Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,"

Transcripción

1 VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal, de las columas x de elemetos e el cuerpo de escalares K (real o complejo), de modo que el operador A trasforma la columa x de E e la columa Ax, tambié de E (ver Figura ). Figura Se dice que u subespacio vectorial F de E es A-ivariate si los vectores u de F sigue estado e F al trasformarse por A, esto es, u F Au F E la Figura se observa el operador lieal cosθ A siθ siθ cosθ de la matriz de giro actuado y se toma como subespacio F el geerado por los vectores e y e que es A-ivariate. Figura

2 De etre los subespacios A-ivariates de E iteresa los de dimesió uo, esto es, los subespacios F geerados por u vector x o ulo de E, de modo que cualquier vector x de F tega por image Ax u vector tambié de F (ver Figura ) Figura Ax. Qué relació hay etre x y Ax, co x o ulo y x e F?: La misma que etre x y Veamos: Ax debe ser ecesariamete múltiplo escalar de x, esto es, Ax λ x, [] para u cierto valor λ de K fijo. Por estar x e el subespacio geerado por x debe ser x de la forma xx, [] para u cierto valor de K, que depede de x. Se deduce de [] y[] luego es la relació buscada. Ax A( x ) (Ax ) ( λx ) λ( x ) λ x, Ax λ x [] E defiitiva, los subespacios A-ivariates de dimesió uo de E está formados por los múltiplos escalares de u vector o ulo x que o cambia de "direcció" al trasformarse por A. Esto es, existe u escalar λ de K tal que, siedo x o ulo, se cumple Ax λ. [4] x El escalar λ se llama valor propio de A y la direcció defiida por el vector columa x se llama direcció propia de A. Al vector o ulo x y a cualquiera de sus múltiplos escalares x, o ulos, se les llama vectores propios de A asociados al valor propio λ. odos ellos o pierde la direcció al trasformarse y se trasforma del mismo modo. La búsqueda de los subespacio A-ivariates de dimesió uidad, es decir, la búsqueda de valores y vectores propios de A, se cetra e la siguiete cuestió:

3 Para qué valores del escalar λ de K la ecuació Ax λx admite solucioes o ulas? Si λ permite que la ecuació Ax λ x tega solucioes o ulas, éstas so vectores propios de A y λ es u valor propio de A. La ecuació Ax λx es equivalete a la ecuació (A-λI)x, la cual admite solucioes o ulas si y sólo si la matriz A-λI es sigular, esto es, det(a-λi). [5] Los valores propios de A so las solucioes de la ecuació [5] que perteece a K, llamada ecuació característica de A. El primer miembro de [5] se llama poliomio característico de A, es de orde y es de la forma ϕa ( λ) det(a λi) ( ) λ ( ) raza (A) λ... det A [] Deotado co λ, λ,..., λ k las solucioes distitas de la ecuació característica de A (reales o complejas) y co m, m,..., m k sus corrrespodietes multiplicidades, se tiee: m m m A( k k k ϕ λ) ( ) ( λ λ ) ( λ λ )...( λ λ ), co m m... m [7] Si λ es u valor propio de A, las solucioes de la ecuació Ax λ x forma u subespacio vectorial de solucioes, llamado subespacio propio y deotado por E, Este subespacio está formado por los vectores propios de A que comparte el mismo valor propio λ al que hay que añadir el vector ulo. Deotaremos co s la dimesió de E. (ver Figura 4) Figura 4 E el operador A del ejemplo de la Figura, se tiee como úico valor propio (e el campo real) λ, de multiplicidad m. Los vectores propios de A que comparte ese valor propio so los múltiplos escalares o ulos de e, los cuales o cambia de direcció (de hecho se trasforma e sí mismos). E este caso se tiee s.

4 Se puede probar e geeral que i i s m, i,,..., k. [8] Los valores y vectores propios de A está estrechamete relacioados co el llamado problema de la diagoalizació dea: Existe ua matriz regular S tal que S - AS sea igual a ua matriz diagoal D? Supogamos que ua tal matriz regular S existiera (o tiee por qué existir) y deotemos co x, x,..., x sus columas y co λ, λ,..., λ los elemetos de la diagoal pricipal de la matriz diagoal D: Se tiee S [ x... x ] [ x x... x ] A x AS D AS SD [ Ax Ax... Ax ] [ λ x λ x... λ x ] λ λ λ Ax Ax Ax λ x λ... λ x x [ 9] Esto sigifica que las columas x, x,..., x de S so vectores propios de A co los correspodietes valores propios λ, λ,..., λ de A e la diagoal pricipal de D. Por ser S regular sus columas forma ua base de E. Como que el razoamieto se puede desarrollar tambié e setido cotrario se llega al siguiete resultado fudametal: "Ua codició ecesaria y suficiete de diagoalizació de A es que exista ua base de vectores propios de A e el espacio E de las matrices columa". Este resultado comporta, como codició ecesaria, que exista valores propios de A, esto es, que todas las solucioes de la ecuació característica esté e K. 4

5 Además, "ua codició suficiete de diagoalizació es que, habiedo valores propios, todos sea distitos etre sí dos a dos", pues se puede probar que vectores propios de valores propios distitos forma listas liealmete idepedietes. "Otra codició ecesaria y suficiete de diagoalizació es que, habiedo valores propios, se cumpla las k idetidades siguietes: s m, i,,..., k ". [] i i E este caso ua base B de vectores propios para E se obtiee empalmado las bases B, B,..., B k de los correspodietes subespacios propios. (Ver Figura 5). Figura 5 U caso particular importate es el de las matrices A que so reales y simétricas. Se puede probar los siguietes resultados, válidos para esta clase de matrices:. Las matrices reales y simétricas so diagoalizables mediate ua matriz ortogoal Q. Las solucioes de la ecuació característica de ua matriz real y simétrica so reales.. Vectores propios de valores propios distitos de ua matriz real y simétrica so ortogoales etre sí. Vamos a probar esta importate propiedad: Se sabe que los valores propios de ua matriz real y simétrica A so úmeros reales. omemos, para u valor propio λ de A, u vector propio x asociado, esto es, ua columa x o ula y real que verifica Ax λx [a] y tomemos, para u valor propio µ de A, distito de λ, u vector propio y asociado, esto es, ua columa y o ula y real que verifica Ay µy [b] 5

6 Multiplicado [a] miembro a miembro por la izquierda por y se obtiee y Ax λy x [c] aálogamete, multiplicado [b] miembro a miembro por la izquierda por x se obtiee x Ay µx y [d] raspoiedo miembro a miembro [d] se puede escribir, recordado que A A por ser A simétrica, y Ax µy x [e] Restado miembro a miembro las idetidades [c] y [e] se obtiee fácilmete (λµ)y x [f] Como que (λµ) es distito de cero se cocluye ecesariamete que y x o sea, el vector propio x es ortogoal al vector propio y, co el producto escalar ordiario. **** Se cumplirá, por tato, siedo Q la matriz ortogoal que diagoaliza a A:. Q Q. Las columas de Q forma ua base ortoormal b w, w,..., w de vectores propios de A para el espacio E.. Q AQ Q AQ D, la cual es ua matriz diagoal, co los valores propios de A e la diagoal pricipal. 4. La base ortoormal b se puede obteer trasformado las bases B, B,..., B k e bases ortoormales b, b,..., b k, aplicado el método de Gram-Schmidt a cada subespacio propio, y, a cotiuació, empalmado las citadas bases. (Ver Figura ).

7 Figura Ejemplo: Se va a diagoalizar mediate ua matriz ortogoal la matriz real y simétrica La ecuació característica es A. λ ϕ ( λ) det(a λi) λ λ ( λ ). A λ Los valores propios, co sus respectivas multiplicidades, so: λ λ m m ) Para el valor propio λ teemos u primer subespacio propio E formado por las solucioes del sistema homogéeo represetado por la ecuació matricial esto es, ( A I)x, 7

8 8 Las solucioes so de la forma ε ε ε ε. Ua base B del subespacio propio E viee dada por los vectores x, x. Mediate Gram-Schmidt se obtiee la base ortoormal b dada por w, w ) Para el valor propio λ teemos u segudo subespacio propio E formado por las solucioes del sistema homogéeo represetado por la ecuació matricial I)x A (, esto es, Las solucioes so de la forma ε ε ε. Ua base B del subespacio propio E viee dada por el vector

9 9 x. Normalizádolo se obtiee ua base ortoormal b de E formada por el vector w. Al empalmar las bases b y b se obtiee ua base ortoormal b de vectores propios para todo el espacio vectorial E dada por w, w, w. Estas columas forma las columas de la matriz ortogoal Q que diagoaliza a A, de modo que Q y se tiee D AQ Q AQ Q. B) REDUCCION MÉRICA DE LA ECUACION DE UNA CÓNICA Ua cóica viee dada e cierto sistema de referecia cartesiao rectagular por ua ecuació de la forma c b b a a a, []

10 dode los seis coeficietes a, a, a, b, b y c so úmeros reales, y al meos uo de los tres primeros o ulo; lo que sigifica que e realidad hay cico parámetros idepedietes. La determiació de ua cóica requiere por tato cico codicioes idepedietes. La ecuació [] se puede escribir matricialmete mediate siedo x Ax x b c [] a a A, co a a a a [] la matriz real y simétrica que represeta la parte cuadrática de la ecuació de la cóica; la columa b b [4] b represeta la parte lieal y el escalar c el térmio idepediete. odo cambio de variables admisible viee dado por t Q, [5] t dode Q es ua matriz ortogoal, co detq ; estas codicioes garatiza que se coserva la métrica y la orietació del plao. Cambiar de variables equivale a cambiar de sistema de referecia. La ecuació [5] se puede escribir matricialmete mediate x Qx' t [] Lo que se trata es de reducir la ecuació [] lo máximo posible. Comezaremos elimiado el producto cruzado etre variables, mediate el cambio de variables x Qx' [7] que represeta u giro de ejes, e el setido positivo de giro. La matriz Q se toma precisamete como la matriz ortogoal que diagoaliza a la matriz A, esto es,

11 λ Q AQ D, [8] λ dode λ, λ so los valores propios de A. Utilizado [7] e [] se obtiee: co x Dx x b c, [9] b Q c c b [] Seguimos la elimiació itetado hacer desaparecer la parte lieal de [9] mediate ua traslació t coveiete x x t, [] Ua traslació t' cualquiera covierte la ecuació [9] e (x t ) D(x t ) (x t ) x Dx x Dt t Dx t Dt t Dt x b t b c x Dx x Dt x b t b c Dt t b c t Dt x Dx x (Dt b ) t (Dt b ) c t Dt [] Caso I: La matriz A es regular, esto es, los valores propios de A so o ulos y por cosiguiete tambié la matriz diagoal D es regular. E este caso se toma como traslació t' que aula la parte lieal la úica que cumple esto es, D t b, [] t D b [4] de la que resulta la ecuació reducida co x Dx c, [5] c c t Dt [] Se trata del caso particular de las cóicas co cetro úico de simetría. El cetro del uevo sistema de referecia es el cetro de simetría de la cóica.

12 La clasificació de las cóicas co cetro úico de simetría es ahora muy secilla: I-a Caso e que c" es distito de cero La ecuació [5] e realidad es de la forma λ λ c [7] odo va a depeder de los sigos de los coeficietes: I-a Elipse imagiaria: sg( λ ) sg( λ ) sg(c ) I-a Elipse real: sg( λ ) sg( λ ) sg(c ) I-a Hipérbola: sg( λ) sg( λ ) I-b Caso e que c" vale cero La ecuació [5] es ahora de la forma ambié los sigos permite clasificar: λ λ [8] I-b Dos rectas imagiarias que se corta: sg( λ) sg( λ ) I-b Dos rectas reales que se corta: sg( λ) sg( λ ) Caso : La matriz A es sigular, lo que sigifica que hay u valor propio cero. Se trata de las cóicas si cetro de simetría o co ifiitos cetros de simetría. Supogamos que el primer valor propio λ el que vale cero. Hacemos primero ua traslació del sistema de referecia dada por t t de modo que elimiamos la parte lieal correspodiete a la seguda variable, esto es, b b b Dt b. λ t b E este caso debe ser b t y b b [9] λ

13 La ecuació [] queda ahora simplificada del siguiete modo: λ b c [] dode c" egloba el térmio costate. II-a Caso e que b" es distito de cero Se realiza ua ueva traslació de la forma co x x s, c s b [] para elimiar el térmio idepediete de [] obteiedo Se trata de la ecuació de: II-a Ua parábola λ b. [] El vértice de la parábola es el orige O'" del uevo sistema de referecia. El eje O "' es de simetría de la parábola. El eje O "' es perpedicular al aterior y tagete a la parábola e su vértice. La parábola carece de cetro de simetría. II-b Caso e que b" vale cero La ecuació [] se reduce a λ c [] Este caso se subdivide e dos: II-b Co c" distito de cero: II-b. Dos rectas paralelas imagiarias: sg( λ ) sg(c ) II-b. Dos rectas paralelas reales: sg( λ ) sg(c ) II-b Co c" igual a cero:

14 4 La ecuació es ahora: λ [4] II-b. Ua recta real doble: Los tres últimos casos II-b., II-b. y II-b. correspode a que posee ifiitos cetros de simetría. Se puede probar que ua cóica degeera e u par de rectas si y sólo si c b b A det. C) EJEMPLO DE APLICACIÓN Cosidérese la siguiete ecuació de ua cóica, e u sistema de referecia cartesiao rectagular: 4 Matricialmete se puede escribir se puede escribir la ecuació así: [ ] [ ] Deotado co x, c, b, A la ecuació queda de la forma c b x Ax x Como que deta - es distito de cero, se trata de ua cóica co cetro úico de simetría. Al ser el determiate egativo la cóica sólo puede ser de tipo hiperbólico. Además, el determiate det c b b A det 9 es distito de cero, luego la cóica o degeera e u par de rectas. E defiitiva se trata de u hipérbola.

15 º Resolució del problema propio La ecuació característica de A es λ λ de la que se deduce los valores propios λ y λ. La base ortoormal de vectores propios es 5 w, w La matriz ortogoal Q que diagoaliza a A co det Q es por tato de modo que º Giro de ejes 5 [ w w ] Q, 5 Q AQ D. Se efectúa es u giro de ejes del sistema de referecia dado por la matriz Q de la forma Q. La ecuació de la cóica queda º raslació de ejes Se efectúa la traslació de ejes dada por de modo que t D 5 b 5 x x t La ecuació de la cóica e los uevos ejes queda 5. Esta ecuació se puede reducir a la llamada forma caóica, e la que queda patetes los semiejes de la hipérbola: 5

16 5 5 ( 5) ( 5 / ) 5. La Figura 7 ilustra los cambios de sistema de referecia realizados y la posició e el plao de la hipérbola objeto de estudio. Las coordeadas de su cetro de simetría so (, ) respecto del sistema de referecia origial y sus ejes de simetría está direccioados por las direccioes propias obteidas. Figura 7

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

CUADERNO VII FORMAS CANONICAS DE LOS ENDOMORFISMOS

CUADERNO VII FORMAS CANONICAS DE LOS ENDOMORFISMOS 1 CUADERNO VII FORMAS CANONICAS DE LOS ENDOMORFISMOS Miguel A. Saiz, Joa Serarols, Aa M. Pérez Dep. de Iformática y Matemática Aplicada Uiversidad de Giroa RESUMEN: La matriz asociada a u edomorfismo f

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales ESPACIO VECTORIAL.- Itroducció.- Espacio Vectorial.- Subespacios vectoriales 4.- Geeració de Subespacios vectoriales 5.- Depedecia e idepedecia lieal 6.- Espacios vectoriales de tipo fiito 7.- Cambio de

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

Matemáticas I. Tema 2 E.I.I. Aplicaciones Lineales y Matrices. Curso 2012-2013

Matemáticas I. Tema 2 E.I.I. Aplicaciones Lineales y Matrices. Curso 2012-2013 Matemáticas I E.I.I Tema 2 Aplicacioes Lieales y Matrices Curso 202-203 Itroducció 2 Como requisitos previos para maejar todos lo que e este tema se itroduce se tiee que recordar de cursos ateriores los

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA José Luis Soto Muguía Departameto de Matemáticas Uiversidad de Soora. INTRODUCCIÓN. Desde los primeros años de la escuela, el estudiate se efreta e matemáticas

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

[ ] La ecuación (2) se conoce como la forma autoadjunta de la ecuación (1) EJEMPLO 1.- La forma autoadjunta de la ecuación de Legendre.

[ ] La ecuación (2) se conoce como la forma autoadjunta de la ecuación (1) EJEMPLO 1.- La forma autoadjunta de la ecuación de Legendre. CAPITULO III ORTOGONALIDAD Y SISTEMAS DE STURM LIOUVILLE [ ] Ua trasformació lieal LC : ab, C[a,b] es u operador diferecial lieal de orde (e el itervalo [a,b]) si puede epresarse e la forma : L = a ()D

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Existencia. donde R(a) = {b B / (a, b) R} y R 1 denota la relación inversa de R. ({a} R(a)) y esta unión es disjunta entonces se tiene

Existencia. donde R(a) = {b B / (a, b) R} y R 1 denota la relación inversa de R. ({a} R(a)) y esta unión es disjunta entonces se tiene Existecia. El pricipio de los casilleros. Si queremos colocar 3 bolillas e cajas, es evidete que e algua caja deberemos colocar al meos dos bolillas. Lo mismo ocurre si e lugar de 3 bolillas tuviésemos

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

UNIDAD 6: SISTEMAS DE ECUACIONES

UNIDAD 6: SISTEMAS DE ECUACIONES UNIDAD 6: SISTEMAS DE ECUACIONES ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- SISTEMAS DE ECUACIONES LINEALES... 2 3.- CLASIFICACIÓN DE SISTEMAS.... 2 4.- EXPRESIÓN MATRICIAL DE UN SISTEMA... 2 5.- RESOLUCIÓN

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Ley de los números grandes

Ley de los números grandes Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.

Más detalles

DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA 1. INTRODUCCIÓN

DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA 1. INTRODUCCIÓN INDUCCIÓN MATEMÁTICA EDUARDO SÁEZ, IVÁN SZÁNTÓ DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA. INTRODUCCIÓN El método deductivo, muy usado e matemática, obedece a la siguiete idea:

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

AMPLIACIÓN DE FUNDAMENTOS DE MATEMÁTICA APLICADA

AMPLIACIÓN DE FUNDAMENTOS DE MATEMÁTICA APLICADA AMPLIACIÓN DE FUNDAMENTOS DE MATEMÁTICA APLICADA FERNANDO LUIS GARCÍA ALONSO ANTONIO PÉREZ CARRIÓ JOSÉ ANTONIO REYES PERALES Profesores Titulares de la Escuela Politécica Superior de la Uiversidad de Alicate

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua.

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua. Septiembre 0. Preguta B.- Se tiee u prisma rectagular de vidrio de ídice de refracció,4. Del cetro de su cara A se emite u rayo que forma u águlo a co el eje vertical del prisma, como muestra la figura.

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 014 (Geeral Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices A = y

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

denomina longitud de paso, que en un principio se considera que es constante,

denomina longitud de paso, que en un principio se considera que es constante, 883 Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Métodos uméricos de u paso El objetivo de este capítulo es itroducir los métodos uméricos de resolució

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

5n la Unidad 4 hemos estudiado las razones trigonométricas de un ángulo y sus relaciones;

5n la Unidad 4 hemos estudiado las razones trigonométricas de un ángulo y sus relaciones; UNIDAD Fucioes trigoométricas y úmeros complejos la Uidad hemos estudiado las razoes trigoométricas de u águlo y sus relacioes; E e esta vamos a estudiar las fucioes circulares a que da lugar las mecioadas

Más detalles

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS

ANEXO I ANEXO I CONCEPTOS SÍSMICOS BÁSICOS AEXO I COCEPTOS SÍSMICOS BÁSICOS E este aeo se compila alguos de los coceptos sísmicos básicos pero ecesarios. Se itroduce los tipos de movimietos vibratorios, así como su descripció y otació matemática.

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos.

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos. Capítulo 2 Teoría Combiatoria La Teoría Combiatoria es la rama de las matemáticas que se ocupa del estudio de las formas de cotar Aparte del iterés que tiee e sí misma, la combiatoria tiee aplicacioes

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

LA SORPRENDENTE SUCESIÓN DE FIBONACCI

LA SORPRENDENTE SUCESIÓN DE FIBONACCI La sorpredete sucesió de Fiboacci LA SORPRENDENTE SUCESIÓN DE FIBONACCI La sorpredete sucesió de Fiboacci debe su ombre a Leoardo de Pisa (.70-.40), más coocido por Fiboacci (hijo de Boaccio). A pesar

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

RECOMENDACIONES A LOS ALUMNOS

RECOMENDACIONES A LOS ALUMNOS GUIA DE TRABAJO PRACTICO Nº PAGINA Nº RECOMENDACIONES A LOS ALUMNOS La Asigatura Matemáticas de las carreras Profesorado y Liceciatura e Biología, correspode a primer año; su régime es aual, co tres horas

Más detalles