Representación de señales en MATLAB ( T.II.1)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Representación de señales en MATLAB ( T.II.1)"

Transcripción

1 Representación de señales en MALAB (.II. ste aneo incluye una reerencia del código Matlab utilizado para calcular y visualizar el espectro en recuencia de las señales continuas utilizadas en las prácticas, así como su justiicación. Se distinguen dos casos, señales de tipo energía (tienen energía inita y señales de tipo potencia (con duración ininita y por tanto energía ininita, pero potencia inita. n las prácticas, la mayoría de las señales se considerarán periódicas e ininitas, por lo tanto de tipo PONCIA. Para señales de tipo energía n la asignatura de Sistemas Lineales se utiliza la transormada de Fourier para representar el espectro. Para señales de tipo energía, se utiliza esta representación, ya que su módulo al cuadrado tiene un sentido ísico, que es la densidad espectral de energía: ( G ( Para obtener en Matlab la F de una señal continua, se acude a aproimaciones numéricas. Dada una señal ( t, la integral que involucra el cálculo de su F se puede epresar como el límite de un sumatorio, del siguiente modo: jπt jπ ( ( ( ( n t e dt lim n e n que equivale a epresar la integral deinida como el sumatorio de las areas de rectángulos (de base t encerrados bajo la unción (t, cuando t tiende a cero (integral de Riemann. n Matlab, las señales se describen como vectores de muestras, por lo tanto, la aproimación utilizada se basará en el muestreo de la señal original. Supondremos una señal de energía inita (t deinida en el intervalo t<. Ahora bien, la recuencia de muestreo s, ha de ser suicientemente elevada para que no se produzca solapamiento espectral, es decir, que cumpla el criterio de Nyquist: s > ma donde ma es la recuencia máima de la señal (t. De orma similar, podemos obtener el número de muestras en la señal muestreada según: N / n estas condiciones, se puede aproimar la integral de una señal deinida en t< por un conjunto de muestras tomadas con una recuencia de muestreo s según jπt jπt jπ ( ( ( ( ( n t e dt t e dt n e N n Obsérvese que el sumatorio es precisamente la DF de una señal discreta [n](n t, multiplicada por t, muestreando la variable continua t, desde t hasta t - t, y tomado N valores discretos muy próimos (tantos más cuanto menor sea t, que en Matlab denotaremos como inct. Por lo tanto, la epresión inct*t( arrojará una señal discreta:

2 [] ( donde N, [, N ] Señal que contiene el valor aproimado de N muestras de la F de (t. Sin embargo, dado que la unción t obtiene la DF en el intervalo Ω,π, en el que Ω π, π corresponde a pulsaciones [ [ negativas, si queremos representar la transormada centrada en el origen es necesario recolocar la segunda mitad del vector al principio del vector (tshit( para obtener la aproimación de la F: par. [] ( ( Dado que donde N N, N,, donde se asume que N es [] representa muestras de una señal continua, (, en un intervalo de pulsaciones π π ω,, solamente se pueden representar tonos en la banda, (o lo que F es lo mismo s Fs,, por lo que se recomienda representarla siempre en ese intervalo (y sin olvidar que es una aproimación muestreo-. Para recuperar la señal en el dominio temporal se hará uso de la epresión (/inct*it(, obtenida de orma análoga. Si se ha recolocado el vector con tshit, hay que volverlo a colocar en la posición original con itshit. Recuerde que tanto t como it devuelven en general valores complejos. Si bien en el caso de que la transormada uera real, la it también debería serlo. Sin embargo, en algunos casos, aparece una parte imaginaria residual muy pequeña, que puede ocasionar problemas en la representación o la reproducción, en el caso de audio, de las señales. Por eso es necesario asegurarse de que la señal no tiene parte imaginaria, utilizando la unción real(. A menudo se le pedirá que calcule la energía o la potencia de una señal. Para calcular la energía se utilizará una aproimación similar a la empleada para la F N ( t dt ( n n Y para el cálculo de la potencia media N S INRVALO (la potencia total, considerando todo el eje temporal es nula, por ser la señal de duración ininita y energía inita se podría calcular a partir de la energía en el intervalo en el que se ha deinido la señal en Matlab, según ( P A veces no se dispone de la señal, sino de su espectro (su F calculada según se ha indicado. La relación de Parseval nos permite calcularlo directamente a partir del espectro, sin realizar la transormada inversa. sta relación se puede aproimar para el caso de las señales en Matlab por s s ( t dt ( d ( n Δ Δ n N n N n F N F N N n Fs n, N donde d se ha aproimado por el paso en el vector de recuencias correspondiente Fs/N/.

