Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003"

Transcripción

1 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación tiene 4 preguntas. Escriba su nombre en todas las páginas. Pregunta 1 /30 Pregunta 2 /30 Pregunta 3 /30 Pregunta 4 /30 Total /120 Nota Duración: 2 hrs.

2 IIC 2222 Interrogación 2 2 Pregunta 1 [30 puntos] Diga si los siguientes lenguajes son regulares o no y demuestre su respuesta. (a) {a i b j i y j no son ambos divisibles por 3}. El lenguaje es regular; de hecho, si r 0 = (000) (0 + 00), r 1 = (111) (1 + 11), entonces el lenguaje es generado por (b) {a i b j i > j o 2i < j}. r 0 r 1 + (000) r 1 + r 0 (111) El lenguaje no es regular, porque no satisface el lema de bombeo. Sea N la constante del lema, L el lenguaje, y z = a N! b 3N!. Observemos que z L y z N, por lo que podemos escribir z = uvw, con uv N y v > 1 para algunos u, v, w. Notemos que v = a k con 1 k N, y que además z i = uv i w = a N!+(i 1)k b 3N! L, para todo natural i. Sea p = 3N! N! k + 1, entonces z p = a 3N! b 3N! L, luego como L no satisface el lema de bombeo, no es regular. (c) {a 2i b 3j i, j 0}. El lenguaje no es regular, porque no satisface el lema de bombeo. Sea N la constante del lema y z = b 3N (z L, z N).Podemos escribir z = uvw, con uv N y v > 1 para algunos u, v, w. Notemos que z = b k (1 k N) y que z i = b 3N +(i 1)k L, para todo i. Demostraremos que z 2 = b 3N +k L. De hecho, es claro que puesto que 1 k N k < 2 3 N. 3 N < 3 N + k < 3 N+1 Como L no cumple el lema de bombeo, L no puede ser regular.

3 IIC 2222 Interrogación 2 3 Pregunta 2 [30 puntos] Construya gramáticas libres de contexto para: (a) {a i b j c k i = 2j + k}. S asc aaab ε A aaab ε (b) {a i b j c k j i + k}. S AC A aab aa ε C bcc Cc ε (c) {0 i 1 j 2i j 4i}. S 0S11 0S111 0S1111 ε

4 IIC 2222 Interrogación 2 4 Pregunta 3 [30 puntos] Conteste, a lo más, dos de las siguientes preguntas (a) Si L y R son lenguajes regulares sobre Σ y h : Σ es un homomorfismo, entonces: Q = {(h(x)) i (h(y)) i i 0, x L, y R} es regular?, Es libre de contexto? Demuestre ambas respuestas. Q no es regular en general (4 puntos). De hecho, sea h(0) = a, h(1) = b y L = {0} y R = {0}. En este caso, Q = {a i b i i 0}. Por otro lado (6 puntos), como h(l) y h(r) son regulares, también son libres de contexto y por lo tanto pueden ser generados usando una gramáticas G L = (V L, Σ, P L, S L ) y G R = (V R, Σ, P R, S R ), respectivamente. La gramática G Q = (V, Σ, P, S), con V = V L V R y P R = P L P R {S S L SS R ε} genera a Q (suponemos, sin pérdida de generalidad que V R y V L son disjuntos). Claramente, si se hacen i derivaciones a partir de S, y se reemplaza siempre S por el lado derecho de la primera producción, y por último se escoge reemplazar a S por la última producción se obtiene: S i S i LSS i G S i LS i G w L w G con w L h(l) y w G h(r). Con esto se concluye que L(G Q ) Q. Por otra parte, si w Q, entonces w es de la forma x 1... x n y 1... y n con x i h(l) y y i h(r). Claramente, podemos generar una palabra de esa naturaleza a partir de S. (b) Demuestre que la gramática G = (V, T, P, S) con P : S asbs bsas ab ba SS es tal que si w T y S w, entonces w tiene el mismo número de a s que de b s. Demuestre, además, que no genera el conjunto de palabras en {a, b} con igual número de a s que de b s. Demostramos por inducción (7 puntos) en el número de derivaciones que toda palabra generada por la gramática tiene igual número de a s que de b s. Caso base (un paso de derivación). Vemos que las únicas palabras que son generadas en 1 paso son ab y ba, que cumplen con la propiedad. Inducción. Suponemos que todas las palabras que son derivadas en hasta k pasos tienen igual número de a s que de b s. Sea w una palabra derivada en k + 1 pasos. Entonces, tenemos 3 casos. 1) S SS xy = w (S x, S y). Tanto la derivación de x como la de y son de menos de k pasos y por lo tanto, por h.i. tienen igual número de a s que de b s. Claramente, w cumple con la propiedad. 2) S asbs axby = w (S x, S y). Tanto la derivación de x como la de y son de menos de k pasos y por lo tanto, por h.i. tienen igual número de a s que de b s. Claramente, w cumple con la propiedad. 3) S bsas bxay = w. La argumentación es análoga al caso anterior. Por último (3 puntos) la gramática no genera a todas las palabras con igual número de a s que de b s. De hecho, no generera a ε.

5 IIC 2222 Interrogación 2 5 (c) Demuestre que la gramática G = (V, T, P, S) con P dado por: S aas aaaaas ε Es ambigua y proponga una gramática no ambigua para L(G). Justifique su proposición. La gramática es ambigua (5 puntos) pues es posible encontrar más de una derivación por la izquierda para a 1 0. Una derivación usa 10 veces a S aas, y la otra dos veces a S aaaaas. (5 puntos) La gramática genera todas las palabras de la forma a 2k+5p, k, p 0. Claramente, la gramática genera todas las palabras de largo par (basta con hacer p = 0, que es equivalente a derivar sólo usando la producción S aas y finalmente con S ε). Sin embargo, no todas, pero casi todas las palabras de largo impar son generadas. De hecho, haciendo p = 1 se ve que es posible generar todas las palabras de la forma a 2k+4+1. Esto incluye a todas las palabras de largo par, excluyendo a a y aaa. Por tanto, la gramática no ambigua para L está dada por las siguientes producciones: S ε aa B B aaaa ab De esta manera, sólo hay una forma de producir las palabras de la forma a 2k+5p, k, p 0.

6 IIC 2222 Interrogación 2 6 Pregunta 4 [30 puntos] Conteste sólo la (a) o sólo la (b) (a) Encuentre una expresión regular para el lenguaje aceptado por el AFND dado por la figura , (b) i. Encuentre un AFD mínimo para el lenguaje de todas las palabras binarias que no contienen 11 ni a 00. Demuestre que es mínimo. ii. Dé un algoritmo para determinar, dado dos AFD s M = (Q, Σ, δ, q 0, F ) y M = (Q, Σ, δ, q 0, F ), si L(M) L(M ).

7 IIC 2222 Interrogación 2 7 [hoja extra pregunta 4]

8 IIC 2222 Interrogación 2 8 [hoja extra pregunta 4]

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Gramáticas Regulares Expresiones Regulares Gramáticas - Intuitivamente una gramática es un conjunto de reglas para formar correctamente las frases de un lenguaje - Por ejemplo,

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES

TEORÍA DE AUTÓMATAS Y LENGUAJES TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Francisco Vico departamento Lenguajes y Ciencias de la Computación área de conocimiento Ciencias de la Computación e Inteligencia Artificial ETSI Informática Universidad

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre

Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre Tarea Nº 2 Introducción a la Informática Lema del Bombeo y Lenguajes de Contexto Libre Dr. Horst von Brand vonbrand@inf.utfsm.cl Diego Candel dcontard@.inf.utfsm.cl Lunes 24 de Abril 1º Semestre del 2006

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

3 Propiedades de los conjuntos regulares 3.1 Lema de Bombeo para conjuntos regulares

3 Propiedades de los conjuntos regulares 3.1 Lema de Bombeo para conjuntos regulares Curso Básico de Computación 3 Propiedades de los conjuntos regulares 3. Lema de Bombeo para conjuntos regulares El lema de bombeo es una herramienta poderosa para probar que ciertos lenguajes son no regulares.

Más detalles

TEORIA DE AUTOMATAS.

TEORIA DE AUTOMATAS. TEORIA DE AUTOMATAS. RELACION DE PROBLEMAS II.. Construir un AFND capaz de aceptar una cadena u {, }, que contenga la subcadena. Construir un AFND capaz de aceptar una cadena u {, }, que contenga la subcadena.

Más detalles

Lenguajes Incontextuales

Lenguajes Incontextuales Tema 5: Gramáticas Formales Lenguajes Incontextuales Departamento de Sistemas Informáticos y Computación http://www.dsic.upv.es p.1/31 Tema 5: Gramáticas Formales Gramáticas. Tipos de Gramáticas. Jerarquía

Más detalles

6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de Bombeo para LLC

6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de Bombeo para LLC 1 Curso ásico de Computación 6 Propiedades de los lenguajes libres de contexto 6.1 El Lema de ombeo para LLC El lema de ombeo para LLC nos dice que siempre existe dos subcadenas cortas muy juntas que se

Más detalles

Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND.

Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND. Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND. Sea el siguiente autómata finito no determinista M: c q0 a b q1 b q2 Sea L = {x {a, b, c} /x es de la forma a(ba) k bc

Más detalles

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación Autómatas finitos y expresiones regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) Autómatas

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013

Más detalles

Otras propiedades de los lenguajes regulares

Otras propiedades de los lenguajes regulares Capítulo 3 Otras propiedades de los lenguajes regulares En los dos capítulos anteriores hemos presentado las propiedades básicas de los lenguajes regulares pero no hemos visto cómo se puede demostrar que

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

Introducción a la Teoría de Autómatas, Lenguajes y Computación

Introducción a la Teoría de Autómatas, Lenguajes y Computación Introducción a la Teoría de Autómatas, Lenguajes y Computación Gustavo Rodríguez Gómez y Aurelio López López INAOE Propedéutico 2010 1 / 53 Capítulo 2 Autómatas Finitos 2 / 53 1 Autómatas Finitos Autómatas

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación 3 Propiedades de los conjuntos regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) 3 Propiedades

Más detalles

1 er Parcial Febrero 2009

1 er Parcial Febrero 2009 Autómatas y Lenguajes Formales 3 o Ingeniería Informática 1 er Parcial Febrero 2009 Normas : La duración de esta parte del examen es de 2,5 horas. Todos los ejercicios se entregarán en hojas separadas.

Más detalles

Expresiones regulares, gramáticas regulares Unidad 3

Expresiones regulares, gramáticas regulares Unidad 3 Expresiones regulares, gramáticas regulares Unidad 3 Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes,

Más detalles

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta.

Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. (a) Es posible aceptar por stack vacío el lenguaje {0 i 1 j i = j o j = 2i} con un AA determinístico.

Más detalles

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:

Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular: Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Máquinas Secuenciales, Autómatas y Lenguajes Hoja de Problemas: Propiedades Lenguajes Regulares Nivel del ejercicio : ( ) básico, ( ) medio,

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.

Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 12 Propiedades de L.I.C. Nivel del ejercicio : ( ) básico,

Más detalles

Lenguajes y Compiladores Aspectos Formales (Parte 2) Compiladores

Lenguajes y Compiladores Aspectos Formales (Parte 2) Compiladores Facultad de Ingeniería de Sistemas Lenguajes y Aspectos Formales (Parte 2) 2007 1 Derivaciones El proceso de búsqueda de un árbol sintáctico para una cadena se llama análisis sintáctico. El lenguaje generado

Más detalles

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia Universidad

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Propiedades de Clausura de los Lenguajes Regulares y Lenguajes Libres del Contexto Propiedades de Clausura de Lenguajes Regulares Los lenguajes regulares (LR son cerrados bajo

Más detalles

Ejemplo de preguntas del EXAMEN DE ADMISION Maestría en Ciencias Especialidad Ingeniería Eléctrica Área de Computación

Ejemplo de preguntas del EXAMEN DE ADMISION Maestría en Ciencias Especialidad Ingeniería Eléctrica Área de Computación Ejemplo de preguntas del EXAMEN DE ADMISION 8 Maestría en Ciencias Especialidad Ingeniería Eléctrica Área de Computación Lógica, Conjuntos, Relaciones y Funciones, Inducción 1. Determine la validez del

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares Luis Peña Lenguaje Regular Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si existe

Más detalles

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares Lenguaje Regular Capítulo 8: Propiedades de los Lenguajes Regulares José Miguel Buenaposada Josemiguel.buenaposada@urjc.es Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si

Más detalles

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO Dpto. de Informática (ATC, CCIA y LSI). Universidad de Valladolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES I Ingeniería Técnica en Informática de Sistemas. Curso 2011-12 GRAMÁTICAS y LENGUAJES INDEPENDIENTES

Más detalles

Teoría de Lenguajes Solución 2do. Parcial Curso 2013

Teoría de Lenguajes Solución 2do. Parcial Curso 2013 Ejercicio 1 [Evaluación individual del obligatorio] Teoría de Lenguajes Solución 2do. Parcial Curso 2013 a) iv. Cuando se realiza un reduce b) ii. La gramática implementada en el archivo Sintactico.sin

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Paréntesis: Una aplicación en lenguajes formales

Paréntesis: Una aplicación en lenguajes formales Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales 1. Objetivos 2. Representación de los datos en Mathematica 3. Eliminación de símbolos inútiles 3.1. Símbolos

Más detalles

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011 6, 7 y 13 de abril de 2011 Analizadores sintácticos (repaso) Los analizadores descendentes: Corresponden a un autómata de pila determinista. Construyen un árbol sintáctico de la raíz hacia las hojas (del

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Propiedades de Lenguajes Regulares

Propiedades de Lenguajes Regulares de INAOE (INAOE) 1 / 44 Contenido 1 2 3 4 (INAOE) 2 / 44 Existen diferentes herramientas que se pueden utilizar sobre los lenguajes regulares: El lema de : cualquier lenguaje regular satisface el pumping

Más detalles

Tema: Autómata de Pila

Tema: Autómata de Pila Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b*

Paso 1: Autómata. A 1 sin estados inútiles, que reconoce el lenguaje denotado por a a* b* UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

Algoritmo para la obtención de los estados accesibles

Algoritmo para la obtención de los estados accesibles UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS

UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS UNIVERSIDAD DE CÓRDOBA ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE INFORMÁTICA Y ANÁLISIS NUMÉRICO INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS SEGUNDO CURSO, SEGUNDO CUATRIMESTRE TEORÍA DE AUTÓMATAS

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

Teoría de Lenguajes. Gramáticas incontextuales

Teoría de Lenguajes. Gramáticas incontextuales Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Teoría de Lenguajes // 1er. cuatrimestre de er. Parcial

Teoría de Lenguajes // 1er. cuatrimestre de er. Parcial Teoría de Lenguajes // er. cuatrimestre de 200 er. Parcial Dados los lenguajes: L = { w (a b)* para algún prefijo v de w: v a - v b > } (Ejemplos: Las cadenas ababaa y bbbaa pertenecen a L. Las cadenas

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

El lema de bombeo y los lenguajes no regulares

El lema de bombeo y los lenguajes no regulares El lema de bombeo y los lenguajes no regulares Elvira Mayordomo Universidad de Zaragoza 22 de octubre de 202 Contenido de este tema Son todos los lenguajes regulares? El lema de bombeo Cómo aplicar el

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales

Más detalles

1. Probar pertenencia a Lenguajes libres de contexto

1. Probar pertenencia a Lenguajes libres de contexto Tarea 3 Curso : Teoría de la Computación Codigo : CC3102-1 Fecha : 8 de noviembre de 2017 Autor : Bastián Mail : mail@gmail.com 1. Probar pertenencia a Lenguajes libres de contexto 1.1. L 1 = {a m b n

Más detalles

Universidad de Valladolid

Universidad de Valladolid Universidad de Valladolid Departamento de Informática Teoría de autómatas y lenguajes formales. 2 o I.T.Informática. Gestión. Examen de primera convocatoria. 18 de junio de 29 Apellidos, Nombre... Grupo:...

Más detalles

Máquinas de Turing, recordatorio y problemas

Máquinas de Turing, recordatorio y problemas Máquinas de Turing, recordatorio y problemas Elvira Mayordomo, Universidad de Zaragoza 5 de diciembre de 2014 1. Recordatorio de la definición de máquina de Turing Una máquina de Turing, abreviadamente

Más detalles

Autómatas de Estados Finitos

Autómatas de Estados Finitos Asignatura: Teoría de la Computación Unidad 1: Lenguajes Regulares Tema 1: Autómatas de Estados Finitos Autómatas de Estados Finitos Definición de Autómatas de estados finitos: Tipo Lenguaje Máquina Gramática

Más detalles

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Computabilidad y Lenguajes Formales: Autómatas de Pila

Computabilidad y Lenguajes Formales: Autómatas de Pila 300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas

Más detalles

Tres versiones de Pal. Sesión 19. Una máquina para aceptar Pal El lenguaje: Tabla de transición para Pal. Más de un siguiente estado.

Tres versiones de Pal. Sesión 19. Una máquina para aceptar Pal El lenguaje: Tabla de transición para Pal. Más de un siguiente estado. Tres versiones de Pal Sesión 19 Autómata de pila determinístico Pal marca = {xcx r x {0, 1} * } 0110c0110 Pal par = {xx r x {0, 1} * } 00111100 Pal = {x x = x r {0, 1} * } 00111100 001101100 Una máquina

Más detalles

Las Gramáticas LL. Gramáticas con Parsing Eficiente. Universidad de Cantabria

Las Gramáticas LL. Gramáticas con Parsing Eficiente. Universidad de Cantabria Las (k) Las Gramáticas con Parsing Eficiente Universidad de Cantabria Outline Las (k) 1 Las (k) 2 3 Las (k) Formalizalización del Concepto LL Definición Una gramática libre de contexto G = (V, Σ, Q 0,

Más detalles

Expresiones Regulares. Lenguaje definido por una ER. Ejemplos de expresiones regulares. Lenguajes regulares

Expresiones Regulares. Lenguaje definido por una ER. Ejemplos de expresiones regulares. Lenguajes regulares Paso básco: Expresones Regulares Ø es una expresón regular es una expresón regular s Σ, s es una expresón regular Paso de nduccón: unón, concatenacón y clausura S y β son expresones regulares β es una

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 7 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/20 Lenguajes Formales

Más detalles

La Ambigüedad en el Parsing

La Ambigüedad en el Parsing La en el Parsing Definición y Ejemplos Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema En nuestra busqueda por encontrar la estructura exploraremos como elegir una derivación

Más detalles

Expresiones regulares y derivadas

Expresiones regulares y derivadas Expresiones regulares y derivadas Teoría de Lenguajes 1 er cuatrimestre de 2002 1 Expresiones regulares Las expresiones regulares son expresiones que se utilizan para denotar lenguajes regulares. No sirven

Más detalles

Minimización de Aútomatas Finitos

Minimización de Aútomatas Finitos Minimización de Aútomatas Finitos Supongamos que para un AFD M = (Q, Σ, δ, q 0, F ) definimos la siguiente relación R M : xr M y ssi δ(q 0, x) = δ(q 0, y) Claramente, podemos notar que esta relación es

Más detalles

Preguntas y respuestas para la evaluación continua de TALF 2009/2010

Preguntas y respuestas para la evaluación continua de TALF 2009/2010 Preguntas y respuestas para la evaluación continua de TALF 2009/2010 Dr. Arno Formella Universidade de Vigo Escola Superior de Enxeñaría Informática Departamento de Informática Área de Linguaxes e Sistemas

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos

Más detalles

16 Análisis sintáctico I

16 Análisis sintáctico I 2 Contenido Recordando la estructura de un compilador Recordando el análisis léxico l análisis sintáctico Comparación con el análisis léxico l Rol del Parser Lenguajes de programación Gramáticas structura

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

Gramáticas libres de contexto

Gramáticas libres de contexto Gramáticas libres de contexto Conceptos básicos El siguientes es un ejemplo de una gramática libre de contexto, a la cual llamaremos G1. A 0A1 A B B # Una gramática consiste de una colección de reglas

Más detalles

Tres versiones de Pal. Tema 19. Una máquina para aceptar Pal. Tabla de transición para Pal. Transición. Más de un siguiente estado

Tres versiones de Pal. Tema 19. Una máquina para aceptar Pal. Tabla de transición para Pal. Transición. Más de un siguiente estado Tres versiones de Pal Tema Autómata de pila determinístico Dr. Luis A. Pineda ISBN: --- Pal marca = {xcx r x {, } * } c Pal par = {xx r x {, } * } Pal = {x x = x r {, } * } Dr. Luis A. Pineda, IIMAS, UNAM,.

Más detalles

Las Gramáticas Formales

Las Gramáticas Formales Definición de Las Como definir un Lenguaje Formal Universidad de Cantabria Esquema Motivación Definición de 1 Motivación 2 Definición de 3 Problema Motivación Definición de Dado un lenguaje L, se nos presenta

Más detalles

1. Define que es un Autómatas finitos determinanticos y cuáles son sus elementos constitutivos (explique cada uno de ellos).

1. Define que es un Autómatas finitos determinanticos y cuáles son sus elementos constitutivos (explique cada uno de ellos). Unidad 2.- Lenguajes Regulares Los lenguajes regulares sobre un alfabeto dado _ son todos los lenguajes que Se pueden formar a partir de los lenguajes básicos?, {_}, {a}, a 2 _, por medio De las operaciones

Más detalles

Lenguajes formales y autómatas

Lenguajes formales y autómatas y autómatas. raul.gutierrez@correounivalle.edu.co Marzo, 2014 El alfabeto Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos. Sea Σ = {a, b} el alfabeto que consta de los símbolos

Más detalles

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal RELACIONES Y FUNCIONES M.C. Mireya Tovar Vidal IDEA INTUITIVA DE RELACIÓN Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Autómatas Finitos No Determinísticos Minimización de Autómatas Finitos Determinísticos Agosto 2007 Autómatas Finitos Determinísticos Para cada estado y para cada símolo se

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Proyecto Intermedio Algoritmo de Earley

Proyecto Intermedio Algoritmo de Earley Fundamentos de Computación Proyecto Intermedio: Algoritmo de Earley Profesor: Dr. José Torres Jiménez Alumnos: Edna Gutiérrez Gasca Aureny Magaly Uc Miam Jorge Rodríguez Núñez Proyecto Intermedio Algoritmo

Más detalles

TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO

TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6.- GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO 6.1. Gramáticas independientes del contexto. 6.2. Limpieza de Gramáticas Independientes del contexto. 6.3.

Más detalles

El lema de bombeo para lenguajes regulares

El lema de bombeo para lenguajes regulares El lema de bombeo para lenguajes regulares Lenguajes, Gramáticas y Autómatas, cuarto cuatrimestre (primavera) de Ingeniería en Informática http://webdiis.unizar.es/asignaturas/lga Rubén Béjar Hernández,

Más detalles

Conjuntos y expresiones regulares. Propiedades de las expresiones regulares (1) Propiedades de las expresiones regulares (2)

Conjuntos y expresiones regulares. Propiedades de las expresiones regulares (1) Propiedades de las expresiones regulares (2) César Ignacio García Osorio Área de Lenguajes y Siste mas Informáticos Universidad de Burgos Conjuntos y expresiones regulares Conjunto regular: Cualquier conjunto de cadenas que se pueda formar mediante

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Autómata = Lógica Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Pero antes: Vamos a hacer un breve repaso sobre

Más detalles

Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas

Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas Guía Modelos de Computación Tema I: Lenguajes y Gramáticas Introducción La sintaxis de un lenguaje natural, esto es, la de los lenguajes hablados, como el inglés, el español, el alemán o el francés, es

Más detalles

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50

Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50 INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)

Más detalles

LENGUAJES Y GRAMÁTICAS

LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS La sintaxis de un lenguaje natural en lenguajes como el ingles, español, alemán o francés es extremadamente complicada, dado que es imposible especificar la

Más detalles

GRAMÁTICAS LIBRES DE CONTEXTO

GRAMÁTICAS LIBRES DE CONTEXTO GRAMÁTICAS LIBRES DE CONTEXTO Definición Una gramática libre de contexto (GLC) es una descripción estructural precisa de un lenguaje. Formalmente es una tupla G=, donde Vn es el conjunto

Más detalles

Ejercicios resueltos Introducción a la teoría de los grupos. J. Armando Velazco

Ejercicios resueltos Introducción a la teoría de los grupos. J. Armando Velazco Ejercicios resueltos Introducción a la teoría de los grupos J. Armando Velazco 1 de mayo de 2015 Ejercicio 1: Pruebe que si G es un grupo finito con identidad e y con un número par de elementos, entonces

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1. DATOS INFORMATIVOS MATERIA: DISEÑO DE LENGUAJES Y AUTOMATAS: CARRERA: INGENIERÍA DE SISTEMAS NIVEL:

Más detalles

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión

Más detalles

Lenguajes Libres del Contexto

Lenguajes Libres del Contexto Capítulo 3 Lenguajes Libres del Contexto [LP81, cap 3] n este capítulo estudiaremos una forma de representación de lenguajes más potentes que los regulares. Los lenguajes libres del contexto (LC) son importantes

Más detalles

PRACTICA TEORIA DE LA COMPUTACION INGENIERIA EN SISTEMAS COMPUTACIONALES CATEDRATICA: LIC. YESENIA PEREZ REYES ALUMNO: EDUARDO DOMINGUEZ JUAREZ

PRACTICA TEORIA DE LA COMPUTACION INGENIERIA EN SISTEMAS COMPUTACIONALES CATEDRATICA: LIC. YESENIA PEREZ REYES ALUMNO: EDUARDO DOMINGUEZ JUAREZ PRACTICA TEORIA DE LA COMPUTACION INGENIERIA EN SISTEMAS COMPUTACIONALES CATEDRATICA: LIC. YESENIA PEREZ REYES ALUMNO: EDUARDO DOMINGUEZ JUAREZ CUARTO SEMESTRE GRUPO: B 1 de 13 Ejercicios de Teoría de

Más detalles