PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)"

Transcripción

1 PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA)

2 Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas, de amplitud 0,01 m, frecuencia 550 Hz y velocidad 340 m/s. Qué distancia hay entre los dos puntos más próximos que tienen un desfase de 60 o? Cuál es la diferencia de fase entre dos desplazamientos del mismo punto en un intervalo de tiempo de 10 3 s? Función de onda: La función que describe una perturbación y viajera de tipo armónico simple que se desplaza por el medio haciaxpositivas ( ct en la fórmula) oxnegativas ( +ct en la fórmula) es: y = y 0 sin(k(x ct)) y = y 0 sin(kx ωt) Perturbación propagándose hacia x positivas. Donde y 0 es la amplitud de la onda, k el número de onda, c la velocidad de la onda y ω = kc su frecuencia angular. Para las ondas armónicas se cumple: ω = k c, f = ω 2π, T = 1 f, λ = c f, k = 2π λ, siendo f la frecuencia de la onda, T su periodo y λ la longitud de onda. Encontrar la función de onda Como la onda avanza hacia x negativas, la función de onda tendrá el término +ωt: y = y 0 sin(kx+ωt) Con los datos que proporciona el enunciado del problema obtenemos los parámetros de esta ecuación: y 0 = 0,01 m, k = 2π λ = 2πf c = 2π 550 Hz 340 m/s = 10,16 m 1, ω = 2πf = 2π 550 Hz = 1100π rad/s La función de onda es por lo tanto (en metros y segundos): y = 0,01sin(10,16 x+1100π t)

3 Qué distancia hay entre los dos puntos más próximos que tienen un desfase de60 o? Existe una relación lineal entre la distancia entre dos puntos, relativa a la longitud de onda, y el desfase entre éstos. Es decir, dos puntos separados una longitud de onda, λ, presentarán un desfase de2π rad; si están separados λ/2 tendrán un desfase de 2π/2 rad, etc. λ φ = 2π x φ = 2π x λ Desfase entre puntos según su separación. Exigiendo que el desfase entre dos puntos sea φ = 60 o = π/3rad, y sustituyendo el resto de datos del problema, obtenemos la distancia x entre los puntos: x = λ φ 2π = c φ f 2π = 0,103 m Cuál es la diferencia de fase entre dos desplazamientos del mismo punto en un intervalo de tiempo de 10 3 s? El desfase vendrá dado por: φ = φ 2 φ 1 = ( 10,16 x+1100π t 2 ) ( 10,16 x+1100π t 1 ) φ = 1100π (t 2 t 1 ) Sustituyendo t 2 t 1 = 10 3 s, queda finalemte: φ = 3,456 rad

4 Problema 2 Atamos un alambre al extremo de un diapasón para generar ondas transversales. La frecuencia del diapasón es f = 440 Hz y lo hacemos oscilar con una amplitud A = 0,5 mm. El alambre tiene una densidad lineal µ = 0,01 kg/m y está sometido a una tensión F = 1000 N. Para este sistema se pide: (a) Encontrar el periodo y la frecuencia de las ondas en el alambre. (b) Qué velocidad tienen las ondas? (c) Escribir la función de la onda que se propaga por el alambre. (d) Calcular la velocidad y aceleración máximas de un punto del alambre. (e) Qué potencia debemos suministrar al diapasón para que oscile con amplitud constante? (a) Encontrar el periodo y la frecuencia de las ondas en el alambre. Diapasón que genera ondas en un alambre El diapasón generará un perturbación armónico simple en la cuerda con la frecuencia propia del diapasón. Por lo tanto las ondas generadas tendrán una frecuencia f = 440 Hz y un periodo T = 1/f. f = 440Hz, T = 1 f = 2, s (b) Qué velocidad tienen las ondas? Conocida la tensión en la cuerda y la densidad lineal podemos calcular la velocidad de la onda: c = F µ = ,01 = 316,2m/s

5 (c) Escribir la función de la onda que se propaga por el alambre. La onda se propaga en el alambre hacia x positivas, por lo que su función de onda será del tipo: y = Asin(kx ωt) Podemos determinar los parámetros de esta ecuación con los datos del problema: A = m, k = 2π λ = 2πf = 8,742 m 1, c ω = 2πf = 2π 440 Hz = 880π rad/s Y sustituyendo: y = sin(8,742 x 880π t) en m y s (d) Calcular la velocidad y aceleración máximas de un punto del alambre. Cada punto x del alambre realiza un MAS de frecuencia angular ω = 880π. Su velocidad y aceleración será por lo tanto: Sustituyendo los datos del problema: v = dx dt = ωa cos( ωπ t) v max = ωa a = dv dt = ω2 A sin( ωπ t) a max = ω 2 A v max = 1,382 m/s, a max = 3819,9 m/s 2