3 Por ejemplo, para calcular la energía de una señal emplearíamos: sum((abs(.^*inct; % n el tiempo sum((abs(.^/; % n recuencia, o bien sum((abs(.^*(fs/n; Señales de tipo potencia n general, consideraremos que las señales son de duración ininita (energía ininita y potencia limitada. Aunque en Matlab las señales han de ser de duración inita, consideraremos que la señales bajo estudio son ininitas pero periodicas de período (no tiene por qué ser el período principal, por lo que nos permitiremos considerar tan solo un período de la misma. Para el cálculo del espectro se utiliza, en lugar de la transormada, el desarrollo en serie de Fourier. Para señales de tipo potencia PRIÓDICAS, se utiliza esta representación, ya que su módulo al cuadrado tiene un sentido ísico, que es la densidad espectral de potencia, que se deine a partir de la autocorrelación temporal de la señal original, y que guarda relación con los coeicientes del desarrollo en serie de Fourier según: S a δ ( ( Si la señal se ha muestreado a la recuencia de Nyquist, s, tomándose N puntos, de orma que cumpla que s N N se obtendrán N coeicientes del desarrollo, distribuidos entre y (correspondiendo a N las recuencias s y s, obteniéndose N / ( S a δ ( Δ, donde N / Δ Por tanto, para el cálculo de la potencia de la señal, nos basta con tener el vector que contenga los coeicientes a. Los coeicientes se pueden obtener a partir de la unción t de Matlab utilizando la siguiente relación con la transormada de Fourier, ya que (t se considera periódica: a jπ Δ t ( t e dt ( ( Por lo tanto, se obtiene que las epresiones son las mismas que en el caso anterior salvo por un actor de escala (divisor en la ransormada directa, y multiplicador en la inversa. s importante destacar que la señal debe ser periódica para que la epresión sea correcta, entrando un número entero de periodos en el intervalo. Por lo tanto, para el cálculo de los coeicientes del desarrollo de Fourier en MALAB, utilice ainct/*t( (/N*t(, donde N/inct*s son el número de muestras de un periodo (no necesariamente el undamental de la señal ( nτ, y es un vector que contiene esos valores. Para recuperar la señal en el dominio temporal se hará uso de la epresión /inct*it(an*it(a si es periódica, que arrojará una señal discreta (una aproimación a las muestras a de la señal temporal. s Observe que los a se representan respecto a índices, mientras que lo que interesará en general es representarlo en unción de la recuencia. Por lo tanto.

4 N / N / a δ ( Δ (.. Señales no periódicas n caso de trabajar con señales no periódicas, estrictamente, no eiste el desarrollo en serie de Fourier. Sin embargo se puede seguir utilizando (/ en Matlab desde el punto de vista práctico como una aproimación. 3 Representación de señales en las prácticas de eoría de la comunicación n las prácticas se trabajará undamentalmente con señales sinusoidales las cuales, obviamente, son de potencia ininita. Si se aplica la transormada de Fourier se obtendrán deltas de una amplitud no ija y dependiente del intervalo temporal considerado. Recuerde que una delta tiene amplitud ininita y es ininitamente estrecha, así que en Matlab es imposible representarla. Lo único que se conserva es el área que encierra que es la unidad, ya que, por deinición δ ( d Por comodidad, se representará (/ en lugar de (. Por ejemplo, consideremos la señal t cos π t (.5δ +.5δ + ( (, y su transormada de Fourier será ( ( La igura representa la transormada utilizando 5 (arriba y 5 (abajo. Como se puede observar, la amplitud es distinta, aunque el área encerrada sigue siendo la esperada (.5amplitud Δ Sin embargo, si se divide la transormada de Fourier respecto a se obtiene directamente el valor que multiplica a la delta (a la derecha, independientemente de los parámetros y s utilizados para representarla..5 ( con 5, Δ..5 (/ con 5, Δ..4 (.5 (/ ( con 5, Δ..5 (/ con 5, Δ..4 ( 5 (/ Si además, la señal es periódica, los valores de (/ coinciden estrictamente con los coeicientes a del desarrollo en serie de Fourier. Si no lo es, no eiste estrictamente el desarrollo en serie de Fourier, pero se puede seguir utilizando (/ desde el punto de vista práctico.

5 4 Resumen n las prácticas de eoría de la comunicación se utilizarán las siguientes herramientas para calcular y representar los espectros de las señales: - Señales: se utilizará la representación (/, tanto si son periódicas como si no lo son. - Funciones de transerencia: se representarán utilizando la transormada de Fourier H(. Las siguientes tablas muestran un resumen del código a utilizar. Plantilla básica Fs...; inct /Fs;...; % *Fs muestras N Fs*; % /inct; t [:/Fs:-/Fs]; % iempo muestreado para los segundos [, [-Fs/:Fs/N:Fs/ Fs/N]; % Frecuencia [-Fs/,Fs/ nergía en el tiempo sum((abs(.^*inct ipo de señal nergía (energía inita Potencia (potencia inita ipo de espectro Densidad de energía ( G ( Densidad de potencia ( (sólo señales periódicas S a δ ( Herramienta matemática Señal spectro spectro Señal nergía Potencia ( (ransormada de Fourier tshit(inct*t( real((/inct*it( itshit( sum((abs(.^*fs/n sum((abs(.^/ (considerando -<t< n el intervalo t<, donde está deinida la potencia media es P/ (/ (Normalizamos la ( respecto a Para señales periódicas (/a (desarrollo en serie de Fourier. a/ real( (/inct*it( itshit(a* Ininita (considerando -<t< n el intervalo t<, P sum((abs(a.^

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

Señales: Tiempo y Frecuencia PRÁCTICA 1

Señales: Tiempo y Frecuencia PRÁCTICA 1 Señales: Tiempo y Frecuencia PRÁCTICA 1 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 1 Señales: Tiempo y Frecuencia 1. Objetivo El objetivo de esta primera práctica es revisar: las principales

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidades y stadística Computación Facultad de Ciencias actas y Naturales Universidad de uenos ires na M ianco y lena J Martínez 004 Variables aleatorias continuas jemplo: Con el in de realizar un

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Límite de una Función

Límite de una Función Cálculo _Comisión Año 06 Límite de una Función I) Límite Finito Muchas veces interesa analizar el comportamiento de los valores de una función, para valores de la variable independiente cercanos a uno

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

1 x (rad) 0 π/2 π 3π/2 2π cos x x Para representarla, recomiendo que se haga una tabla dando al argumento

1 x (rad) 0 π/2 π 3π/2 2π cos x x Para representarla, recomiendo que se haga una tabla dando al argumento . A partir de las funciones: y = sen, y = cos, y = e, y = Ln, e y = ² representar las siguientes funciones: i. y = cos 2 y = cos Función periódica. = 2π 2π T ; ω Coeficiente de la. T = = 2π ω (rad) 0 π/2

Más detalles

Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP

Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP Límites y Derivadas d Matemáticas para Ingeniería I Otono 016 Lilia Meza Montes IFUAP Función de una variable Función : regla que asocia un único valor a cada elemento de un conjunto. R y() R 0 Dominio:

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Unidad 3. Técnicas de Modulación

Unidad 3. Técnicas de Modulación Unidad 3. 3.1 Modulación de Onda Continua. 3.2 Modulación por Pulsos. 1 Antes de transmitir una señal con información a través de un canal de comunicación se aplica algun tipo de modulación. Esta operación

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

Sistemas Lineales. Examen de Septiembre Soluciones

Sistemas Lineales. Examen de Septiembre Soluciones Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y

Más detalles

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2 Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución

Más detalles

TEMA 5.6 PROGRAMACIÓN NO LINEAL

TEMA 5.6 PROGRAMACIÓN NO LINEAL TEMA 5.6 PROGRAMACIÓN NO LINEAL 5.6.. INTRODUCCIÓN 5.6.. CONCEPTOS BÁSICOS 5.6.. MÉTODO O DE NEWTON ONSN SIN RESTRICCIONES S 5.6.4. MÉTODO DE NEWTON CON RESTRICCIONES. FUNCIONES DE PENALIZACIÓN. INTRODUCCIÓN

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS TEMA. FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS . FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVAD. CÁLCULO DE DERIVADAS... Derivada de una unción en un punto...

Más detalles

Práctica 2: Periodicidad

Práctica 2: Periodicidad Práctica 2: Periodicidad Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es explorar las utilidades de representación gráfica de MATLAB para observar las especiales

Más detalles

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0 FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones

Más detalles

Variables Aleatorias y Distribuciones de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Variables Aleatorias y Distribuciones de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Variables Aleatorias Distribuciones de Probabilidad UCR ECCI CI-5 Probabilidad Estadística Pro. M.Sc. Krscia Daviana Ramírez Benavides Variable Aleatoria Una variable aleatoria es una unción que asocia

Más detalles

Función derivada. lim

Función derivada. lim Pro. Enrique Mateus Nieves Función derivada TASA DE VARIACIÓN: Muchas leyes de la Física, la Química, la Bioloía o la Economía, son unciones que relacionan una variable dependiente y con otra variable

Más detalles

1. Información básica

1. Información básica Información básica PRÁCTICA : RESOLUCIÓN DE ECUACIONES POLIO INÓMICAS Comenzamos recordando de forma resumida las ideas y propiedades básicas de las ecuaciones polinómicas y sus soluciones En esta sección

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

Cálculo Integral LA INTEGRAL DEFINIDA DE RIEMANN: UNA APROXIMACIÓN CON DERIVE.

Cálculo Integral LA INTEGRAL DEFINIDA DE RIEMANN: UNA APROXIMACIÓN CON DERIVE. Cálculo Integral 85 6. CÁLCULO INTEGRAL. 6.. LA INTEGRAL DEFINIDA DE RIEMANN: UNA APROXIMACIÓN CON DERIVE. La integral definida de Riemann surge a partir del problema del cálculo de áreas de superficies

Más detalles

Límites infinitos. MATE 3031 Cálculo 1. 01/21/2016 Prof. José G. Rodríguez Ahumada 1 de 21

Límites infinitos. MATE 3031 Cálculo 1. 01/21/2016 Prof. José G. Rodríguez Ahumada 1 de 21 Límites ininitos MATE 303 Cálculo 0//06 Pro. José G. Rodríguez Ahumada de Cálculo - MATE 303 Actividades.4 Reerencia: Reerencia: Sección.5 Límites ininitos. Ver ejemplos al 5 Ejercicios de Práctica: Páginas

Más detalles

Última modificación: 1 de julio de

Última modificación: 1 de julio de Contenido SEÑALES DIGITALES Y CAPACIDAD DE CANAL 1.- Señales digitales de 2 y más niveles. 2.- Tasa de bit e intervalo de bit. 3.- Ancho de banda de una señal digital. 4.- Límites en la tasa de transmisión.

Más detalles

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA (Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.

Más detalles

Pendiente exacta de una curva en alguno de sus puntos

Pendiente exacta de una curva en alguno de sus puntos Pendiente eacta de una curva en alguno de sus puntos Para calcular la pendiente de una curva representada mediante la unción y ( en un punto es necesario que el punto considerado pertenezca a esa unción.

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

Despejando, se tienen las siguientes ecuaciones de la forma : a) b)

Despejando, se tienen las siguientes ecuaciones de la forma : a) b) MAT 115 B EJERCICIOS RESUELTOS 1. De la siguiente ecuación: Despejando, se tienen las siguientes ecuaciones de la forma : a) b) Calcule la raíz por el método de punto fijo, tomando en cuenta el criterio

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS ARMONICAS 1.6 DEFINICIONES Elemento lineal: es aquel elemento de redes eléctricas cuyo valor permanece constante independientemente del valor de la corriente que circula por él o del voltaje que se le

Más detalles

PROPAGACIÓN DE INCERTEZAS

PROPAGACIÓN DE INCERTEZAS PROPGIÓN DE INERTEZS Sean ± y ± los resultados de dos mediciones, es decir que son dos intervalos: Si queremos hacer una cuenta con y, por ejemplo +, el resultado no será un único número ya que es todo

Más detalles

Tema III. Comunicaciones analógicas.

Tema III. Comunicaciones analógicas. Tema III. Comunicaciones analógicas. III.1. INTRODUCCIÓN. III.2. MODULACIONES LINEALES. III.3. RUIDO EN MODULACIONES LINEALES. III.4. MODULACIONES ANGULARES. III.5. RUIDO EN MODULACIONES ANGULARES. III.6.

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

Concepto y Definición de Convolución

Concepto y Definición de Convolución Convolución Concepto y Definición de Convolución Propiedades Correlación y Autocorrelación Convolución Discreta 1 Concepto y Definición de Convolución Mediante la convolución calcularemos la respuesta

Más detalles

Números Complejos y DFFT. Ing. Abel Augusto Durand Loaiza IBEROTEC. 05 de Diciembre de 2016

Números Complejos y DFFT. Ing. Abel Augusto Durand Loaiza IBEROTEC. 05 de Diciembre de 2016 Números Complejos y DFFT 1 Números Complejos y DFFT Ing. Abel Augusto Durand Loaiza IBEROTEC 05 de Diciembre de 2016 Números Complejos y DFFT 2 Resumen La presente guía didáctica comprende una aproximación

Más detalles

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP). PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Señales y Sistemas II

Señales y Sistemas II 1 Señales y Sistemas II Módulo IV: La Teoría de Muestreo Contenido de este módulo 2 1.- Representación discreta de señales continuas 2.- Muestreo, reconstrucción y aliasing 3.- Consideraciones prácticas

Más detalles

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la 4 FUNCIONES 4 Conceptos básicos Sean A y B dos conjuntos dados, una unción de A en B es una regla de correspondencia que asigna a cada elemento de A uno y solamente uno de B En una unción: A es el dominio

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

Constantes. Variables

Constantes. Variables Constantes En el pseudocódigo la deinición de constantes generalmente se hace al principio. Es utilizada para deinir valores que nunca van a cambiar. Tipos de datos Variables Los datos que utilizan los

Más detalles

Representación de números en la recta real. Intervalos

Representación de números en la recta real. Intervalos Representación de números en la recta real. Intervalos I. Los números reales En matemáticas los números reales se componen de dos grandes grupos: los números racionales (Q) y los irracionales (I). A su

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamiento Digital de Señal ema 4: Análisis de Fourier en tiempo discreto ransformada de Fourier en tiempo discreto (DF) Serie de Fourier en tiempo discreto (DFS) ransformada de Fourier Discreta (DF)

Más detalles

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales Curso-0 1 Introducción a los Sistemas Digitales Conceptos básicos de matemática aplicada a los sistemas digitales 2 Contenidos Conjuntos numéricos Notación científica Redondeo Logaritmos Resumen 3 Conjuntos

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones (Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones INTRODUCCIÓN Uno de los problemas fundamentales del Cálculo Diferencial se refiere a la determinación

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN

EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN EJERCICIOS RESUELTOS DE CÁLCULO DE ÁREAS POR INTEGRACIÓN.- Calcular el área encerrada por la función: y = 9, el eje OX, y las rectas = f 9 Se trata de un triángulo de base y altura 9 9 El área sombreada

Más detalles

AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela

AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela AUDIO DIGITAL Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela 1. Introducción Señal de audio: onda mecánica Transductor: señal eléctrica Las variables físicas

Más detalles

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU

PRÁCTICA 1 MODULACIONES LINEALES Modulación en doble banda Lateral: DBL Modulación en banda Lateral Única: BLU PRÁCTICA 1 MODULACIONES LINEALES 1.1.- Modulación de Amplitud: AM 1.2.- Modulación en doble banda Lateral: DBL 1.3.- Modulación en banda Lateral Única: BLU Práctica 1: Modulaciones Lineales (AM, DBL y

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Problemas Tema 1: Señales

Problemas Tema 1: Señales Curso Académico 009 00 Problemas Tema : Señales PROBLEMA. Una señal continua (t) se muestra en siguiente figura. Dibuje y marque cuidadosamente cada una de las siguientes señales [Prob.. del Oppenheim]:

Más detalles

Práctica 4. Los comandos que se utilizarán ya se han visto en prácticas anteriores. = x, ( ) ( )

Práctica 4. Los comandos que se utilizarán ya se han visto en prácticas anteriores. = x, ( ) ( ) PRÁCTICA POLINOMIOS DE TAYLOR. ACOTACIÓN DEL RESTO Prácticas Matlab Práctica 4 Objetivos Analizar cómo incide en la aproimación mediante polinomios de Taylor el considerar distintas funciones. Mostrar

Más detalles

UNIDAD 8 INECUACIONES. Objetivo general.

UNIDAD 8 INECUACIONES. Objetivo general. 8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en

Más detalles

Guía práctica de estudio 06: Lenguaje binario

Guía práctica de estudio 06: Lenguaje binario Guía práctica de estudio 06: Lenguaje binario Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 06: Lenguaje binario

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '

Más detalles

LECTURA Nº 12: MÉTODOS DE FACTORIZACIÓN

LECTURA Nº 12: MÉTODOS DE FACTORIZACIÓN Tenemos un cuadrado cuyos lados miden ( + + ) = + por lo que el área sería: Largo. ancho = ( + ).( + ) = ( + ) Pero ya se conoce el área total que es 9 unidades cuadradas Entonces: ( + ) = 9 donde despejando

Más detalles

La representación gráfica de una función cuadrática es una parábola.

La representación gráfica de una función cuadrática es una parábola. Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación

Más detalles

Colegio Universitario Boston

Colegio Universitario Boston Función Lineal. Si f función polinomial de la forma o, donde y son constantes reales se considera una función lineal, en esta nos la pendiente o sea la inclinación que tendrá la gráfica de la función,

Más detalles

Trabajo opcional tema 4: modulación

Trabajo opcional tema 4: modulación Trabajo opcional tema 4: modulación Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 4: modulación angular ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema completo....

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

Guía práctica de estudio 06: Lenguaje binario

Guía práctica de estudio 06: Lenguaje binario Guía práctica de estudio 06: Lenguaje binario Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 06: Lenguaje binario

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

ANEXO ANÁLISIS DE FOURIER. ANEXO: Análisis de Fourier

ANEXO ANÁLISIS DE FOURIER. ANEXO: Análisis de Fourier AEXO: Análisis de Fourier ELEMETOS DE MÁQUIAS Y VIBRACIOES - A. - ELEMETOS DE MÁQUIAS Y VIBRACIOES - A. - A. Introducción Por regla general, el estudio de vibraciones en sistemas mecánicos suele iniciarse

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

FUNCIONES: GENERALIDADES

FUNCIONES: GENERALIDADES FUNCIONES: GENERALIDADES DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL.- Una unción,, es una correspondencia entre dos conjuntos numéricos A y B, que asigna a cada número, x, del primer conjunto A, un único

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

El concepto de número

El concepto de número Los Números Reales El concepto de número El concepto de número es una de las más importantes abstracciones de la mente humana. Los números han surgido a lo largo de la historia como herramienta para resolver

Más detalles

Termodinámica estadística: Diferenciales, transformada de Legendre

Termodinámica estadística: Diferenciales, transformada de Legendre Termodinámica estadística: Diferenciales, transformada de Legendre Prof Jesús Hernández Trujillo 1. Diferenciales 1.1. Diferencial total La diferencial total de z = φ(, y) se define por dφ = ( ) φ d +

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles