto interno o producto punto, es una operación

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos. Programa

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos. Programa Asignatura: SISTEMAS LINEALES Curso académico: 2012/2013 Código: 590000628 Créditos: 6 Curso: 2 Horas/Semana:4 Teoría + 0 Laboratorio Departamento: ICS Objetivos 1() Para todas las titulaciones OBJETIVOS

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

1. Sistemas Muestreados

1. Sistemas Muestreados . Sistemas Muestreados. Sistemas Muestreados.. Introducción 2.2. Secuencias 5.3. Sistema Discreto 5.4. Ecuaciones en Diferencias 6.5. Secuencia de Ponderación de un Sistema. 7.6. Estabilidad 9.7. Respuesta

Más detalles

CÁLCULO DE DERIVADAS

CÁLCULO DE DERIVADAS TEMA 4 CÁLCULO DE DERIVADAS Contenidos Criterios de Evaluación 1. Función derivada.. Derivadas sucesivas. 3. Derivadas elementales. 4. Álgebra de derivadas. 5. La Regla de la Cadena. 6. Continuidad y derivabilidad.

Más detalles

Teoría de Conjuntos y Conjuntos Numéricos

Teoría de Conjuntos y Conjuntos Numéricos Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

1. FUNCIÓN REAL DE VARIABLE REAL

1. FUNCIÓN REAL DE VARIABLE REAL 1. FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una aplicación de un subconjunto de los nº reales ( R ) en otro subconjunto de R f : D R R Se representa de la siguiente forma: Una

Más detalles

F. de C. E. F. y N. de la U.N.C. Teoría de las Comunicaciones Departamento de Electrónica GUIA Nº 4

F. de C. E. F. y N. de la U.N.C. Teoría de las Comunicaciones Departamento de Electrónica GUIA Nº 4 4.1- Realice el desarrollo analítico de la modulación en frecuencia con f(t) periódica. 4.2- Explique el sentido el índice de modulación en frecuencia y su diferencia con la velocidad de modulación. 4.3-

Más detalles

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

Sistemas Lineales. Examen de Septiembre Soluciones

Sistemas Lineales. Examen de Septiembre Soluciones Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Cálculo de derivadas

Cálculo de derivadas 0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa

Más detalles

REPASO DE ÁLGEBRA PRIMERA PARTE: RADICALES, LOGARITMOS Y POLINOMIOS

REPASO DE ÁLGEBRA PRIMERA PARTE: RADICALES, LOGARITMOS Y POLINOMIOS Ejercicio nº.- Simplifica: REPASO DE ÁLGEBRA PRIMERA PARTE: RADICALES, LOGARITMOS Y POLINOMIOS a) b) a a Ejercicio nº.- Epresa en forma de intervalo las soluciones de la desigualdad: El intervalo [, 6].

Más detalles

TRIGONOMETRÍA ANALÍTICA

TRIGONOMETRÍA ANALÍTICA TRIGONOMETRÍA ANALÍTICA....4 El estudio de las funciones trigonométricas comenzó en el Capítulo 9, con los radianes la transformación de funciones trigonométricas. Este capítulo se concentra en la resolución

Más detalles

FUNCIONES POLINÓMICAS

FUNCIONES POLINÓMICAS PRÁCTICAS CON DERIVE 28 NUM.de MATRÍCULA FECHA... APELLIDOS /Nombre...PC PRÁCTICA CUATRO. FUNCIONES ELEMENTALES FUNCIONES POLINÓMICAS Dado un entero n 0, la función f(x) =a 0 x n + a 1 x n 1 + a 2 x n

Más detalles

Matlab para Análisis Dinámico de Sistemas

Matlab para Análisis Dinámico de Sistemas Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

Práctica 2: Periodicidad

Práctica 2: Periodicidad Práctica 2: Periodicidad Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es explorar las utilidades de representación gráfica de MATLAB para observar las especiales

Más detalles

Práctica 3. Sistemas Lineales Invariantes con el Tiempo

Práctica 3. Sistemas Lineales Invariantes con el Tiempo Universidad Carlos III de Madrid Departamento de Teoría de la Señal y Comunicaciones LABORATORIO DE SISTEMAS Y CIRCUITOS CURSO 2003/2004 Práctica 3. Sistemas Lineales Invariantes con el Tiempo 12 de diciembre

Más detalles

Funciones reales de variable real

Funciones reales de variable real Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.

Más detalles

Sistemas continuos. Francisco Carlos Calderón PUJ 2010

Sistemas continuos. Francisco Carlos Calderón PUJ 2010 Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

Matemática I (BUC) - Cálculo I. Práctica 1: FUNCIONES

Matemática I (BUC) - Cálculo I. Práctica 1: FUNCIONES Matemática I (BUC) - Cálculo I Práctica : FUNCIONES Matemática I (BUC) / Cálculo I - Funciones. Indique cuales de los siguientes dibujos podrían corresponder al gráfico de una función. Marque en el gráfico

Más detalles

Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4

Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4 Colegio Raimapu Departamento de Matemática Guía N Desigualdades e Inecuaciones Nombre del Estudiante: π ) Para el conjunto de números reales A = R / es verdadero que: I) A II), A III) A ) Qué condición

Más detalles

Complementos de matemáticas. Curso 2004-2005

Complementos de matemáticas. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería Técnica Industrial Complementos de matemáticas. Curso 004-005 Colección de ejercicios del tema 1 Las soluciones aparecen en color azul, y si disponéis de la posibilidad

Más detalles

( ) LA DERIVADA DE UNA FUNCIÓN. 1. En los siguientes ejercicios, halle dy. y = cos(sen(x )) y = x π π y = arccos(log(x + 1))

( ) LA DERIVADA DE UNA FUNCIÓN. 1. En los siguientes ejercicios, halle dy. y = cos(sen(x )) y = x π π y = arccos(log(x + 1)) U.C.V. F.I.U.C.V. CÁLCULO I (05) - TEMA Pág.: de 5. En los siguientes ejercicios, halle dy d :.....5..7..9... 5 0 0 ( + ).. π π.. 5 + 7.6. +.8. sec(log( + )) e.0. tg( ) e + sen( ).... ln(arctg())...5.

Más detalles

GUIA DE ESTUDIO PARA EXAMEN DEL PRIMER PERIODO PARCIAL

GUIA DE ESTUDIO PARA EXAMEN DEL PRIMER PERIODO PARCIAL Departamento de Bachillerato GUIA DE ESTUDIO PARA EXAMEN DEL PRIMER PERIODO PARCIAL PREPARATORIA UNAM MATEMÁTICAS V Plan 100 CICLO 06 / 07 NOMBRE DEL ESTUDIANTE: Apellido paterno Apellido materno Nombre(s)

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

Práctica 4 Límites, continuidad y derivación

Práctica 4 Límites, continuidad y derivación Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

. Obtenga la magnitud y dirección del vector E.

. Obtenga la magnitud y dirección del vector E. UNIVERSIDD CENTROMERICN JOSÈ SIMEÒN CÑS MTRICES Y VECTORES. CICLO 01 DE 2013. Hoja de ejercicios sobre vectores en R 2. SUM Y REST DE VECTORES EXPRESDOS COMO L COMBINCIÓN LINEL DE LOS VECTORES UNITRIOS

Más detalles

2.6. La integral de convolución

2.6. La integral de convolución 2.6. La integral de convolución 141 2.6. La integral de convolución La convolución entre dos funciones es un concepto físico importante en muchas ramas de la ciencia. Sin embargo, como sucede con muchas

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Función Cuadrática: Es toda función de la forma: f() = a ² + b + c con a, b, c números Reales Puede suceder que b ó c sean nulos, por ej: f() = ½ ² + 5 f() = 5 ² ¾ Pero a no puede ser = 0, de los contrario

Más detalles

13,20 13,25 13,30 13,35 13,40 13,45 13,50 13,55 14,00 14,05 14,10

13,20 13,25 13,30 13,35 13,40 13,45 13,50 13,55 14,00 14,05 14,10 05 Trabajo Práctico N : LÍMITE DE FUNCIONES Ejercicio : Un dispositivo registra los valores de la frecuencia cardiaca de un paciente internado. El gráfico muestra la frecuencia cardíaca epresada en pulsaciones

Más detalles

UNIDAD 7: PROGRESIONES OBJETIVOS

UNIDAD 7: PROGRESIONES OBJETIVOS UNIDAD 7: PROGRESIONES Reconocer sucesiones y deducir su regla de formación en los casos en que sea posible. Obtener distintos términos en sucesiones recurrentes. Distinguir si una sucesión es una progresión

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

Derivabilidad. Cálculo de Derivadas. 1 o Bach. Ciencias Dpto Matemáticas. 6. Derivar

Derivabilidad. Cálculo de Derivadas. 1 o Bach. Ciencias Dpto Matemáticas. 6. Derivar Derivabilidad Sea f una función y a Dom(f). Definimos derivada de f en = a al siguiente límite cuando eiste y es finito f (a) = lím h 0 f(a+h) f(a) h Cálculo de Derivadas 1. Derivar una potencia 2. Derivar

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 :

x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 : + ln 4 + f + 5 EJERCICIOS de LÍMITES DE FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log g) 0, + 4 i) 0+ + 4 e) j) 4. Dada la gráfica de la figura, indicar

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

Descripción y Objetivos Etapas del proyecto Presentación del producto Balance final Conclusiones generales. Universidad Técnica Federico Santa María

Descripción y Objetivos Etapas del proyecto Presentación del producto Balance final Conclusiones generales. Universidad Técnica Federico Santa María f s = 22050 x[n] n y[n] n x n x[n] C C D D L y n = L x n L C x n + sign x n 1 C D, x n < D, x n D x[n] n y[n] n x n x[n] D D u y 1 n = a x n 1,6 x n 1,6 x n + sign x n D 1 D a k = 2,5 D 0,997 D c L, x

Más detalles

Tema 4. Proceso de Muestreo

Tema 4. Proceso de Muestreo Ingeniería de Control Tema 4. Proceso de Muestreo Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Conocer el proceso de muestreo

Más detalles

Convergencia y existencia de la serie de Fourier

Convergencia y existencia de la serie de Fourier A Convergencia y existencia de la serie de Fourier A.1. Convergencia de la serie de Fourier* Posiblemente una de las mayores controversias respecto al desarrollo de Fourier fue su afirmación que cualquier

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles

ECUACIONES. Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn

ECUACIONES. Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn ECUACIONES Comprender el lenguaje algebraico para resolver ecuaciones Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn Estudiar en el

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. U de Talca Sesión 7 Regla de L Hopital Temas Regla de L Hopital. Aplicaciones de la Regla de L Hopital a otras formas indeterminadas. 7. Introducción Johann Bernoulli Suizo. (667-748) Capacidades Conocer y comprender

Más detalles

Representación de señales en MATLAB ( T.II.1)

Representación de señales en MATLAB ( T.II.1) Representación de señales en MALAB (.II. ste aneo incluye una reerencia del código Matlab utilizado para calcular y visualizar el espectro en recuencia de las señales continuas utilizadas en las prácticas,

Más detalles

MATEMÁTICAS. PRIMERO DE E.S.O.

MATEMÁTICAS. PRIMERO DE E.S.O. MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.

Más detalles

TEMA 3:ELECTROSTATICA

TEMA 3:ELECTROSTATICA TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

Facultad de Ciencias de la Electrónica CONTINUAS

Facultad de Ciencias de la Electrónica CONTINUAS Unidad II MUESTREO DE SEÑALES CONTINUAS OBJETIVO: Comprender los mecanismos del muestreo e introducir algunos de los conceptos fundamentales y notaciones para los sistemas muestreados. Ilustrar el problema

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad.

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad. Definición de derivada Observación: Algunos de los enunciados de estos problemas se an obtenido de Selectividad Halla, utilizando la definición, la derivada de la función f ( ) en el punto = Comprueba

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES

(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES (tema 9 del libro). FUNCIÓNES EXPONENCIALES Son funciones de la forma f ( ) a donde a 0 y a. Su dominio es todo R y van a estar acotadas inferiormente por 0, que es su ínfimo. Todas pasan por el punto

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

TRIGONOMETRÍA ANALÍTICA

TRIGONOMETRÍA ANALÍTICA TRIGONOMETRÍA ANALÍTICA....4 Los alumnos comenzaron a estudiar funciones trigonométricas en el Capítulo 7, cuando aprendieron sobre radianes la transformación de funciones trigonométricas. Aquí aprenderán

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 014 1S PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS

Más detalles

Determinación de la trasformada inversa mediante el uso de las fracciones parciales

Determinación de la trasformada inversa mediante el uso de las fracciones parciales 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones

Más detalles