Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a):

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a):"

Transcripción

1 Cuadrados y círculos Plan de clase (1/5) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: FE y M Contenido: Resolución de problemas que impliquen el cálculo de áreas de figuras compuestas, incluyendo áreas laterales y totales de prismas y pirámides. Intenciones didácticas: Que los alumnos resuelvan problemas que impliquen calcular el área de figuras compuestas por cuadrados y círculos. Consigna. En equipos de tres integrantes, resuelvan los siguientes problemas: 1. De una tabla cuadrada de 30 cm de lado se va a cortar un círculo lo mayor posible. Cuál es el área de la madera que no se usará? 2. Cuál es el área de la parte sombreada de la siguiente figura, si el diámetro del semicírculo mide 2.6 metros? Consideraciones Previas: En el primer problema se espera que los estudiantes recuerden que el área del cuadrado se calcula elevando al cuadrado la medida de su lado. Una dificultad probable a la que se pueden enfrentar algunos alumnos es que no recuerden la fórmula del área del círculo, en este caso el maestro podrá solicitar si alguien del grupo la recuerda y, si es así, que la dé a conocer. Asimismo se permitirá el uso de la calculadora pues no es propósito de esta clase practicar los algoritmos de las operaciones con punto decimal, sino resolver los problemas planteados. Ambos problemas tienen como estrategia principal el cálculo de diferencias de áreas. Es probable que durante la confrontación de resultados haya diferencias si algunos alumnos usaron como 3.14 y otros como Será una buena oportunidad para comentar que este número no se puede expresar de manera exacta con punto decimal y que, para cuestiones prácticas, es suficiente tomarlo como 3.14 Otras preguntas interesantes para el problema 1 son: - Si en lugar de un círculo se cortaran cuatro círculos del mayor tamaño posible: o Cuál será el radio de cada uno de estos círculos?

2 o Sobrará más o menos madera que la que sobró cuando sólo era un círculo? Argumenta tu respuesta. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

3 Vitrales Plan de clase (2/5) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: F E y M Contenido: Resolución de problemas que impliquen el cálculo de áreas de figuras compuestas, incluyendo áreas laterales y totales de prismas y pirámides. Intenciones didácticas: Que los alumnos resuelvan problemas que impliquen calcular el área de figuras compuestas por cuadrados, círculos y triángulos. Consigna. En equipos de tres integrantes, resuelvan el siguiente problema: La figura representa el vitral de una ventana cuadrada que mide 1.20 metros de lado, está formada por varios cuadrados más pequeños. Anota la cantidad de vidrio ocupada de cada color: Rojo: Azul: Amarillo: Transparente: Consideraciones previas: Algunos de los posibles procedimientos que los alumnos pueden seguir son: 1) Calcular la medida de uno de los lados de los cuadrados pequeños que forma el vitral (1.20 entre 6 son 0.20) y obtener las dimensiones necesarias para calcular el área de cada figura (círculo, cuadrado, triángulo). según la fórmula correspondiente. 2) Calcular el área de un cuadrado pequeño (0.2 m x 0.2 m) y recurrir al conteo en cada figura. Por ejemplo, los triángulos azules tienen un área equivalente a la de un cuadrado pequeño, las partes rojas de dos esquinas contiguas del vitral tienen un área equivalente a 4 cuadrados pequeños. Para el caso de la parte amarilla sí tendrán que usar la fórmula del círculo. Cualquiera de los procedimientos anteriores o algún otro puede simplificarse desde el punto de vista del cálculo si, para evitar el uso del punto decimal, se considera la medida del lado del cuadrado pequeño como 20 cm o, mejor aún, como 2dm. Esto puede hacerse porque la consigna del problema no especifica en qué unidades debe darse la respuesta.