6 (e) Qué potencia debemos suministrar al diapasón para que oscile con amplitud constante? Densidad de energía y potencia de la onda: Una cuerda por la que se propaga una onda mecánica tiene una cierta energía asociada con el movimiento de los puntos. Además, a medida que la onda se propaga, hay nuevos puntos del medio en movimiento por lo que el emisor debe suministrar una cierta energía por unidad de tiempo (potencia) para mantener el movimiento ondulatorio. La densidad lineal de energía η (energía por unidad de longitud) de la onda y la potencia P suministrada por el emisor es: η = 1 2 µ ω2 y 2 0 P = η c = 1 2 µ ω2 y 2 0 c Movimiento de los puntos de la cuerda. Dondey 0 es la amplitud de la onda, µ la densidad lineal de la cuerda, c la velocidad de la onda yω su frecuencia angular. Podemos obtener la potencia que suministra el diapasón sustituyendo directamente los datos del problema en la fórmula de teoría: P = 1 2 µ ω2 A 2 c = 3,02W

7 Problema 3 Una barra de acero transmite ondas longitudinales generadas mediante un oscilador acoplado en un extremo. La barra tiene un diámetro D = 4 mm. La amplitud de las oscilaciones es A = 0,1 mm y la frecuencia es f = 10 oscilaciones por segundo. Para este sistema se pide: (a) Función de la onda que se propaga por la barra. (b) Energía por unidad de volumen en la barra. (c) Potencia media que se propaga a través de una sección cualquiera de la barra (a) Función de la onda que se propaga por la barra. Tenemos que determinar los parámetros de la función de onda armónica, que es del tipo: y = Asin(kx ωt) De acuerdo con los datos del problema: A = 0,1mm y ω = 2πf = 20π rad/s. Para determinar k = ω/c necesitamos determinar la velocidad de las ondas de presión longitudinales en el acero (c), que viene dada por: E c = ρ, donde E es el módulo de Young del acero y ρ su densidad. Obteniendo estos valores a partir de las tablas nos queda: E c = ρ = N/m kg/m 3 = 5096,5m/s Finalmente, k = ω/c = 0,01233 m 1 y la función de onda queda: y = sin(0,01233 x 20π t) en m y s (b) Energía por unidad de volumen en la barra. La densidad de energía por unidad de longitud en ondas unidimensionales viene dada por: η = E l = 1 2 µ ω2 y 2 0, donde y 0 es la amplitud de la onda, µ la densidad lineal del medio yω la frecuencia angular de la onda. Podemos relacionar la densidad de energía por unidad de longitud ( E/ l) con la densidad volumétrica ( E/ V ) conociendo la sección de la barra S. Considerando un segmento de la barra l de volumen V :

8 E V = E l S = µ ω2 y0 2 2S Relación entre l y V. Y también podemos relacionar la densidad lineal de masa µ con la densidad volumétrica ρ: µ = m l = ρ S l l = ρ S Utilizando esta relación y sustituyendo los datos del problema queda finalmente: E V = ρ S ω 2 y0 2 2 S = 0,1520 J/m 3 (c) Potencia media que se propaga a través de una sección cualquiera de la barra. De acuerdo con la teoría, la potencia media que transmite una onda unidimensional viene dada por: P = 1 2 µ ω2 y 2 0 c Utilizando que µ = ρ S y que, conocido el diámetro D,S = πd 2 /4, nos queda: P = ρ π D2 ω 2 y 2 0 c 8 Sustituyendo los datos del problema obtenemos finalmente: P = 9, W

9 Problema 4 Dos alambres de diferente densidad se sueldan uno a continuación del otro y se someten a una cierta tensión. La velocidad de la onda en el primer alambre es el doble que en el segundo. Cuando la onda armónica se refleja en la unión entre ambos alambres, la onda reflejada tiene la mitad de amplitud que la onda transmitida. Para este sistema se pide: (a) Suponiendo que no hay perdidas de energía, qué relación hay entre las amplitudes de las tres ondas? (b) Qué fracción de la potencia de la onda se transmite y qué fracción se refleja? Solución (a) Suponiendo que no hay perdidas de energía, qué relación hay entre las amplitudes de las tres ondas? Tendremos tres ondas armónicas que se propagan por los alambres; y i : onda incidente desde el alambre 1, y t : onda transmitida al alambre 2 y y r : onda reflejada en el alambre 1. y i = A i sin(k 1 x ωt) y t = A t sin(k 2 x ωt) y r = A r sin(k 1 x+ωt) Ondas que se propagan en los alambres donde se ha tenido en cuenta que ω depende sólo de la onda (no del medio), que k depende del medio y que la onda reflejada avanza hacia la izquierda. La potencia de cada una de estas ondas viene dada por las expresiones: P i = 1 2 µ 1ω 2 A 2 i v 1 P t = 1 2 µ 2ω 2 A 2 t v 2 P r = 1 2 µ 1ω 2 A 2 rv 1 Además por conservación de la energía se debe cumplir que P i = P t +P r : 1 2 µ 1 ω 2 A 2 i v 1 1 = 2 µ 2 ω 2 A 2 t v µ 1 ω 2 A 2 r v 1 µ 1 A 2 i v 1 = µ 2 A 2 t v 2 +µ 1 A 2 r v 1 ( ) Introduciendo ahora que, de acuerdo con el enunciado, v 1 = 2v 2 y que A r = A t /2: µ 1 A 2 i 2 v 2 = µ 2 A 2 t v 2 +µ 1 A 2 t 4 2 v 2 A2 t A 2 i 2µ 1 = µ µ 1

10 Podemos encontrar una relación entre las densidades lineales de los alambres teniendo en cuenta que v 1 = 2v 2 y que los dos alambres están sometidos a la misma tensión: v 1 = 2v 2 T T = 2 T = 4 T µ 2 = 4µ 1 µ 1 µ 2 µ 1 µ 2 y sustituyendo esta relación en A t /A i queda finalmente: A 2 t A 2 i = 2 µ 1 4 µ µ 1 = 4 9 A t A i = 2 3 Operando de forma análoga a partir de la ecuación ( ), pero sustituyendo ahora A t = 2A r, obtenemos para A r /A i : A r A i = 1 3 (b) Qué fracción de la potencia de la onda se transmite y qué fracción se refleja? Calculamos los cocientes P t /P i yp r /P i : P t P i = 1 2 µ 2 ω 2 A 2 t v µ 1 ω 2 A 2 i v 1 = µ 2 µ 1 A 2 t A 2 i P r = P 1 2 µ 1 ω 2 A 2 r v 1 i 2 1 µ 1 ω = A2 r 2 A 2 i v 1 A 2 i v 2 v 1 Teniendo en cuenta las relaciones encontradas anteriormente para A r /A i y A t /A i, y que µ 2 = 4µ 1 y v 1 = 2v 2, queda finalmente: P t P i = 8 9, P r P i = 1 9

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

GUIA N o 1: ONDAS Física II

GUIA N o 1: ONDAS Física II GUIA N o 1: ONDAS Física II Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

MOVIMIENTO ONDULATORIO.

MOVIMIENTO ONDULATORIO. Síntesis Física º Bach. Ondas. O - MOVIMIENTO ONDULTORIO. Ondas. Una onda es una perturbación que se propaga entre dos puntos sin transporte de materia, pero sí de energía y momento. Supongamos que dicha

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

PROBLEMAS ONDAS ESTACIONARIAS. Autor: José Antonio Diego Vives

PROBLEMAS ONDAS ESTACIONARIAS. Autor: José Antonio Diego Vives PROBLEMAS DE ONDAS ESACIONARIAS Autor: José Antonio Diego Vives Problema 1 Una cuerda de violín de L = 31,6 cm de longitud y = 0,065 g/m de densidad lineal, se coloca próxima a un altavoz alimentado por

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

FENÓMENOS ONDULATORIOS

FENÓMENOS ONDULATORIOS FENÓMENOS ONDULATORIOS 1.- Halla la velocidad de propagación de un movimiento ondulatorio sabiendo que su longitud de onda es 0,25 m y su frecuencia es 500 Hz. R.- 125 m/s. 2.- La velocidad del sonido

Más detalles

TEMA I.10. Energía en el Movimiento Ondulatorio. Dr. Juan Pablo Torres-Papaqui

TEMA I.10. Energía en el Movimiento Ondulatorio. Dr. Juan Pablo Torres-Papaqui TEMA I.10 Energía en el Movimiento Ondulatorio Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2

FÍSICA. 2º BACHILLERATO. BLOQUE II. VIBRACIONES Y ONDAS. Examen 2 Examen 2 1. Diga si es cierto o falso y razone la respuesta: La frecuencia con la que se percibe un sonido no depende de la velocidad del foco emisor. 2. Dibujar, superponiendo en la misma figura, dos

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTO ARMÓNICO SIMPLE. MOVIMIENTO ARMÓNICO SIMPLE. JUNIO 1997. 1.- Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

Rapidez De Transferencia de energía por ondas sinoidales en cuerda

Rapidez De Transferencia de energía por ondas sinoidales en cuerda Rapidez De Transferencia de energía por ondas sinoidales en cuerda Las ondas transportan energía cuando se propagan en un medio. Podemos fácilmente demostrar eso al colgar un objeto sobre una cuerda estirada

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

Problemas. De estos parámetros deducimos frecuencia, periodo, longitud de onda y velocidad de la onda

Problemas. De estos parámetros deducimos frecuencia, periodo, longitud de onda y velocidad de la onda Problemas. La función de onda de una onda armónica que se mueve sobre una cuerda es y(x,t)=,3sen(,x-3,5t) en unidades del SI. Determinar la dirección del movimiento, velocidad, longitud de onda, frecuencia

Más detalles

Fundamentos de acústica

Fundamentos de acústica Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido

Más detalles

Bolilla 6. Movimiento Ondulatorio

Bolilla 6. Movimiento Ondulatorio Bolilla 6 Movimiento Ondulatorio 1 Definición de onda: Una onda es una propagación de una perturbación de alguna propiedad del espacio, por ejemplo: densidad, presión, campo eléctrico o campo magnético,

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO 5 MOVIMIENTO ONDULATORIO 5.. EL MOVIMIENTO ONDULATORIO. Indica cómo podemos comprobar que, cuando una onda se propaga por una cuerda, hay transporte de energía, pero no transporte de materia. Un procedimiento

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

Tema 6: Movimiento ondulatorio.

Tema 6: Movimiento ondulatorio. Tema 6: Movimiento ondulatorio. 1. Ondas: conceptos generales. 2. Estudio cualitativo de algunas ondas. Fenómenos ondulatorios más evidentes en cada una: a) Ondas en una cuerda b) Ondas en la superficie

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Problemas Movimiento Armónico Simple

Problemas Movimiento Armónico Simple Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Tema 4. Movimiento ondulatorio:

Tema 4. Movimiento ondulatorio: Tema 4. Movimiento ondulatorio: 1. Fenomenología del movimiento ondulatorio. 2. Tipos de ondas. 3. Ecuación de ondas unidimensional. 4. Ondas armónicas monocromáticas. 5. Velocidad de propagación. 6. Principio

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

CAPITULO VI ONDAS ELASTICAS

CAPITULO VI ONDAS ELASTICAS CAPITULO VI ONDAS ELASTICAS - 140 - 6. ONDAS ELASTICAS La onda elástica es la perturbación efectuada sobre un medio material y que se propaga con movimiento uniforme a través de este mismo medio. La rapidez

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no materia. Pero aunque no sea materia sí puede interaccionar

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2010

PRUEBA ESPECÍFICA PRUEBA 2010 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2010 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos. (Cada

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través

Más detalles

PROBLEMAS CAMBIO!!! Oscilaciones y ondas 4 M. armónico simple: 1 Onda armónica (formato seno): 2 Onda estacionaria: 1

PROBLEMAS CAMBIO!!! Oscilaciones y ondas 4 M. armónico simple: 1 Onda armónica (formato seno): 2 Onda estacionaria: 1 COORDINACIÓN DE FÍSICA PROBLEMAS Oscilaciones ondas 4 M. armónico simple: Onda armónica (formato seno): Onda estacionaria: Gravitatoria 4 Satélite que gira en una órbita: Cuerpos en caída libre: Campo

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio?

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio? 2º Bachillerato: Ondas (generalidades) 1. Concepto de onda Cuando se produce una variación de una magnitud física en un punto del espacio, se produce una perturbación (del equilibrio). Por ejemplo, se

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Función de onda: f x, t

Función de onda: f x, t DE LAS OSCILACIONES A LAS ONDAS CÁTEDRA DE FÍSICA FFyB - UBA Los fenómenos ondulatorios están relacionados con innumerables fenómenos físicos: -Hablar -Escuchar la radio -Tocar un instrumento -Tirar una

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO ONDAS MECANICAS INTRODUCCIÓN Las ondas son perturbaciones de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos)

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos) Opción A. Ejercicio 1 Por una cuerda tensa se propaga, en el sentido positivo del eje x, una onda armónica transversal. Los puntos de la cuerda oscilan con una frecuencia f = 4 Hz. En la gráfica se representa

Más detalles

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009

4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009 4 de diciembre de 2009 FISICA GENERAL II SOLUCIONES SEGUNDO PARCIAL NOVIEMBRE 2009 Ejercicio 1 1 Tomamos como referencia para la posición x = 0 en la separación entre la zona I y II y medimos entonces

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt

dy v 4 cos 100 t 20 x v a 400 sen 100 t 20 x amax dt Moimientos periódicos 01. Una onda transersal se propaga a lo largo de una cuerda horizontal, en el sentido negatio del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en

Más detalles

Física II clase 5 (25/03) Definición

Física II clase 5 (25/03) Definición Física II clase 5 (25/03) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Definición Una onda

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 6: Ondas de propagación

(Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 6: Ondas de propagación Física 3 (Cs. de la atmósfera y los océanos) Primer cuatrimestre de 2015 Guía 6: Ondas de propagación 1. Considere una onda transversal armónica plana, cuya frecuencia angular es ω = 10 s 1 y cuyo número

Más detalles

Laboratorio de Física, CC Físicas, UCM Curso 2013/ ONDAS ESTACIONARIA. CUERDA VIBRANTE

Laboratorio de Física, CC Físicas, UCM Curso 2013/ ONDAS ESTACIONARIA. CUERDA VIBRANTE Laboratorio de ísica CC ísicas UCM Curso 0/0-6- ONDAS ESTACIONARIA. CUERDA VIBRANTE UNDAMENTO TEÓRICO Ondas Estacionarias: Cuerda ibrante Considérese una cuerda de longitud L que está sujeta por un extremo

Más detalles

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra Profesor: José Fernando Pinto Parra Ejercicios de Movimiento Armónico Simple y Ondas: 1. Calcula la amplitud, el periodo de oscilación y la fase de una partícula con movimiento armónico simple, si su ecuación

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π

ONDAS. m s. ; b) 3m; 40π. SOL: a) 100 Hz; 2 π ONDAS. 1. Considere la siguiente ecuación de una onda : y ( x, t ) = A sen ( b t - c x ) ; a. qué representan los coeficientes A, b, c? ; cuáles son sus unidades? ; b. qué interpretación tendría que la

Más detalles

Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío

Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Física II clase 12 (27/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Ejemplo Suponga que

Más detalles

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 )

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 ) 1 Interferencia Como adelantamos al discutir la diferencia entre partí culas y ondas, el principio de superposición da a lugar al fenómeno de interferencia. Sean dos ondas idénticas que difieren en la

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Cinemática del movimiento armónico simple

Cinemática del movimiento armónico simple PROBLEMAS DE OSCILACIONES. Cinemática del movimiento armónico simple Autor: José Antonio Diego Vives Documento bajo licencia CC Attribution-Share Alike 3.0 (BY-SA) Problema 1 Un pequeño objeto de masa

Más detalles

Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en

Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en 1 Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a través de un medio. Pero la onda

Más detalles

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas?

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? Cómo se puede controlar la interferencia de dos ondas experimentalmente?

Más detalles

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5

, por lo que L 1 =n λ 2 ; L 2=(n±1) λ 2 L 1 L 2 =± λ λ=2 (0,884 0,663)=0,442 m Los armónicos son. Página 1 de 5 013-Julio-Fase Específica (Asturias) Se nos da la expresión de la longitud de onda de los armónicos, aunque podríamos deducirla al tratarse de un caso de ondas estacionarias con un límite fijo (el extremo

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

Slide 2 / Cuál es la velocidad de la onda si el período es 4 segundos y la longitud de onda 1.8 m?

Slide 2 / Cuál es la velocidad de la onda si el período es 4 segundos y la longitud de onda 1.8 m? Slide 1 / 47 1 Un pescador observó que una boya hace 30 oscilaciones en 15 segundos. La distancia entre dos crestas consecutivas es 2m. Cuál es el período y la frecuencia de la onda? Cuál es su velocidad?

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO. NIVESIDADES PÚBLICAS DE LA COMNIDAD DE MADID PEBA DE ACCESO A LAS ENSEÑANZAS NIVESITAIAS OFICIALES DE GADO MATEIA: FÍSICA Curso 015-016 MODELO INSTCCIONES Y CITEIOS GENEALES DE CALIFICACIÓN Después de

Más detalles