Amplificadores diferenciales, de instrumentación y de puente

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Amplificadores diferenciales, de instrumentación y de puente"

Transcripción

1 3 mplificadores diferenciales, de instrumentación y de puente 3. Introducción En este capítulo se estudian los circuitos amplificadores diferenciales, de instrumentación y de puente. La aplicación de estos circuitos se circunscribe al ámbito de las señales de bajo nivel (debajo de 00 m aproximadamente) de sensores y transductores. El amplificador de instrumentación es el circuito electrónico empleado en aplicaciones de medición que involucren diferencias de tensiones. Está formado por varios amplificadores operacionales y resistencias de precisión, que confieren al circuito grandes exactitud y precisión. En la actualidad existen numerosos encapsulados que cumplen esta función. Quizá el único inconveniente sea su precio (desde 6 a más de 90 ), pero merece la pena pagar este precio si la aplicación o los requisitos de diseño requieren el uso de un circuito integrado en lugar de emplear componentes discretos. 3. El amplificador diferencial básico 3.. nálisis empleando el principio de superposición El amplificador diferencial básico puede medir y amplificar pequeñas señales que quedan ocultas en otras de mayor amplitud. La figura muestra un amplificador diferencial básico. En general suele emplearse como O un modelo de bajo offset, como por ejemplo el OP07. Se emplean resistencias de precisión (%). La salida se obtiene aplicando las hipótesis lineales de operación, según vimos en el capítulo. Empleando por ejemplo magnitudes de CC (en mayúsculas). o ( ) () Se consideran valores proporcionales de resistencias, con el fin de establecer relaciones entre estos componentes. sí por ejemplo, se trabaja con 4 k k 3 k. Con todo esto, se obtiene la salida aplicando el principio de superposición a este circuito lineal (es otro procedimiento para obtener la expresión de la salida): JJGDUC

2 Circuitos nalógicos plicados. Juan José González de la osa () o o, 0 o, 0 00 kω 0 kω kω 5 o 4 00 kω Fig.. mplificador diferencial básico con O discreto. Calculemos individualmente estas tensiones considerando ideal al O. Para ello, se cortocircuita una estrada y se calcula la salida debida a la otra. Si la entrada 0, la tensión en la terminal no inversora del O es cero (divisor de tensión) y el circuito se comporta como una configuración inversora. o o 0 k (3), Por otra parte, si la entrada 0, la tensión en la terminal no inversora vale: 4 (4) 3 4 k Considerando ahora la parte superior del circuito, vemos que se comporta como una configuración no inversora para la entrada : k o, 0 ( k ) (5) hora se sustituye (4) en (5): ( k) ( k) 0 k (6) o, k Finalmente, se usan (), (3) y (6) para obtener la salida en función de la entrada a través de la ganancia diferencial del circuito, D : k o o k k k( ) D ( ) (7) o, 0, 0 JJGDUC

3 3 mplificadores diferenciales y de instrumentación Obsérvese en la expresión (7) que no existe ganancia en modo común, por lo que el comportamiento sería diferencial puro o diferencial ideal. Si la ganancia de modo común fuera distinta de cero, se obtendría la expresión: o D ( ) CM (8) En la expresión anterior las ganancias diferencial y de modo común dependen del factor de rechazo al modo común del componente y del desapareamiento de las resistencias. Este asunto nos ocupa en el siguiente apartado. Por ahora es muy importante recordar la dependencia matemática de las ganancias: f CM, 4 D, CM, (9) 3 Y también es importante recordar la definición de factor de rechazo al modo común del circuito si el CM del componente (sin subíndices) es infinito (CM ): CM, f D 4 T, (0) CM 3 donde el subíndice T hace referencia a total, del circuito. Si el CM (el del componente) no diverge, entonces la dependencia (0) es más general: CM 3.. Tensión de modo común, f CM, D 4 T, () CM 3 La salida de un amplificador diferencial ideal debe ser cero cuando las dos entradas del circuito son iguales ( ). Como sabemos del capítulo, en la práctica esto no ocurre, debido a la presencia de una ganancia de modo común no nula. Esto significa que el CM del circuito es finito (aunque elevado). En el caso que nos ocupa, esta ganancia de modo común tiene un doble origen. En primer lugar, el CM del componente no es infinito. Por otra parte, si el componente es ideal (CM ), el CM T del circuito depende del apareamiento de las resistencias, es decir, depende de que se verifiquen en mayor o menor determinadas relaciones de proporcionalidad entre las resistencias. En el caso del amplificador diferencial básico estamos hablando de la constante k. Para compensar este desapareamiento entre los valores de las resistencias o el hecho de que el componente tenga un CM finito, dando lugar a salida no nula cuando las entradas del circuito son iguales, la resistencia 4 incorpora una parte variable; es decir, esta resistencia es una parte fija más un potenciómetro de ajuste fino que permite al usurario al rotarlo y hacer que la salida del circuito amplificador diferencial básico sea cero cuando las entradas son iguales. Cuando las dos entradas son iguales se dice que se está estudiando la respuesta en modo común del circuito. JJGDUC 3

4 Circuitos nalógicos plicados. Juan José González de la osa Consideremos un ejemplo ilustrativo del efecto de la tensión de modo común. Un amplificador diferencial de dos entradas forma parte de un electrocardiógrafo. Su ganancia diferencial vale 000. La señal de entrada diferencial deseada es de m de pico. La señal de entrada de modo común es una onda sinusoidal de 00 de pico y 50 Hz. Se desea que la salida contenga una contribución de modo común cuyo pico sea del % o menos, de la salida de pico producida por la señal diferencial. Calcular el CM mínimo del amplificador diferencial. Como la entrada diferencial es de m de pico, y la ganancia diferencial es 000, el pico de salida de la señal deseada es. Para cumplir la especificación de diseño, la señal de salida de modo común debe presentar pues un valor de pico de 0,0 (el % de ), o menor si cabe. Esto permite calcular la ganancia de modo común, según: 0,0 4 CM 0 CM 0 log CM 80 db 00 db Como se aprecia, más que una ganancia, la ganancia de modo común es una atenuación. El CM es pues: CM 000 D 0 log 0 log 4 CM 0 40 db Esta especificación para el electrocardiógrafo es extremadamente buena. 3.3 Mejoras introducidas al amplificador diferencial básico 3.3. Defectos del amplificador diferencial básico El amplificador diferencial básico hasta ahora estudiado tiene dos claras desventajas. Por una parte, posee resistencia de entrada finita. Esto es lo que estudiaremos en las siguientes líneas. En efecto, para las dos entradas, sus resistencias de entrada son las que se muestran en la figura. 5 i I i 3 I 4 5 o Fig.. mplificador diferencial básico con O discreto. Situación de cálculo de las resistencias de entrada para cada entrada. 4 JJGDUC

5 3 mplificadores diferenciales y de instrumentación Las resistencias de entrada se evalúan como si se conectaran generadores de tensión y de corriente auxiliares en las entradas. Se evalúa el cociente tensión/corriente, obviando el efecto de la otra entrada. Por ejemplo, si 0, la resistencia de entrada vista desde la entrada es finita y viene dada por: i I 0 () La otra resistencia de entrada es finita también. También se define la resistencia de entrada diferencial: id 3 En cualquier caso, la resistencia de entrada es baja, del orden de kω. La otra desventaja que presenta la configuración es el mal ajuste de la ganancia por no satisfacer la condición de simetría o balanceo entre las resistencias. En efecto si se quiere otro valor de ganancia hay que modificar el cociente de resistencias, y ya no se tiene un comportamiento diferencial ideal. Se recuerda que el potenciómetro de 4 es de ajuste fino, y no serviría para compensar este desplazamiento. Las dos desventajas mencionadas hacen que el circuito sólo se pueda emplear para montajes fijos. Es decir, ganancia fija, que no haya que modificar, y resistencia de entrada diferencial fija. No sería útil para un osciloscopio, ya que se necesitará cambiar la ganancia (/div) y la resistencia de entrada diferencial Incremento de la impedancia de entrada El circuito de la figura 3 logra una impedancia de entrada infinita. Esto se consigue aislando las entradas con seguidores de voltaje. JJGDUC 5

6 Circuitos nalógicos plicados. Juan José González de la osa o L o o Fig. 3. mplificador de diferencial con impedancia de entrada infinita. La salida es diferencial flotante. El análisis del circuito es trivial puesto que se transmiten las tensiones en las salidas de los seguidores de tensión. Hay que observar en el circuito de la figura 3 que la salida es diferencial flotante (ningún extremo de la resistencia de carga está conectado a tierra); en contra de lo que sucedía con la salida referida a tierra del amplificador diferencial básico. La salida diferencial que se consigue es en realidad una entrada diferencial a la etapa de ganancia variable, que se verá a continuación mplificador de ganancia variable Este circuito se consigue añadiendo tres resistencias al amplificador aislador de la figura 3. esulta un aislador con entrada y salida diferenciales, y con ganancia ajustable. eamos el montaje, que mantiene la elevada resistencia de entrada con los dos seguidores de tensión. Queda descrito por la figura 4. 6 JJGDUC

7 3 mplificadores diferenciales y de instrumentación o G a L o o o o La salida del circuito resulta: Fig. 4. mplificador de instrumentación de ganancia ajustable y alta impedancia de entrada. o o a o 3.4 El amplificador de instrumentación ( ) El circuito queda representado en la figura 5 e incorpora las dos mejoras anteriores más un amplificador diferencial básico. o G a o o Fig. 5. mplificador de instrumentación basado en un amplificador diferencial de alta impedancia de entrada y un amplificador diferencial básico. JJGDUC 7

8 Circuitos nalógicos plicados. Juan José González de la osa La salida del circuito resulta: eferencias o o a o ( ) Coughlin,. F. y Driscoll, F.F., mplificadores operacionales y circuitos integrados lineales, 4ª edición, PrenticeHall hispanoamericana. México, 993. González de la osa, J.J., Circuitos Electrónicos con mplificadores Operacionales. Problemas, fundamentos teóricos y técnicas de identificación y análisis, Marcombo, Boixareu Editores, Barcelona, 00. Malik, N.. Electronic circuit: analysis, simulation and design, Prentice Hall international editions, 995. Millman, J. Microelectrónica. Circuitos y sistemas analógicos y digitales, 5ª edición, editorial hispano europea, Barcelona, JJGDUC

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD DEL VALLE ESCUELA DE INGENIERIA ELÉCTRICA Y ELÉCTRONICA CÁTEDRA DE PERCEPCIÓN Y SISTEMAS INTELIGENTES LABORATORIO N Fundamentos de Electrónica APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

Más detalles

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS. OBJETIVO DE LA PRÁCTICA. PRÁCTICA #2 EL AMPLIFICADOR OPERACIONAL Hacer la comprobación experimental de la función

Más detalles

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR

PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos ELA - Circuitos Electrónicos Clase No. 24: Amplificadores Operacionales (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Noviembre de 2009 ELA -

Más detalles

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y

Más detalles

Laboratorio Amplificador Diferencial Discreto

Laboratorio Amplificador Diferencial Discreto Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,

Más detalles

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

Electrónica 1. Práctico 1 Amplificadores Operacionales 1 Electrónica 1 Práctico 1 Amplificadores Operacionales 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Comparadores electrónicos

Comparadores electrónicos Comparadores electrónicos. Introduión En este capítulo se estudian los circuitos comparadores electrónicos con énfasis en los comparadores regenerativos y en los comparadores monolíticos, amplificadores

Más detalles

Práctica Nº 5 AMPLIFICADORES OPERACIONALES.

Práctica Nº 5 AMPLIFICADORES OPERACIONALES. Práctica Nº 5 AMPLIFICADORES OPERACIONALES. 1. INTRODUCCION. El concepto original del amplificador operacional procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas

Más detalles

Tema 2 El Amplificador Operacional

Tema 2 El Amplificador Operacional CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las

Más detalles

Problemas Tema 6. Figura 6.3

Problemas Tema 6. Figura 6.3 Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,

Más detalles

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS. Entender el comportamiento y las características del amplificador operacional.. Medir ganancia, impedancia de entrada y salida de las configuraciones básicas del amplificador operacional: amplificador

Más detalles

DISPOSITIVOS ELECTRÓNICOS II

DISPOSITIVOS ELECTRÓNICOS II CURSO 2010- II Profesores: Miguel Ángel Domínguez Gómez Despacho 222, ETSI Industriales Camilo Quintáns Graña Despacho 222, ETSI Industriales Fernando Machado Domínguez Despacho 229, ETSI Industriales

Más detalles

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Electrónica 1. Práctico 2 Amplificadores operacionales 2 Electrónica 1 Práctico 2 Amplificadores operacionales 2 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Electrónica Analógica

Electrónica Analógica Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto

Más detalles

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS.

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. I.- OBJETIVOS. Comprobar experimentalmente las reglas de funcionamiento líneas del amplificador lineal del amplificador operacional. Comprobar el funcionamiento

Más detalles

Trabajo práctico: Amplificador Operacional

Trabajo práctico: Amplificador Operacional Problema 1 El amplificador operacional de la figura posee resistencia de entrada infinita, resistencia de salida cero y ganancia de lazo abierto A LA =50. Calcule la ganancia de lazo cerrado Ar=Vo/Vi si

Más detalles

ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB

ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB 2.- La realimentación negativa: a) Desestabiliza la ganancia del sistema, haciéndolo

Más detalles

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales

Más detalles

Amplificador Operacional: caracterización y aplicación

Amplificador Operacional: caracterización y aplicación Amplificador Operacional: caracterización y aplicación E. de Barbará, G. C. García *, M. Real y B. Wundheiler ** Laboratorio de Electrónica Facultad de Ciencias Exactas y Naturales Departamento de Física

Más detalles

INSTRUMENTACIÓN. PRÁCTICA 1

INSTRUMENTACIÓN. PRÁCTICA 1 Introducción INSTRUMENTACIÓN. PRÁCTICA 1 Medidas de tensión eléctrica y circuitos potenciométricos Los circuitos potenciométricos se emplean frecuentemente para convertir las variaciones de impedancia

Más detalles

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto Unidad de aprendizaje: Electrónica Digital(L41088 ) Unidad de Competencia: Unidad 3 TEMA: 3.1, 3.2, 3.3, 3.4 y 3.5 Docente:

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN Ignacio Moreno elasco..- EL MPLIFICDO DE INSTUMENTCIÓN nte las exigencias de medida que imponen los sensores, se necesitan amplificadores específicos llamados de instrumentación que deben cumplir unos

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia Capítulo VII: Amplificadores de RF de potencia 109 110 7. Amplificadores RF de potencia 7.1 Introducción El amplificador de potencia (PA) es la última etapa de un trasmisor. Tiene la misión de amplificar

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Introducción l amplificador operacional es básicamente un amplificador de tensión con la particularidad de tener dos entradas, y amplificar solo la señal diferencia entre ellas.

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Configuraciones básicas del amplificador operacional Los amplificadores operacionales se pueden conectar según dos circuitos amplificadores básicos: las configuraciones (1)

Más detalles

BJT como amplificador en configuración de emisor común con resistencia de emisor

BJT como amplificador en configuración de emisor común con resistencia de emisor Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

OBJETIVOS CONSULTA PREVIA. La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Evaluar e interpretar las características fundamentales del amplificador diferencial. 2. Analizar las ventajas y desventajas de las diferentes formas de polarización del amplificador diferencial.

Más detalles

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084

Figura 1. (a) Diagrama de conexiones del LM741. (b) Diagrama de conexiones del TL084 Práctica No. Usos del Amplificador Operacional (OPAM) Objetivos. Comprobar las configuraciones típicas del amplificador operacional. Comprender en forma experimental el funcionamiento del amplificador

Más detalles

2 Electrónica Analógica TEMA II. Electrónica Analógica

2 Electrónica Analógica TEMA II. Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.1

Más detalles

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II

PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que

Más detalles

Practica 3.- Aplicaciones del diodo de unión.

Practica 3.- Aplicaciones del diodo de unión. Practica 3.- Aplicaciones del diodo de unión. A.- Objetivos. Estudiar varias aplicaciones del diodo de unión como son el diodo como circuito recortador, rectificador con filtro y doblador de tensión con

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

OBJETIVOS DE LA ASIGNATURA

OBJETIVOS DE LA ASIGNATURA DATOS GENERALES Asignatura Curso académico Titulación/Especialidad CIRCUITOS ANALÓGICOS APLICADOS 2002-2003-Definitivo INGENIERO TECNICO INDUSTRIAL EN ELECTRONICA INDUSTRIAL Departamento Ingeniería de

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

Electrónica II. Guía 4

Electrónica II. Guía 4 Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar

Más detalles

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

Tema 6.-AMPLIFICADORES OPERACIONALES

Tema 6.-AMPLIFICADORES OPERACIONALES Tema 6.-AMPLIFICADORES OPERACIONALES INTRODUCCION.- El concepto original del AO (amplificador operacional) procede del campo de los computadores analógicos, en los que comenzaron a usarse técnicas operacionales

Más detalles

TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL

TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL 1 INGENIERIA TENIA INDUSTRIAL. ELETRONIA INDUSTRIAL TEORIA DE IRUITOS. URSO 2003-2004 PRÁTIA 4. RESPUESTA FREUENIAL EN REGIMEN PERMANENTE SENOIDAL PRIMERA PARTE: SIMULAIÓN EN PSPIE INTRODUIÓN El objetivo

Más detalles

CAPITULO X EL POTENCIOMETRO

CAPITULO X EL POTENCIOMETRO CAPITULO X EL POTENCIOMETRO 10.1 INTRODUCCION. La determinación experimental del valor de un voltaje DC se hace generalmente utilizando un voltímetro o un osciloscopio. Ahora bien, los dos instrumentos

Más detalles

Laboratorio Integrador y Diferenciador con AO

Laboratorio Integrador y Diferenciador con AO Objetivos Laboratorio Integrador y Diferenciador con AO El propósito de este práctico es comprender el funcionamiento de un integrador y de un diferenciador construido con un LM741. Textos de Referencia

Más detalles

Experiencia P51: Circuito RL Sensor de Voltaje, salida de potencia

Experiencia P51: Circuito RL Sensor de Voltaje, salida de potencia Sensor de Voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuitos P51 LR Circuit.DS ( vea al final experiencia) ( vea al final experiencia) Equipo necesario Cant.

Más detalles

CAPÍTULO 4: RESULTADOS

CAPÍTULO 4: RESULTADOS CAPÍTULO 4: RESULTADOS En la mayoría de los resultados de medición se utilizó una herramienta del osciloscopio que permite realizar varias mediciones y hace cálculos estadísticos para obtener un promedio

Más detalles

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna

Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6: Amplificadores Operacionales 1 Introducción: El amplificador operacional (en adelante, op-amp) es un tipo de circuito integrado que se usa en un sinfín

Más detalles

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción Temario Tema Teo. Pro. 1. Amplificación 2h 1h 2. Realimentación 2.5h 1.5h 3. Amplificador operacional (AO) y sus etapas lineales 7h 4h 4. Comparadores y generadores de onda 7h 4h 5. El amplificador operacional

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Circuitos Sample & Hold y Conversores. Introducción

Circuitos Sample & Hold y Conversores. Introducción Circuitos Sample & Hold y Conversores Introducción Los circuitos de muestreo y retención se utilizan para muestrear una señal analógica en un instante dado y mantener el valor de la muestra durante tanto

Más detalles

Práctica 5 Circuito acondicionador de señal

Práctica 5 Circuito acondicionador de señal Práctica 5 Circuito acondicionador de señal Objetivo de la práctica Analizar Al terminar esta práctica, el discente será capaz de: Diseñar una red resistiva que cumpla con acondicionamiento analógico.

Más detalles

6.071 Prácticas de laboratorio 4 Amplificadores operacionales

6.071 Prácticas de laboratorio 4 Amplificadores operacionales 6.071 Prácticas de laboratorio 4 Amplificadores operacionales 29 de abril de 2002 1 Ejercicios previos AVISO: en las anteriores prácticas de laboratorio, se han presentado numerosos estudiantes sin los

Más detalles

Transistor BJT como Amplificador

Transistor BJT como Amplificador Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador

Más detalles

Amplificador inversor y no inversor

Amplificador inversor y no inversor Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores

Más detalles

Mantenimiento de equipos electrónicos. El generador de funciones y el generador de baja frecuencia.

Mantenimiento de equipos electrónicos. El generador de funciones y el generador de baja frecuencia. Mantenimiento de equipos electrónicos El generador de funciones y el generador de baja frecuencia 1/11 Aplicaciones de los generadores de funciones y generadores de baja frecuencia y diferencias entre

Más detalles

PRÁCTICAS DE LABORATORIO DE SONIDO

PRÁCTICAS DE LABORATORIO DE SONIDO PRÁCTICAS DE LABORATORIO DE SONIDO Diseño y montaje de una etapa de potencia con un TDA 1554 Esquema del circuito Para conocer las características de este amplificador deberemos de mirar en el catálogo

Más detalles

Marco Antonio Andrade Barrera 1 Diciembre de 2015

Marco Antonio Andrade Barrera 1 Diciembre de 2015 Diseño, simulación, construcción, medición y ajuste de un filtro pasa-bajas activo de segundo orden con coeficientes de Bessel, configuración Sallen-Key, ganancia unitaria y una frecuencia de corte f c

Más detalles

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE

PRÁCTICA 3 TRANSISTORES BIPOLARES: POLARIZACIÓN Y GENERADORES DE CORRIENTE PÁCTCA 3 TANSSTOES BPOLAES: POLAZACÓN Y GENEADOES DE COENTE 1. OBJETVO. Se pretende que el alumno tome contacto, por primera vez en la mayor parte de los casos, con transistores bipolares, y que realice

Más detalles

AMPLIFICADORES DIFERENCIALES, DE INSTRUMENTACIÓN Y DE PUENTE

AMPLIFICADORES DIFERENCIALES, DE INSTRUMENTACIÓN Y DE PUENTE AMPLIFICADOES DIFEENCIALES, DE INSTUMENTACIÓN Y DE PUENTE OBJETIVO DE APENDIZAJE Al terminar la lectura de este capítulo sobre amplificadores diferenciales, de instrumentación y de puente, será capaz de:

Más detalles

PRACTICA Nº3: FAMILIAS LOGICAS

PRACTICA Nº3: FAMILIAS LOGICAS PRACTICA Nº3: FAMILIAS LOGICAS El objetivo de esta práctica es comprobar el funcionamiento de los inversores básicos bipolar y MOS, observando sus características de transferencia y midiendo sus parámetros.

Más detalles

Fuentes de corriente

Fuentes de corriente Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,

Más detalles

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA I - Finalidades 1.- Introducción y uso del osciloscopio. 2.- Efectuar medidas de tensiones alternas con el osciloscopio. alor máximo, valor pico

Más detalles

Herramientas Integradas para Laboratorios de Electrónica

Herramientas Integradas para Laboratorios de Electrónica Herramientas Integradas para Laboratorios de Electrónica NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) Integración y funcionalidad con múltiples instrumentos. Combina instrumentación,

Más detalles

ETAPAS DE SALIDA Etapa de salida Clase A Inconvenientes

ETAPAS DE SALIDA Etapa de salida Clase A Inconvenientes Etapa de salida Clase A Inconvenientes El mayor inconveniente de la etapa de salida clase A es que presenta una elevada disipación de potencia en ausencia de señal AC de entrada. En gran cantidad de aplicaciones

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

AMPLIFICADORES OPERACIONALES. Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener:

AMPLIFICADORES OPERACIONALES. Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener: AMPLIFICADORES OPERACIONALES Modelo Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener: 1. Una impedancia de entrada muy elevada en cada

Más detalles

ESTUDIO COMPARATIVO SOBRE DISTINTOS TIPOS DE FILTROS FIR IMPLEMENTADOS EN UN DSPIC

ESTUDIO COMPARATIVO SOBRE DISTINTOS TIPOS DE FILTROS FIR IMPLEMENTADOS EN UN DSPIC ESTUDIO COMPARATIVO SOBRE DISTINTOS TIPOS DE FILTROS FIR IMPLEMENTADOS EN UN DSPIC Autores: Matías L. Martini, Gastón Oviedo Tutor: Ing. Franco M. Salvático (fmsalvatico@hotmail.com) Departamento de Ingeniería

Más detalles

Clasificación de los Convertidores DAC

Clasificación de los Convertidores DAC Clasificación de los Convertidores DAC Sistemas de Adquisición de datos () Según las características de la señal de entrada digital Codificación: Código: Binario Natural BCD Formato: Serie Paralelo Almacenamiento

Más detalles

INVERSORES RESONANTES

INVERSORES RESONANTES 3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,

Más detalles

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T

Podemos plantear un sencillo esquema de alarma como el de la figura: V REF 3600( ) T Lección 4. MEDIDA DE LA EMPEAUA. Diseñe un sistema de alarma de temperatura utilizando una NC. Deberá activarse cuando la temperatura ascienda por encima de ºC con una exactitud de ºC. Datos: B36K, kω@5ºc,

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

Teoría de Circuitos: amplicadores operacionales

Teoría de Circuitos: amplicadores operacionales Teoría de Circuitos: amplicadores operacionales Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Primer semestre - 2016 Contenido 1 El amplicador

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua -Elementos activos de un circuito: generadores ideales y reales. Equivalencia de generadores. -Potencia y energía. Ley

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle Introducción a la Física Experimental. Experimento guiado. Abril 2009. M. López Quelle Circuito RC en corriente alterna. Comportamiento de un filtro RC. 1.- Breve introducción teóricateoría previa Utilizamos

Más detalles

EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE

EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE EL TEMPORIZADOR 555. El temporizador 555 es un dispositivo versátil y muy utilizado, por que puede

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnolóicos de la Informática Circuitos de Corriente Continua -Elementos activos de un circuito: eneradores ideales y reales. Equivalencia de eneradores. Potencia y enería. Ley de

Más detalles

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Circuito de Offset

Circuito de Offset Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 1 Representación de la Información

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 GENERADORES DE SEÑAL UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos

Más detalles

PROBLEMAS. EL AMPLIFICADOR OPERACIONAL. 1. El circuito de la figura(1) muestra un Amplificador Operacional ideal salvo que tiene una ganancia finita A. Unas medidas indican que vo=3.5v cuando vi=3.5v.

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.

DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA

Más detalles

Laboratorio 4 Fuente no regulada y regulada

Laboratorio 4 Fuente no regulada y regulada Laboratorio 4 Fuente no regulada y regulada Jeison David Mateus González, Wilmer Ferney Romero Avellaneda, Ovalle Triana Ángel Daniel Corporación Unificada Nacional de Educación Superior CUN Ingeniería

Más detalles

6.071 Prácticas de laboratorio 3 Transistores

6.071 Prácticas de laboratorio 3 Transistores 6.071 Prácticas de laboratorio 3 Transistores 1 Ejercicios previos, semana 1 8 de abril de 2002 Leer atentamente todas las notas de la práctica antes de asistir a la sesión. Esta práctica es acumulativa

Más detalles

LABORATORIO DE ELECTRÓNICA. PRÁCTICA 7 El Temporizador 555

LABORATORIO DE ELECTRÓNICA. PRÁCTICA 7 El Temporizador 555 o Ingeniería de Telecomunicación. Segundo Cuatrimestre LABOATOIO DE ELECTÓNICA PÁCTICA El Temporizador Material necesario: Circuitos integrados: - LMC Condensadores: - 0,0 µf - 0, µf Potenciómetros: -

Más detalles

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL 1 a PARTE DEL EXAMEN: PREGUNTAS DE TEORÍA: 1.- AMPLIFICADORES OPERACIONALES. Efectos de 2º orden 1.1) Respuesta frecuencial del amplificador operacional en lazo abierto, considerándolo como un sistema

Más detalles

Electrónica Analógica

Electrónica Analógica Universidad de Alcalá Departamento de Electrónica Electrónica Analógica Ejercicios Tema 3: Diodos Referencias: Texto base: Circuitos Electrónicos. Análisis simulación y diseño, de Norbert R. Malik. Capítulo

Más detalles

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos... Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores

Más detalles

UNIDAD DIDÁCTICA 1.- INTRODUCCIÓN AL MANEJO DE INSTRUMENTOS FUNDAMENTALES (I).

UNIDAD DIDÁCTICA 1.- INTRODUCCIÓN AL MANEJO DE INSTRUMENTOS FUNDAMENTALES (I). 2008/2009 Tipo: OPT Curso: 1 Semestre: B CREDITOS Totales TA TS AT AP PA OBJETIVOS Competencias que se van a trabajar desde la asignatura: 6 0 0 0 0 2 PI 0 PL 4 PC 0 Conocer los fundamentos del manejo

Más detalles

Experiencia P57: Amplificador seguidor de emisor Sensor de voltaje

Experiencia P57: Amplificador seguidor de emisor Sensor de voltaje Sensor de voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores P57 Common Emitter.DS (Vea al final de la (Vea al final de la experiencia) experiencia) Equipo necesario Cant.

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo:

PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo: PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA Objetivo: Comprender el comportamiento de un transistor en un amplificador. Diseñando y comprobando las diferentes configuraciones

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Electrónica Analógica 1

Electrónica Analógica 1 Trabajo Práctico 4: El transistor bipolar como amplificador. Modelo equivalente de pequeña señal. Parámetros híbridos. Configuraciones multietapa. Análisis en pequeña señal: método de trabajo La figura

Más detalles