4 Si todos los equipos usaron fórmulas, usted puede sugerir el conteo de cuadrados para hacer notar a los alumnos que hay otras maneras de calcular áreas sin usar fórmulas, dependiendo de las condiciones de la situación. Otro problema que puede plantear es: En la siguiente figura, M es el punto medio del lado del cuadrado y N el punto medio entre M y el vértice. M N 3dm Contesta las siguientes preguntas: 1. Cuál es el área de cada uno de los triángulos sombreados? 2. Qué fración representa el área de los triángulos sombreados con respecto al cuadrado completo? Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

5 Cuánta cartulina se necesita? Plan de clase (3/5) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: F E y M Contenido: Resolución de problemas que impliquen el cálculo de áreas de figuras compuestas, incluyendo áreas laterales y totales de prismas y pirámides. Intenciones didácticas: Que los alumnos calculen el área lateral y total de un prisma o pirámide. Consigna:. Organicen equipos y tracen en cartulina el desarrollo plano del cuerpo que les entregaré. No es necesario que le pongan pestañas porque no lo armarán. Después, calculen el área de la cartulina que ocupa dicho desarrollo. Consideraciones previas: El maestro armará o conseguirá cajas en forma de prismas y pirámides. Los prismas tendrán como base un triángulo y la base de las pirámides podrá ser un cuadrado, rectángulo o triángulo. Para cada equipo será un cuerpo diferente. Los equipos deben contar con juegos de geometría, cartulina y tijeras, por lo que se recomienda pedirlo con anticipación. Los alumnos podrán usar calculadora si así lo deciden. Una posible dificultad es que al construir el desarrollo plano los alumnos no recuerden cómo trazar paralelas, perpendiculares o triángulos. Si nota que tienen problemas en este sentido, se sugiere hacer un alto en el trabajo por equipo y, grupalmente, recordar cómo hacer estos trazos. Para las paralelas y perpendiculares es recomendable recordar cómo trazarlas usando las escuadras. Para los triángulos los alumnos decidirán si los trazan con regla y compás a partir de la medida de los tres lados, o si los trazan a partir de la medida de la base y la altura usando sus escuadras, este último caso les será útil al calcular el área pedida. Quizá los alumnos ya no tengan problemas en el cálculo del área de cuadrados y rectángulos. El caso de los triángulos que forman las caras laterales de las pirámides o la base de los prismas puede ser distinto, ya que deben tener muy claro el concepto de altura de un triángulo y tener presente que la altura de los triángulos no coincide con la altura de la pirámide. Si el docente nota que los alumnos están midiendo la altura de los triángulos de manera incorrecta, puede apoyarlos recordándoles que es la perpendicular que va de cualquier lado al vértice de su ángulo opuesto. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted.

6 Muy útil Útil Uso limitado Pobre

7 Área de cuerpos Plan de clase (4/5) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: F E y M Contenido: Resolución de problemas que impliquen el cálculo de áreas de figuras compuestas, incluyendo áreas laterales y totales de prismas y pirámides. Intenciones didácticas: Que los alumnos calculen el área lateral y el área total de un prisma o una pirámide a partir del cuerpo en tres dimensiones. Consigna: Organicen equipos y calculen el área lateral y el área total del cuerpo que les entregaré. No pueden desarmar el cuerpo. Consideraciones previas: El maestro armará o conseguirá pirámides cuya base sea un cuadrado y entregará una a cada equipo. Para todos los equipos será el mismo cuerpo. Los alumnos podrán usar calculadora si así lo deciden. En esta sesión no trazarán el desarrollo plano, se pretende que los alumnos calculen las áreas lateral y total a partir del cuerpo armado. Es importante tener presente que los resultados no necesariamente serán iguales debido a las imprecisiones de la medición, este hecho puede aprovecharse en la puesta en común para reflexionar con los alumnos acerca de la imposibilidad de conocer la medida exacta de una longitud y los errores al medir. Esta discusión dará lugar a la relatividad del error, no es lo mismo que dos cantidades varíen en las décimas que en las unidades o las decenas, de ahí que se analizará si el error se debe a pequeñas imprecisiones al medir, a fórmulas erróneas o mal trabajadas, o a cálculos erróneos. En la sesión anterior los alumnos calcularon áreas de prismas y pirámides a partir del desarrollo plano de estos cuerpos, de tal manera que este cálculo se reduce a obtener el área de figuras geométricas en un plano. La intención de esta sesión es diferente, porque calcularán el área de las figuras sin tenerlas en el plano, sino como caras de un cuerpo geométrico de tres dimensiones. Es probable que los alumnos ya no tengan problemas en el cálculo del área de cuadrados y rectángulos. Al igual que en el plan anterior, una dificultad a la que pueden enfrentarse es en el caso de los triángulos que forman las caras laterales de las pirámides, ya que la altura de los triángulos no coincide con la altura de la pirámide. Nuevamente, si nota que los alumnos están midiendo mal la altura de los triángulos, puede auxiliarlos recordándoles que es la perpendicular que va de cualquier lado al vértice de su ángulo opuesto. Además, en una pirámide puede mostrar cuál es la altura de los triángulos que forman las caras laterales y su diferencia con la altura del cuerpo geométrico.

8 Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase? 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre

9 Material requerido Plan de clase (5/5) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: F E y M Contenido: Resolución de problemas que impliquen el cálculo de áreas de figuras compuestas, incluyendo áreas laterales y totales de prismas y pirámides. Intenciones didácticas: Que los alumnos resuelvan problemas que impliquen el cálculo de áreas laterales o totales de prismas y pirámides cuyas bases sean cuadrados, rectángulos o triángulos. Consigna: En equipos, resuelvan los siguientes problemas. 1. Una empresa fabrica cajas cúbicas de 10 cm de arista. Qué cantidad mínima de cartón ocupa para construir 100 cajas? 2. Las siguientes cajas tienen la misma capacidad pero una de ellas requiere menos cartón para ser construida. Cuál de las dos necesita menos cartón? Qué cantidad de cartón se ahorraría el fabricante al construir cajas? 3. Carlos va a forrar los triángulos de la siguiente pirámide con papel de colores, qué cantidad de papel requiere?

10 Consideraciones previas: La diferencia con las actividades de los planes anteriores radica en que ya no se cuenta con un modelo concreto del cuerpo para calcular el área. En los problemas 2 y 3 se pone en juego la interpretación que los alumnos hagan de la representación plana de los cuerpos geométricos involucrados. La representación plana elegida para el problema 2 es diferente a la del problema 3, obsérvese que en la pirámide aparecen con líneas punteadas las aristas que no tendrían que verse en el dibujo lo cual no sucede en los prismas. Un error que podrían cometer los alumnos es considerar sólo las caras que se ven o bien, saben que hay caras que no se ven en el dibujo pero no las imaginan correctamente. Los alumnos que así lo deseen, podrán dibujar los desarrollos planos o trazar por separado las caras que forman al cuerpo. Es probable que, a pesar de lo ya trabajado, algunos alumnos calculen el volumen en lugar de las áreas; recordar lo trabajado en las sesiones anteriores les será de utilidad. En el primer problema obtendrán como resultado cm 2, si lo considera pertinente puede pedir a los alumnos que conviertan esa cantidad a metros cuadrados. Lo mismo para los otros dos problemas y en el segundo, además de pedir la conversión del área a metros cuadrados, también se puede plantear cuál es la capacidad en litros de cada recipiente?. Un problema extra que puede plantear es: En una fábrica se desea construir un envase en forma de prisma rectangular con capacidad de un litro. Encuentren dos posibles prismas con diferentes medidas que cumplan este requisito y calculen en cuál de los dos se emplea menos material. Observaciones posteriores: 1. Cuáles fueron los aspectos más exitosos de la sesión? 2. Cuáles cambios considera que deben hacerse para mejorar el plan de clase?

11 3. Por favor, califique el plan de clase con respecto a su claridad y facilidad de uso para usted. Muy útil Útil Uso limitado Pobre 14/15

Plan de Clase (1/3) Caja Largo Ancho Alto Volumen A 3 dm 2 dm 4 dm 24 dm 3 B 6 dm 2 dm 4 dm C 3 dm 6 dm 4 dm D 6 dm 4 dm 8 dm E 9 dm 6 dm 12 dm

Plan de Clase (1/3) Caja Largo Ancho Alto Volumen A 3 dm 2 dm 4 dm 24 dm 3 B 6 dm 2 dm 4 dm C 3 dm 6 dm 4 dm D 6 dm 4 dm 8 dm E 9 dm 6 dm 12 dm Plan de Clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: MI Contenido: 7.5.6 Resolución de problemas de proporcionalidad múltiple. Intenciones didácticas: Que los alumnos Identifiquen

Más detalles

Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a): Triángulos que se forman Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: FEyM Contenido: 8.3.3 Formulación de una regla que permita calcular la suma de los

Más detalles

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M.

Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.4.2 Análisis de las características de los cuerpos que se generan al girar sobre un eje, un triángulo

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor: (a):

Plan de clase (1/2) Escuela: Fecha: Profesor: (a): Plan de clase (1/2) Escuela: Fecha: Profesor: (a): Curso: Matemáticas 9 Eje temático: FE y M Contenido: 9.5.2 Análisis de las secciones que se obtienen al realizar cortes a un cilindro o a un cono recto.

Más detalles

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA

Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Cuál es la solución? Plan de clase (1/4) Escuela: Fecha: Profr.(a): Curso: Matemáticas 3 Secundaria Eje temático: SNyPA Contenido: 9.2.1 Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas

Más detalles

3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente:

3. A partir de las características observadas en las figuras construidas, completar la tabla siguiente: Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 Eje temático: FE y M Contenido: 7.3.4 Construcción de polígonos regulares a partir de distintas informaciones (medida de un lado, del

Más detalles

Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a):

Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.1.2 Construcción de figuras congruentes o semejantes (triángulos, cuadrados

Más detalles

Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a):

Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a): Cálculos rápidos Plan de clase (1/4) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: MI Contenido: 8.1.6 Resolución de problemas diversos relacionados con el porcentaje, como

Más detalles

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir:

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir: Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.3.3 Resolución de problemas geométricos mediante el teorema de Tales. Intención didáctica. Que

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 8 Eje temático: F E y M Contenido: 8.5.3 Construcción de figuras simétricas respecto de un eje, análisis y explicitación de las propiedades

Más detalles

Analizar familias de figuras geométricas para apreciar regularidades y simetrías y establecer criterios de clasificación.

Analizar familias de figuras geométricas para apreciar regularidades y simetrías y establecer criterios de clasificación. Matemáticas 8 Básico Eje temático: Geometría Introducción La prueba del subsector de Educación Matemática evalúa el logro de los OF- CMO establecidos en el marco curricular del segundo ciclo de Educación

Más detalles

Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a):

Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a): Representación algebraica Plan de clase (1/8) Escuela: Fecha: Profr. (a): Curso: Matemáticas 2 Secundaria Eje temático: SN y PA Contenido: 8.3.2 Resolución de problemas multiplicativos que impliquen el

Más detalles

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Escalas con enteros Plan de clase (1/2) Escuela: Fecha: Profr. (a): Curso: Matemáticas 7 secundaria Eje temático: MI Contenido: 7.2.7 Identificación y resolución de situaciones de proporcionalidad directa

Más detalles

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Contenido: Análisis de la regla de tres, empleando valores enteros o fraccionarios.

Plan de clase (1/2) Escuela: Fecha: Profesor (a): Contenido: Análisis de la regla de tres, empleando valores enteros o fraccionarios. Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 7 Eje temático: MI Contenido: 7.4.4 Análisis de la regla de tres, empleando valores enteros o fraccionarios. Intenciones didácticas:

Más detalles

MATEMÁTICAS 6 GRADO. Código de Contenido El alumno empleará la lectura, escritura y comparación de diferentes cantidades de cifras numéricas.

MATEMÁTICAS 6 GRADO. Código de Contenido El alumno empleará la lectura, escritura y comparación de diferentes cantidades de cifras numéricas. MATEMÁTICAS 6 GRADO Código Materia: Matemáticas (Español) = MSP Eje 1= Sentido numérico y pensamiento algebraico. Eje 2= Forma, espacio y medida. Eje 3= Manejo de la información. Código: Materia. Grado.

Más detalles

Productos elevados Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Productos elevados Plan de clase (1/3) Escuela: Fecha: Profesor (a): Productos elevados Plan de clase (1/) Escuela: Fecha: Profesor (a): Curso: Matemáticas Secundaria Eje temático: SN y PA Contenido: 8.1. Cálculo de productos y cocientes de potencias enteras positivas de

Más detalles

Caminos rectos Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Caminos rectos Plan de clase (1/3) Escuela: Fecha: Profesor (a): Caminos rectos Plan de clase (/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas Secundaria Eje temático: SN y PA Contenido: 7..2 Representación de números fraccionarios y decimales en la recta numérica

Más detalles

ESCUELA SECU DARIA TEC ICA 40 02DST0041G LA MORITA II MATEMATICAS GUIA PARA EL EXAME DE REGULARIZACIO TERCER GRADO

ESCUELA SECU DARIA TEC ICA 40 02DST0041G LA MORITA II MATEMATICAS GUIA PARA EL EXAME DE REGULARIZACIO TERCER GRADO ESCUELA SECU DARIA TEC ICA 40 0DST004G LA MORITA II MATEMATICAS GUIA PARA EL EXAME DE REGULARIZACIO TERCER GRADO. Señala con una cuáles de las epresiones representan el área de la figura. y 6 a) ( 6 +

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

Matemáticas UNIDAD 12 SECTOR. Material de apoyo complementario para el docente REPASO DE CUERPOS GEOMÉTRICOS Y TRANSFORMACIONES DE FIGURAS PLANAS

Matemáticas UNIDAD 12 SECTOR. Material de apoyo complementario para el docente REPASO DE CUERPOS GEOMÉTRICOS Y TRANSFORMACIONES DE FIGURAS PLANAS SECTOR Material de apoyo complementario para el docente UNIDAD 12 REPASO DE CUERPOS GEOMÉTRICOS Y TRANSFORMACIONES DE FIGURAS PLANAS SEMESTRE: 2 DURACIÓN: 3 semanas Preparado por: Irene Villarroel Diseño

Más detalles

DIRECCIÓN GENERAL DE DESARROLLO CURRICULAR REFORMA DE LA EDUCACIÓN SECUNDARIA MATEMÁTICAS

DIRECCIÓN GENERAL DE DESARROLLO CURRICULAR REFORMA DE LA EDUCACIÓN SECUNDARIA MATEMÁTICAS DIRECCIÓN GENERAL DE DESARROLLO CURRICULAR REFORMA DE LA EDUCACIÓN SECUNDARIA MATEMÁTICAS Escuela: SECUNDARIA TÉCNICA 40 Fecha: Prof.(a): MARÍA ESTELA GONZÁLEZ OCHOA. Grupo: Alumno(a): TERCER GRADO EXAMEN

Más detalles

Geometría - Problemas del Cubo

Geometría - Problemas del Cubo Geometría - Problemas del Parte A CUBO Problemas del 1) Datos a = 2,5 m Ab = 6,25 m 2 d = 3,525 m. D = 4,325 m. SL = 25 m 2. ST = 37,5 m 2. V = 15,625 m 3. Cap = 15.625 lts. D = 2,768 m. SL = 10,24 m 2.

Más detalles

POLIEDROS. ÁREAS Y VOLÚMENES.

POLIEDROS. ÁREAS Y VOLÚMENES. 7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

Intención didáctica: Que los alumnos definan a los prismas y a las pirámides, así como a sus alturas es la intención de este desafío.

Intención didáctica: Que los alumnos definan a los prismas y a las pirámides, así como a sus alturas es la intención de este desafío. 6. Desplazamientos Intención didáctica: Que los alumnos definan a los prismas y a las pirámides, así como a sus alturas es la intención de este desafío. Consigna: En parejas, hagan lo que se pide en cada

Más detalles

Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Primos y compuestos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 secundaria Eje temático: SNyPA Contenido: 7.2.1 Formulación de los criterios de divisibilidad entre 2, 3 y 5.

Más detalles

MATEMÁTICAS I SEGUNDO BIMESTRE

MATEMÁTICAS I SEGUNDO BIMESTRE MATEMÁTICAS I SEGUNDO BIMESTRE Contenido: 7.2.1 Formulación de los criterios de divisibilidad entre 2, 3 y 5. Distinción entre números primos y compuestos. Intenciones didácticas: Que los alumnos formulen

Más detalles

Recursos. Temas. Tiempo. Evaluación. Competencias:

Recursos. Temas. Tiempo. Evaluación. Competencias: Lic. José Antonio Martínez y Martínez @jamm2014 Competencias: Utiliza formas geométricas, símbolos, signos y señales para el desarrollo de sus actividades cotidianas. Aplica el pensamiento lógico, reflexivo,

Más detalles

COLEGIO ALEXANDER DUL

COLEGIO ALEXANDER DUL PRIMER BIMESTRE CICLO ESCOLAR 2016 2017 MATEMÁTICAS ESTRUCTURA DEL APRENDIZAJES ESPERADOS PROGRAMA REALIZACIÓN 1-8 TEMA 1 2. Tema: Problemas aditivos. Tema: Problemas multiplicativos. impliquen sumar o

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

Solera y ángulo Plan de clase (1/3) Escuela: Fecha: Profesor (a):

Solera y ángulo Plan de clase (1/3) Escuela: Fecha: Profesor (a): Solera y ángulo Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 1 Secundaria Eje temático: SNyPA Contenido: 7.1.1 Conversión de fracciones decimales y no decimales a su escritura decimal

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

Actividad introductoria: Estudiantes de excursión en el centro de Cartagena identifican figuras planas en inmuebles

Actividad introductoria: Estudiantes de excursión en el centro de Cartagena identifican figuras planas en inmuebles Grado 6 Matemáticas Diferentes formas para expresar la misma medida, el sistema internacional. TEMA: IDENTIFICACIÓN DEL ÁREA Y PERÍMETRO DE ALGUNAS FIGURAS PLANAS Nombre: Grado: Actividad introductoria:

Más detalles

TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA

TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA Actividades de Ingreso Año 2009 Profesorado

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

Estuvieron sus opiniones cercanas a este hecho?

Estuvieron sus opiniones cercanas a este hecho? Dibujen en una hoja cuadriculada un triángulo y completen un rectángulo de tal manera que el triángulo quede dentro, como en la figura. Calculen en cm 2 el área aproximada del triángulo. Calculen en cm

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

FIGURAS, ÁREAS Y PERÍMETROS

FIGURAS, ÁREAS Y PERÍMETROS FIGURAS, ÁREAS Y PERÍMETROS 05 Identifica propiedades de las figuras geométricas, de área y de perímetro y utiliza modelos con los que representa información matemática. Para hablar de áreas y perímetros,

Más detalles

Cuadrado 3. Cuadrado 1 Cuadrado 2. 1 x + 1 4(x+1)= (x+1) 2 =(x+1)(x+1)=x 2 +x+x+1=x 2 +2x a x + a (x + a) 2 = (x + a)(x + a) =

Cuadrado 3. Cuadrado 1 Cuadrado 2. 1 x + 1 4(x+1)= (x+1) 2 =(x+1)(x+1)=x 2 +x+x+1=x 2 +2x a x + a (x + a) 2 = (x + a)(x + a) = Conocimientos y habilidades: Efectuar o simplificar cálculos con epresiones algebraicas tales como: ( + a) 2; ( + a) ( + b); ( + a) ( a). Factorizar epresiones algebraicas tales como: 2 + 2a + a 2 ; a

Más detalles

Matemáticas UNIDAD 8 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 8 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl VOLUMEN DE CUERPOS GEOMÉTRICOS 1. DESCRIPCIÓN GENERAL DE LA

Más detalles

CUERPOS EN EL ESPACIO

CUERPOS EN EL ESPACIO CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.

Más detalles

UNIDAD 7. SISTEMA MÉTRICO DECIMAL

UNIDAD 7. SISTEMA MÉTRICO DECIMAL UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,

Más detalles

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso. Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho

Más detalles

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:

Más detalles

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa

Más detalles

DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE

DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE Sugerencias para quien imparte el curso: En esta sección de la propuesta didáctica se parte de plantear un problema de optimización

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

ACTIVIDAD 2. Adivina... quién soy y cómo soy? 6º de Primaria. Actividades imprimibles

ACTIVIDAD 2. Adivina... quién soy y cómo soy? 6º de Primaria. Actividades imprimibles ACTIVIDAD 2 Adivina... quién soy y cómo soy? 6º de Primaria Actividades imprimibles 6º de primaria Actividad 2 Adivina... quién soy y cómo soy? Campo formativo Asignatura Tema Contenido Matemáticas Pensamiento

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

Planificación didáctica en el área de matemática. Lic. Abel Rojas Aguirre

Planificación didáctica en el área de matemática. Lic. Abel Rojas Aguirre Planificación didáctica en el área de matemática Lic. Abel Rojas Aguirre Procedimiento y acciones que consideramos oportuno implementar para desarrollar contenidos de aprendizaje. Pensar el tema de aprendizaje

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Alianza para el Aprendizaje de las Ciencias y las Matemáticas. (AlACiMa) Actividad de Matemáticas Nivel 4-6 Guía de Maestro. Descubre la fórmula

Alianza para el Aprendizaje de las Ciencias y las Matemáticas. (AlACiMa) Actividad de Matemáticas Nivel 4-6 Guía de Maestro. Descubre la fórmula Alianza para el Aprendizaje de las Ciencias y las Matemáticas (AlACiMa) Actividad de Matemáticas Nivel 4-6 Guía de Maestro Descubre la fórmula TIEMPO: La actividad completa, incluyendo la discusión, puede

Más detalles

Describir, reconocer y comparar cuerpos

Describir, reconocer y comparar cuerpos 6to. Grado Describir, reconocer y comparar cuerpos Universidad de La Punta CONSIDERACIONES GENERALES El juego de adivinar cuerpos favorece que los alumnos puedan observar nuevas propiedades de las mismas.

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

Cuál es el valor de la ordenada del punto cuya abscisa es 1 (x = 1)? Cuál es la constante de proporcionalidad?

Cuál es el valor de la ordenada del punto cuya abscisa es 1 (x = 1)? Cuál es la constante de proporcionalidad? La misma para dos Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: MI Contenido: 9.1.4 Análisis de representaciones (gráficas, tabulares y algebraicas) que

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,

Más detalles

Ejercicio: Encontrar el área de un triángulo real, a través de dos fórmulas

Ejercicio: Encontrar el área de un triángulo real, a través de dos fórmulas Ejercicio: Encontrar el área de un triángulo real, a través de dos fórmulas Al maestro, o a la maestra: En este ejercicio, los alumnos calcularán de dos fórmulas, el área de un mismo triángulo real. Es

Más detalles

Matemáticas y Tecnología. Unidad 6 Área de figuras planas

Matemáticas y Tecnología. Unidad 6 Área de figuras planas CENTRO PÚBLICO DE EDUCACIÓN DE PERSONAS ADULTAS ESPA 1 Matemáticas y Tecnología Unidad 6 Área de figuras planas UNIDADES DE SUPERFICIE Para expresar el tamaño de una vivienda se emplean las unidades de

Más detalles

EXPRESIÓN. Profesor: Julio Serrano

EXPRESIÓN. Profesor: Julio Serrano EXPRESIÓN GRÁFICA Profesor: Julio Serrano Materiales e Instrumentos Para la realización de dibujos se necesita un soporte, generalmente papel, e instrumentos de trazado, como lápices, plumas o rotuladores

Más detalles

OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA:

OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA: OJETIVO 1 CONOCER LOS POLIEDROS Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro

Más detalles

Polígonos y Poliedros

Polígonos y Poliedros 09 Lección Apertura Matemáticas Polígonos y s Competencia Socializa sus ideas y llega a acuerdos con los que asimila conceptos relacionados con polígonos y poliedros. Diseño instruccional El maestro aclarará

Más detalles

Hoja de actividad sobre las propiedades de las figuras geométricas planas

Hoja de actividad sobre las propiedades de las figuras geométricas planas Nombre Unidad 4.6: Diseños en nuestro mundo Hoja de actividad sobre las propiedades de las figuras geométricas planas Fecha Instrucciones: Mira cada figura con detenimiento. Nombra cada una de las figuras

Más detalles

Indicar y Justificar la verdad (V) o falsedad (F) de las siguientes afirmaciones:

Indicar y Justificar la verdad (V) o falsedad (F) de las siguientes afirmaciones: GEOMETRÍ DEL ESIO ompetencias: Reconoce a la recta y el plano en R. Describir las posiciones relativas entre dos planos y entre una recta y un lano. Describir el Teorema de las tres perpendiculares. Definir

Más detalles

Slide 1 / 139. Geometría 3-D

Slide 1 / 139. Geometría 3-D Slide 1 / 139 Geometría 3-D Tabla de Contenidos Sólidos 3-Dimensional Redes Volumen Prismas y Cilindros Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros Esferas Más Práctica/Revisión

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

: Ochenta y tres mil cuatrocientos dieciséis: Setenta y nueve mil novecientos noventa: : :

: Ochenta y tres mil cuatrocientos dieciséis: Setenta y nueve mil novecientos noventa: : : NOMBRE: CURSO: FECHA: 1.- LECTURA Y ESCRITURA DE NÚMEROS NATURALES. Completa con cifras o letras según corresponda: 870.400: Ochenta y tres mil cuatrocientos dieciséis: Setenta y nueve mil novecientos

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO Conociendo las Formas de 2 dimensiones (2D) CLASE 3 CUADERNO DE TRABAJO Cuaderno de Trabajo,

Más detalles

TABLA DE CONTENIDOS MATEMÁTICAS QUINTO GRADO EDUCACIÓN PRIMARIA

TABLA DE CONTENIDOS MATEMÁTICAS QUINTO GRADO EDUCACIÓN PRIMARIA TABLA DE ESPECIFICACIONES PARA CONSTRUIR REACTIOS I aditivos Resolución de problemas que impliquen sumar o restar fracciones cuyos denomina dores son múltiplos uno de otro. A partir de un planteamiento

Más detalles

Organizados en equipos de cuatro integrantes, realicen lo que se indica enseguida:

Organizados en equipos de cuatro integrantes, realicen lo que se indica enseguida: 15. Pequeños giros. Intenciones didácticas: Que los alumnos reflexionen acerca de la relación entre los giros y la medida de ángulos en grados, es la intención de este desafío. Consigna 1: Organizados

Más detalles

VOLUMENES DE CUERPOS GEOMETRICOS

VOLUMENES DE CUERPOS GEOMETRICOS PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS E J E R C I C I O S P R O P U E S T O S 1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. 2 1 2 Calcula el área total de los siguientes

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA PRIMER TRIMESTRE: CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA CONTENIDOS: -Valor de posición de una cifra en un número. Equivalencias. -Los números de seis y de siete cifras: la centena

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1. Triángulos rectángulos. Teorema de Pitágoras.. Demostraciones visuales del Teorema de Pitágoras. 3. Ternas pitagóricas. 4. Aplicaciones del teorema de Pitágoras. 4.1.Conocidos los

Más detalles

Polígonos regulares, el triángulo de Sierpinski y teselados

Polígonos regulares, el triángulo de Sierpinski y teselados Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. . G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

Objetivos de aprendizaje. Introducción

Objetivos de aprendizaje. Introducción DESCUBRIENDO MEDIDAS A PARTIR DE LA FORMA Resolución de problemas relacionados con formas cónicas Objetivos de aprendizaje 1. Desarrollar procesos de solución de situaciones problema relacionadas con la

Más detalles

Matemáticas 2 Agosto 2015

Matemáticas 2 Agosto 2015 Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 6 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl TEMAS DE GEOMETRÍA 1. DESCRIPCIÓN GENERAL DE LA UNIDAD La

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles