TRAZADO GEOMÉTRICO: Trazados fundamentales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRAZADO GEOMÉTRICO: Trazados fundamentales"

Transcripción

1 IES Alonso Cano Dúrcal 1. Material de dibujo técnico. 1.1 Lápices. Antes de descubrirse la mina de grafito en la segunda mitad del siglo XVI, los dibujos se hacían con varillas formadas por una mezcla de plomo y estaño o de latón generalmente. Con la invención del lápiz, el uso de estas varillas se fue abandonando poco a poco. Las minas de grafito se clasifican según su dureza en: Designación 8B 7B 6B 5B 4B 3B B B HB F H H 3H 4H 5H 6H 7H 8H 9H Dureza Aplicación Extremablanda Sombrear Muy blanda Blanda Croquis Dibujo artístico Dibujo arquitectónico Dibujos Escritura Estenografía Dura Dibujos técnicos Muy dura Dibujos a lápiz Extradura Cartografía Litografía Xilografía La mina se fabrica en 19 graduaciones diferentes de dureza. La serie B comprende las minas blandas y la serie H comprende las duras. Nosotros utilizaremos sólo dos tipos: Un lápiz 3H (proceso) y otro lápiz HB (resultado). 1. Sacapuntas. Para el afilado de las minas se utilizan diversos útiles, tales como el raspador, sacapuntas rotativo. El sacapuntas se utiliza para sacar punta a un lápiz. Hay diferentes formas: sencillos, de sobremesa, eléctricos Para un correcto uso del lápiz, éste debe estar bien afilado. 1.3 Goma de borrar Es una goma elástica a base de caucho, preparada especialmente para borrar los trazos de lápiz. La goma no debe manchar y colorear; en el caso de estar sucia hay que frotarla sobre una superficie limpia antes de usarla. 1

2 IES Alonso Cano Dúrcal 1.4 Reglas y escuadras Las reglas se usan para medir longitudes y llevar magnitudes sobre los planos. Suelen ser de plástico, de diferentes medidas y de buena calidad. El juego de escuadras lo constituye la escuadra y el cartabón. - La escuadra es la que tiene forma de triángulo rectángulo isósceles con los ángulos iguales a 45º. - El cartabón tiene forma de triángulo rectángulo cuyos ángulos agudos son de 30º y 60º. Las escuadras suelen ser de plástico, pudiendo tener un lado graduado y/o biselado. Para que formen juego, la hipotenusa de la escuadra ha de ser de igual longitud que el cateto mayor del cartabón. 1.5 Transportador de ángulos Sirve para medir ángulos. Puede tener forma de semicírculo o círculo entero, de plástico y dividido en grados sexagesimales. Para medir un ángulo se coloca el vértice del ángulo en el centro del transportador, de forma que uno de los lados pase por el 0º (origen de ángulos); el otro lado marcará la graduación. 1.6 Compás y bigotera El compás sirve para trazar arcos de circunferencia y transportar medidas. Consta de dos piezas metálicas articuladas, una terminada en una aguja de acero y la otra con el elemento de trazo, bien lápiz o tinta. La mina debe ser semidura y afilada con el bisel hacia dentro y no terminada en punta. El manejo del compás se hace de la siguiente forma: con la ayuda de un dedo se pincha la aguja en el papel y luego, cogiendo el compás por la parte superior con los dedos pulgar e índice, se hace el trazado. Al compás se le puede aplicar el accesorio alargadera cuando se tienen que trazar arcos de gran radio. La bigotera es un compás pequeño que se utiliza para trazar arcos de circunferencia de radio pequeño. Tiene la ventaja sobre el compás de que es más preciso debido a que la abertura o cierre de las piezas se hace por medio de una rueda moleteada montada sobre un eje roscado.

3 . Paralelismo..1 Definiciones Se denomina recta a una sucesión ilimitada de puntos en la misma dirección; una semirrecta es una recta limitada en uno de sus extremos; y se llama segmento a la parte de la recta limitada por dos puntos. Recibe el nombre de lugar geométrico el conjunto de puntos del plano o del espacio que gozan de la misma propiedad. Dos rectas coplanarias, es decir, que pertenecen a un mismo plano, son paralelas cuando su punto de intersección se encuentra en el infinito (se dice entonces que el punto es impropio).. Trazar por un punto la paralela a una recta dada. 1 Elegido un punto cualquiera de la recta, punto M, trazar con centro en el mismo un arco de circunferencia que pase por el punto dado P y corte a la recta en dos puntos A y B. Transportar la cuerda PB a partir de A sobre la semicircunferencia, obteniendo el punto C, que unido con P nos proporciona la paralela pedida..3 Trazar la paralela a una recta dada a una distancia determinada. Trazar una perpendicular a la recta por un punto cualquiera de ella, punto A (véase el apartado Perpendicularidad ). Transportar sobre dicha perpendicular la distancia dada a partir de A. El punto obtenido B dista de la recta la distancia dada. Al segmento BA trazarle la perpendicular por B, siendo CB perpendicular a BA y por consiguiente paralela a r..4 Trazar paralelas con escuadra y cartabón. Situando la escuadra de forma que la hipotenusa coincida con la recta dada, adosarle la otra plantilla que se mantendrá inmóvil. Deslizando la primera plantilla sobre la fija, podemos trazar por su hipotenusa rectas paralelas a la dada. 1 Por un punto exterior a una recta sólo se puede trazar una paralela a dicha recta (postulado de Euclides) 3

4 3. Perpendicularidad. 3.1 Definiciones Dos rectas son perpendiculares cuando se cortan formando un ángulo de 90º. La mediatriz de un segmento es la recta perpendicular al segmento trazada por su punto medio. La mediatriz es el lugar geométrico de los puntos que equidistan de los extremos de un segmento. 3. Trazar la mediatriz de un segmento Considerando AB el segmento dado, con centro en sus extremos y radio mayor que la mitad del mismo, describir arcos, cuyas intersecciones, unidas entre sí, nos determinan la mediatriz del segmento. 3.3 Trazar la perpendicular a una semirrecta por su extremo Con radio arbitrario, pero fijo, describir sucesivamente arcos de circunferencia en los puntos P (dado) y A, B y C (obtenidos), determinando final el punto D. Unir D con P para obtener la perpendicular buscada. 3.4 Trazar la perpendicular a una recta por un punto de la misma Con centro en el punto dado P de la recta r, y con radio arbitrario, describir un arco que cortará a la recta en los puntos A y B. Con centro asimismo en estos puntos y radio mayor que la mitad del segmento que determinan A y B, describir arcos cuya intersección C unida con P resuelve el problema. 4

5 3.5 Trazar la perpendicular a una recta por un punto exterior a ella Con centro en el punto dado P, describir un arco que con radio arbitrario corte a la recta r en dos puntos A y B, para lo cual el radio mayor que la distancia del punto a la recta. El problema queda reducido a trazar la mediatriz del segmento AB. 3.6 Trazar perpendiculares con escuadra y cartabón Para su realización basta con adosar la escuadra y el cartabón entre sí como indica la figura, colocando estas plantillas de forma que la hipotenusa de la escuadra coincida con la recta dada. Una vez en esta posición y manteniendo fijo el cartabón, dar un giro de 90º a la escuadra, de manera que quede igualmente adosada el cartabón, si bien por su otro cateto. Deslizándose de este modo la escuadra, por su hipotenusa puede trazarse cualquier recta perpendicular a la dada. 5

6 4. Ángulos. 4.1 Definiciones Se denomina ángulo a cada una de las dos regiones del plano que determinan dos semirrectas con el origen común. Las semirrectas se llaman lados y el punto común vértice. Un ángulo agudo es el que mide menos de 90º. Un ángulo recto es el que mide 90º. Un ángulo obtuso es el que mide más de 90º. Un ángulo llano es el que mide 180º. Un ángulo convexo es el que mide menos de 180º. Un ángulo cóncavo es el que mide más de 180º. Dos ángulos son suplementarios si suman 180º. Dos ángulos son complementarios si suman 90º. Se llama bisectriz t de un ángulo a la recta que divide a este en dos ángulos iguales, o lo que es lo mismo, es el lugar geométrico de los puntos que equidistan de los lados del ángulo. Propiedades: - Dos ángulos cuyos lados son paralelos son iguales. - Los ángulos cuyos lados son perpendiculares son iguales. 4.. Construcción de un ángulo igual a otro. Trazar con centro en el vértice del ángulo dado un arco de radio arbitrario que nos determinará los puntos N y M sobre los lados del mismo. Con el, mismo radio y centro en O, origen de una semirrecta, trazar un arco igual al anterior que nos determina N en la semirrecta. Transportar sobre este arco, a partir de N, el valor de la cuerda NM, obteniendo el punto M, que unido con O nos determina la posición del otro lado del ángulo Construcción de un ángulo igual a la suma de otros dos dados. Este problema se reduce a construir dos ángulos consecutivos e iguales respectivamente a los dos dados. El ángulo suma A O D está formado por el lado del origen del primer sumando (O D ) y el lado extremo del último (O A ) Construcción de un ángulo igual a la diferencia de otros dos dados. Construir dos ángulos con origen y vértices comunes. El ángulo diferencia será A O C. 6

7 4.5. Trazar la bisectriz a un ángulo dado. Describir con centro en el vértice del ángulo un arco que nos determinará los puntos A y B en los lados del ángulo. Con centro en estos puntos y radio mayor que la mitad del segmento AB, trazar arcos de igual radio que se cortarán en C. CO es la bisectriz del ángulo, la cual es, por tanto, mediatriz del segmento AB. 4.6 Construcción de ángulos con el compás. Cuando no se dispone de un transportador de ángulos, es posible trazar determinados ángulos con sencillas construcciones realizadas con un compás. Así, por ejemplo, se pueden trazar los ángulos de 15º, 30º, 45º, 60º, 75º y 90º, así como sus suplementarios. 4.7 Construcción de ángulos con la escuadra y el cartabón. Con el simple manejo de la escuadra y el cartabón también pueden obtenerse determinados ángulos. 7

8 5. Circunferencia. 5.1 Definiciones. Circunferencia: Es el Lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Círculo: Es la parte de plano interior a la circunferencia. Sector circular: Es la porción de círculo comprendida entre dos radios. Segmento circular: Es la parte de círculo comprendida entre una cuerda y su arco. 5. Elementos de una circunferencia. Centro (: Punto del cual equidistan todos los puntos de la circunferencia. Radio (r): Segmento que une el centro de la circunferencia con un punto de la misma. Cuerda (c): Segmento que une dos puntos de la circunferencia. Arco: Parte de la circunferencia comprendida entre dos de sus puntos. A cada cuerda le corresponden dos arcos, uno de menor longitud que el otro. Diámetro (d): Cualquier cuerda que pasa por el centro O. 5.3 Posiciones relativas de un punto y una circunferencia. Dada una circunferencia, un punto P puede situarse en diferentes posiciones respecto a ella. 1. Dentro de la circunferencia. P es un punto interior y se verifica que dist ( P, < r.. Sobre la circunferencia. P es un punto de la circunferencia y se verifica que dist ( P, 3. Fuera de la circunferencia. P es un punto exterior y se verifica que dist ( P, > r. = r. 8

9 5.4 Posiciones relativas de un punto y una recta. Una recta s puede situarse en tres posiciones respecto de una circunferencia. 1. Corta a la circunferencia en dos puntos. La recta es secante a la circunferencia. Se verifica que dist ( s, < r.. La recta y la circunferencia tienen un punto en común. La recta es tangente a la circunferencia. Se verifica que dist ( s, = r. 3. La recta y la circunferencia no tienen ningún punto en común. La recta es exterior a la circunferencia. Se verifica que dist ( s, > r. 5.5 Propiedad de las rectas tangentes a una circunferencia. La recta s es tangente a la circunferencia en el punto P (punto de tangencia). Se puede comprobar que en dicho punto la tangente es perpendicular al radio. Toda recta tangente a una circunferencia es perpendicular al radio en el punto de tangencia. 5.6 Posiciones relativas de dos circunferencias. Dos circunferencias, C y C, con radios r y r pueden ocupar las posiciones siguientes: Exteriores Tangentes exteriores Secantes No tienen ningún punto común. Tienen un solo punto común. Tienen dos puntos comunes. d > r + r d = r + r d < r + r Tangentes interiores Interiores Concéntricas Tienen un punto común. d = r r No tienen ningún punto común. d < r r No tienen ningún punto común. d = 0 9

10 5.7 Ángulos en la circunferencia. Es el ángulo que tiene su vértice en el centro de la circunferencia. Ángulo central Ángulo inscrito Ángulo semiinscrito Es el que tiene su vértice en la circunferencia y sus lados son dos secantes. a 180º r π α Es el que tiene un vértice en la circunferencia, uno de sus lados es tangente y el otro secante. α Ángulo interior Ángulo exterior Ángulo circunscrito Es el ángulo que tiene su vértice Es el que tiene su vértice en un Es el que tiene su vértice en un en un punto interior de la punto exterior y sus dos lados punto exterior y sus dos lados circunferencia. son tangentes. son secantes. α + β α β α β 5.8. Arco capaz Se llama arco capaz de un ángulo dado φ respecto de un segmento también conocido, al lugar geométrico de los puntos del plano desde los cuales se ve el segmento bajo el ángulo φ. Dados el segmento AB y el ángulo φ, se traza la mediatriz del segmento AB. Por unos de los extremos A del segmento dado, se traza una recta m perpendicular a AB, restando a continuación el ángulo φ hasta cortar a la mediatriz en O1, de tal forma que el ángulo O 1 AB es de 90- φ. Se construye el ángulo simétrico de 90 φ, respecto de AB hasta cortar a la mediatriz en O. Con centros en O 1 y O se trazan dos arcos de circunferencia que comiencen en A y terminen en B. Dichos arcos son los arcos capaces buscados. 10

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo 1.3.6.-Ángulos. Definición Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

Ángulos. Proporcionalidad. Igualdad y Semejanza

Ángulos. Proporcionalidad. Igualdad y Semejanza 3. ÁNGULOS 3.1 DEFINICIÓN Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

CURSO DE GEOMETRÍA 2º EMT

CURSO DE GEOMETRÍA 2º EMT CURSO DE GEOMETRÍA 2º EMT UNIDAD 0 REPASO 1º CIRCUNFERENCIA Y ANGULOS INSCRIPTOS Ángulos en la circunferencia 1. La circunferencia. 1.1. Elementos de una circunferencia Definición 1. Se llama circunferencia

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS 11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

TEMA 9. RECTAS Y ÁNGULOS. Bisectriz de un ángulo

TEMA 9. RECTAS Y ÁNGULOS. Bisectriz de un ángulo TEMA 9. RECTAS Y ÁNGULOS RECTAS EN EL PLANO ÁNGULOS Rectas Segmento Semirrectas Mediatriz de un segmento Ángulos según su abertura: Recto, agudo, obtuso, llano, completo, cóncavo, Ángulos según su posición:

Más detalles

Manejo de las herramientas de Dibujo

Manejo de las herramientas de Dibujo Manejo de las herramientas de Dibujo Una vez aprendidos los instrumentos de dibujo más básicos, en la siguiente ficha, vas a descubrir para que sirven en la práctica, y vas a poder adquirir soltura en

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA ELEMENTOS DE GEOMETRÍA 1. Elementos geométricos básicos: punto, recta y plano. 2. Semirrectas y segmentos. 3. Ángulos. 3.1. Cómo se miden los ángulos? 3.2. Ángulos importantes. 3.3. Clasificación respecto

Más detalles

CIRCUNFERENCIA INTRODUCCION

CIRCUNFERENCIA INTRODUCCION CIRCUNFERENCIA INTRODUCCION Definición Sea O punto del plano ( P ) y r un real positivo, entonces se denomina circunferencia de centro O y radio r ( C ( O, r ) ), al conjunto formado por y sólo por los

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS

EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad.

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Capítulo II. Lugar geométrico. Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Ejemplo: la mediatriz de un segmento es el conjunto

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

B5 Lugares geométricos

B5 Lugares geométricos Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,

Más detalles

5. UNIDAD DIDACTICA 5: FORMAS GEOMÉTRICAS I.

5. UNIDAD DIDACTICA 5: FORMAS GEOMÉTRICAS I. 5. UNIDAD DIDACTICA 5: FORMAS GEOMÉTRICAS I. Normalmente, un dibujo se puede realizar de dos maneras. La primera es a mano alzada, es decir, sin utilizar ningún instrumento que sirva de guía o de apoyo

Más detalles

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 2ª EVALUACIÓN AMPLIACIÓN MATEMÁTICAS TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 1. EL PUNTO El punto es uno de los conceptos primarios de geometría. El punto no es un objeto físico y no tiene dimensiones

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS

1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo

Más detalles

CIRCUNFERENCIA Y CÍRCULO

CIRCUNFERENCIA Y CÍRCULO CIRCUNFERENCIA Y CÍRCULO 1. Circunferencia y círculo. Elementos. 2. Posiciones relativas de una recta y una circunferencia. 3. Posiciones relativas de dos circunferencias. 4. Ángulos centrales. 5. Ángulos

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

Dibujo Técnico Curvas técnicas

Dibujo Técnico Curvas técnicas 22 CURVAS TÉCNICAS En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos cuenta

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Trazados en el plano. Potencia

Trazados en el plano. Potencia UNIDAD 1 Trazados en el plano. Potencia Localización de un barco mediante el arco capaz (Ilustración de los autores utilizando fotografías del Banco de imágenes del ISFTIC). E n esta Unidad se completan

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

LA FORMA GEOMÉTRICA. Como base estructural para la composición. Colmena. Como medio para representar formas detalladas y precisas.

LA FORMA GEOMÉTRICA. Como base estructural para la composición. Colmena. Como medio para representar formas detalladas y precisas. LA FORMA GEOMÉTRICA LA FORMA GEOMÉTRICA La forma geométrica aparece cuando los elementos básicos que la componen se organizan de acuerdo a reglas matemáticas. Son formas con más regularidad, definición

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IX: RECTAS Y ÁNGULOS Puntos, rectas, semirrectas y segmentos en el plano. Posiciones relativas de rectas en el plano. Mediatriz de un segmento. Ángulos. Elementos. Clasificación

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Tema 6 Tangencias y polaridad

Tema 6 Tangencias y polaridad Tema 6 Tangencias y polaridad Tema 6 Tangencias y polaridad...1 Tangencias... 2 Propiedades... 2 Enlaces... 3 Definición... 3 Construcción de enlaces... 3 Enlace de dos rectas oblicuas mediante dos arcos

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

Página 1 de 19 EXAMEN A: Ejercicio nº 1.- Traza por cada punto, con regla y escuadra, una recta paralela a la recta r. Ejercicio nº 2.- Traza la mediatriz de estos segmentos y responde: Qué tienen en común

Más detalles

Elementos geométricos fundamentales, definición:

Elementos geométricos fundamentales, definición: Elementos geométricos fundamentales, definición: Punto, línea y plano son los elementos geométricos básicos con los que podemos todas las figuras geométricas, se denominan propios si pertenecen a un espacio

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: CTIVIDDES DE GEMETRÍ PR 4º ES DE EPV Nombre y apellidos: Curso: TEM 1: TRZDS BÁSICS. 1. RECTS PRLELS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar. 1.1. Trazado

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

Polígono. Superficie plana limitada por una línea poligonal cerrada.

Polígono. Superficie plana limitada por una línea poligonal cerrada. POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

Un ángulo mide y otro Cuánto mide la suma de estos ángulos?

Un ángulo mide y otro Cuánto mide la suma de estos ángulos? Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos

Más detalles

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:

Más detalles

Además del centro y el radio, distinguen: 1. Cuerda: segmento que une dos puntos cualquiera de la circunferencia. EF

Además del centro y el radio, distinguen: 1. Cuerda: segmento que une dos puntos cualquiera de la circunferencia. EF 23 1.5 ircunferencia efinición ado un punto y una distancia r, la circunferencia de centro y radio r, es el conjunto de puntos del plano y solo ellos, que están a la distancia r del punto. La circunferencia

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

EDUCACIÓN PLÁSTICA Y AUDIOVISUAL 1ºESO. Curso

EDUCACIÓN PLÁSTICA Y AUDIOVISUAL 1ºESO. Curso EDUCACIÓN PLÁSTICA Y AUDIOVISUAL 1ºESO Curso 2016-17 ÍNDICE DE CONTENIDOS 1ª EVALUACIÓN Septiembre, octubre, noviembre 2016 TEMA 1 - DIBUJO TÉNICO: TRAZADOS GEOMÉTRICOS 1.1. ELEMENTOS GEOMÉTRICOS FUNDAMENTALES

Más detalles

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas? ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que

Más detalles

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior

Más detalles

21.3. Rectas tangentes exteriores a dos circunferencias.

21.3. Rectas tangentes exteriores a dos circunferencias. 21. TANGENCIAS 21.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.

Más detalles

Rectas y ángulos en el plano

Rectas y ángulos en el plano Rectas y ángulos en el plano Contenidos 1. Rectas. Paralelas y perpendiculares. El plano. Puntos y rectas. Recta, semirrecta y segmento. Propiedades de la recta. Posiciones relativas. Paralelismo. Perpendicularidad

Más detalles

1. Conocimientos básicos de dibujo geométrico

1. Conocimientos básicos de dibujo geométrico 1. Conocimientos básicos de dibujo geométrico Los trazados que veremos en este capítulo se harán fundamentalmente con el uso de un compás, por considerar que en el taller hay trazados muy grandes en los

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

2º E.S.O. TECNOLOGÍAS. Tema 2: TÉCNICAS DE EXPRESIÓN GRÁFICA. Relación ejercicios. Departamento de Tecnología. Técnicas de expresión gráfica.

2º E.S.O. TECNOLOGÍAS. Tema 2: TÉCNICAS DE EXPRESIÓN GRÁFICA. Relación ejercicios. Departamento de Tecnología. Técnicas de expresión gráfica. 2º E.S.O. TECNOLOGÍAS. Tema 2: TÉCNICAS DE EXPRESIÓN GRÁFICA. Relación ejercicios 1.- Qué es un lápiz?. De qué material está hecho? Para qué sirve? 2.- Ordena los siguientes lápices desde el mas duro hasta

Más detalles

LA GEOMETRÍA. La Geometría. Su origen.

LA GEOMETRÍA. La Geometría. Su origen. LA GEOMETRÍA La Geometría. Su origen. La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes.

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

Problemas de agrimensores

Problemas de agrimensores Problemas de agrimensores Declaraciones Presentación : l libro «Histoires de géomètres... et de géométrie» ( ditions Le Pommier), escrito por Jean-Louis rahem, arquitecto, aporta, sobre problemas de geometría,

Más detalles

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo MODULO III - GEOMETRIA ENCUENTRO NÚMERO CINCO La circunferencia y el círculo 24 DEAGOSTO DE 2014 MANAGUA FINANCIADO POR: FUNDACIÓN UNO 1 Circunferencia: Una circunferencia es una línea curva cerrada cuyos

Más detalles

TIPS SOBRE ANGULOS. Dos puntos diferentes determinan una y solo una recta que pasa por ellos.

TIPS SOBRE ANGULOS. Dos puntos diferentes determinan una y solo una recta que pasa por ellos. TIPS SOBRE ANGULOS Simbólicamente vamos a representar la gráfica de la recta así: y se puede nombrar por dos de sus puntos sobre ella, por ejemplo: recta AB, o con el símbolo encima así ó una letra minúscula;

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

Clasificación de los triángulos

Clasificación de los triángulos COLEGIO ITALO BOLIVIANO CRISTOFORO COLOMBO PROF. HEINS VEGA Clasificación de los triángulos Triángulo: Figura geométrica cerrada delimitada por tres segmentos de recta. Los segmentos son los lados del

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

SEMEJANZA Y PROPORCIONALIDAD

SEMEJANZA Y PROPORCIONALIDAD SEMEJANZA Y PROPORCIONALIDAD Teorema de Pitágoras En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. congruencia ( ) : Dos figuras son congruentes

Más detalles

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014

Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

!!!!!!!!! TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS

!!!!!!!!! TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS 1.INSTRUMENTOS Lápices Son los principales instrumentos de trazado. Se fabrican en madera y llevan en su interior

Más detalles

Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA

Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA El dibujo es una forma de comunicación que permite expresar de un modo sencillo cosas que son muy difíciles de explicar con las palabras. Piensa

Más detalles

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos

Más detalles

2. Enlace de puntos que no están en línea recta por medio de arcos que sean tangentes entre sí

2. Enlace de puntos que no están en línea recta por medio de arcos que sean tangentes entre sí Unidad Nº 2. Dibujo Geométrico 1. Enlace de puntos y de líneas. Introducción 2. Enlace de puntos que no están en línea recta por medio de arcos que sean tangentes entre sí 3. Empalmar dos rectas perpendiculares

Más detalles

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes: Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.

Más detalles

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente.

1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente. apítulo 1 Rectas notables 1.1. Puntos y rectas notables en el triángulo ltura, mediana y bisectriz Sean, y los vértices de un triángulo de lados opuestos a, b y c, respectivamente. H a c h b a H c H b

Más detalles

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO 1. EL TRIÁNGULO COMO POLÍGONO Debemos comenzar el estudio geométrico del triángulo considerándolo como el más sencillo de los polígonos. Así, vamos a considerar algunas

Más detalles

EL PROBLEMA DE APOLONIO

EL PROBLEMA DE APOLONIO EL PROBLEMA DE APOLONIO Benjamín Sarmiento Lugo Profesor Universidad Pedagógica Nacional Bogotá D.C, Colombia bsarmiento@pedagogica.edu.co Resumen El objetivo de este cursillo es presentar uno de los problemas

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

Fundación Uno. 2x La gráfica que se muestra en la figura siguiente corresponde a la función:

Fundación Uno. 2x La gráfica que se muestra en la figura siguiente corresponde a la función: ENCUENTRO # 49 TEMA: Ángulos en Geometría Euclidiana. CONTENIDOS: 1. Introducción a Geometría Euclidiana. 2. Ángulos entre rectas paralelas y una transversal. 3. Ángulos en el triángulo y cuadriláteros.

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.

Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C. Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos

Más detalles

Por un punto P exterior a una recta r solo puede trazarse una recta paralela a ella e infinitas secantes.

Por un punto P exterior a una recta r solo puede trazarse una recta paralela a ella e infinitas secantes. 72 CAPÍTULO 8: FIGURAS PLANAS 1. ELEMENTOS DEL PLANO 1.1. Puntos, rectas, semirrectas, segmentos. El elemento más sencillo del plano es el punto. El signo de puntuación que tiene este mismo nombre sirve

Más detalles

TEMA 2 GEOMETRIA BASICA APLICADA

TEMA 2 GEOMETRIA BASICA APLICADA TEM GEOMETRI SIC PLICD OPERCIONES CON SEGMENTOS.... MEDITRIZ DE UN SEGMENTO.... DIVISION DE UN SEGMENTO EN PRTES IGULES....3 PERPENDICULR UN RECT... 3.4 DIVISION DE UN RCO DE CIRCUNFERENCI EN DOS PRTES

Más detalles

POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA

POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA Introducción La construcción de polígonos regulares inscritos en una circunferencia dada, se basan en la división de dicha circunferencia en un número

Más detalles

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro.

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro. Geometría y Trigonometría Circunferencia 6. CIRCUNFERENCIA 6.1 Definición y notación de una circunferencia La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles