Genética de polinomios sobre cuerpos locales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Genética de polinomios sobre cuerpos locales"

Transcripción

1 Genética de polinomios sobre cuerpos locales Hayden Stainsby Universitat Autònoma de Barcelona STNB 30 de enero de 2014

2 Resumen 1 Tipos 2

3 Tipos sobre (K, v) (K, v) cuerpo valorado discreto, O anillo de valoración, m = πo ideal maximal, F 0 := F = O/m cuerpo residual Un tipo sobre (K, v) es un objeto computacional capaz de representar un punto del espacio de MacLane (µ, L) M Más precisamente, un tipo es una colección de datos discretos: t = (ψ 0 ; (φ 1, λ 1, ψ 1 );... ; (φ r, λ r, ψ r )) que determinan una cadena de MacLane óptima de una valoración inductiva µ de K(x) y un ideal maximal L del anillo (µ) Vemos que los datos de t están estructurados en niveles. El número r de niveles es el orden del tipo

4 Datos de un tipo de orden cero Un tipo de orden cero t = (ψ 0 ) está determinado por la elección de un polinomio mónico irreducible ψ 0 F[y] Contiene los siguientes datos de nivel cero: La valoración mínima µ 0 de K(x) y su normalización v 0 = µ 0 Datos numéricos: m 0 = 1, λ 0 = ν 0 = 0, h 0 = 0, e 0 = 1 El operador polinomio residual 0-ésimo: R 0 : K[x] F 0 [y], g g(y)/π v 0(g) ψ 0 F 0 [y] mónico irreducible, de grado f 0 F 1 = F 0 [y]/(ψ 0 ) = F 0 [z 0 ] extensión de F 0 de grado f 0 z 0 = y (mod ψ 0 ) F 1

5 Datos de un tipo de orden positivo Dado un tipo t = (ψ 0 ; (φ 1, λ 1, ψ 1 );... ; (φ r 1, λ r 1, ψ r 1 )) de orden r 1 0, podemos fabricar un tipo t = (t ; (φ r, λ r, ψ r )) de orden r añadiendo los siguientes datos en el nivel r-ésimo: Un representante φ r de t. Es decir, φ r O[x] mónico tal, que m r := deg φ r = e r 1 f r 1 m r 1, R r 1 (φ r ) = ψ r 1 El operador poĺıgono de Newton N r = N vr 1,φ r Una pendiente λ r = h r /e r, con h r, e r enteros positivos coprimos La pendiente no-normalizada ν r = h r /e 1 e r µ r = [µ r 1 ; (φ r, ν r )] y su normalización v r = e 1 e r µ r El operador polinomio residual r-ésimo R r := R vr 1,φ r,λ r : K[x] F r [y] ψ r F r [y] mónico irreducible, ψ r y, f r := deg ψ r F r+1 = F r [y]/(ψ r ) = F r [z r ] extensión de F 0 de grado f 0 f r z r = y (mod ψ r ) F r+1

6 Operador polinomio residual r-ésimo para r > 0 N r (g) 0 g = 0 s asφs r K[x] Q s = (s, v r 1(a sφ s r )) P 0 Q sj h r e r P j P d pendiente λ r 0 s r (g) = s 0 s j s d c j := { 0, si Qsj por encima de P j, z t r 1(a sj ) r 1 R r 1 (a sj )(z r 1 ) F r, si Q sj = P j Para a K[x]: t 0 (a) = 0, t k (a) = (s k (a) l k v k (a))/e k si k > 0 R r (g) := c 0 + c 1 y + + c d y d F r [y] c 0 c d 0 = deg R r (g) = d, y R r (g)

7 Tipos y valoraciones inductivas Para t tipo de orden r denotamos µ = µ t = µ r (1) µ t es una valoración inductiva con cadena de MacLane (φ 1,ν 1 ) (φ 2,ν 2 ) (φ r,ν r ) µ 0 µ 1 µ r 1 µ r = µ t (2) Diagrama conmutativo con isomorfismos verticales: F = F 0 F 1 F r ι 1 ι r F = F 0,µ F 1,µ F r,µ tales que R i,µ = ι i [y] R i para todo i. Podemos pues identificar: F i = F i,µ, z i 1 = z i 1,µ, ψ i 1 = ψ i 1,µ, R i = R i,µ

8 Tipos y valoraciones inductivas Así pues, un tipo t = (ψ 0 ; (φ 1, λ 1, ψ 1 );... ; (φ r, λ r, ψ r )) determina: (1) Una cadena de MacLane de una valoración inductiva µ t, que se corresponde con los datos: (ψ 0 ; (φ 1, λ 1, ψ 1 );... ; (φ r, λ r, )) (2) Un ideal maximal L t = ψ r (y r ) (µ t ) del anillo (µ t ), que se corresponde con los datos: ψ r, F r+1, z r Lema φ K[x] representante de t φ KP(µ t ), R(φ) = L t

9 Tipos y puntos del espacio de MacLane Definición t es óptimo si m 1 < < m r t es fuertemente óptimo si además e r f r > 1 Convenimos que los tipos de orden r = 0 son fuertemente óptimos Estas condiciones se traducen en que la cadena de MacLane de µ t sea óptima y en que además el ideal maximal L t sea fuerte Si denotamos por T el conjunto de los tipos sobre (K, v) y por T str T el subconjunto de los tipos fuertemente óptimos, obtenemos una aplicación de MacLane: ml: T str M, t (µ t, L t ) Es fácil ver que esta aplicación es exhaustiva. Estudiemos sus fibras.

10 Equivalencia de tipos Definición Consideremos dos tipos fuertemente óptimos de orden r: t = (ψ 0 ; (φ 1, λ 1, ψ 1 );... ; (φ r, λ r, ψ r )) t = (ψ 0 ; (φ 1, λ 1, ψ 1 );... ; (φ r, λ r, ψ r )) Decimos que t t son equivalentes si ψ 0 = ψ 0 y para 1 i r: (a) φ i = φ i + a i, deg a i < m i, µ i (a i ) µ i (φ i ) (b) λ i = λ i (c) ψ i (y) { = ψ i(y η i ), donde 0, si µ i (a i ) > µ i (φ i ) (i.e. φ i µi φ i ) η i = R i (a i ) F i, si µ i(a i ) = µ i (φ i ) (i.e. φ i µi φ i ) Proposición t t ml(t) = ml(t )

11 Tipos y polinomios primos Denotamos por T = T str / el conjunto cociente y por [t] T str la clase de equivalencia de t Obtenemos aplicaciones biyectivas T ml M ok (P/ ) La composición assigna a cada t T str la clase de equivalencia de Okutsu [φ] de qualquier representante φ de t. Además, [φ] O[x] coincide con el conjunto Rep(t) de todos los representantes de t

12 Construcción de tipos Proposición Sea t un tipo de orden r 1 y consideremos m r+1 := e r f r m r, V r = v r 1 (φ r ), V r+1 := e r f r (e r V r + h r ) Dados 0 ϕ F r [y] con deg ϕ < f r, y un entero b V r+1, podemos construir un polinomio g O[x] tal, que deg g < m r+1, v r (g) = b, y sr (g)/er R r (g) = ϕ Si tomamos ϕ = ψ r y fr, b = V r+1, el polinomio g así construido er fr nos proporciona un representante de t: φ = φr + g Como λ r+1, ψ r+1 pueden ser escogidos libremente, podemos construir tipos con invariantes h i, e i, f i y orden r prescritos. Podemos construir polinomios primos con profudidad e invariantes de MacLane-Okutsu prescritos, dando lugar a extensiones de cuerpos locales con propiedades aritméticas prescritas.

13 Estructura de árbol en el conjunto de tipos Podemos representar un tipo como un árbol no ramificado. (φ 1, λ 1, ψ 1 ) (φ r, λ r, ψ r ) ψ 0 Cada nodo se corresponde con el tipo obtenido recogiendo los datos de las aristas del camino que une el nodo con el nodo inicial Podemos dotar el conjunto T de una estructura de árbol (φ 1, λ 1, ψ 1 ) (φ r, λ r, ψ r ) ψ 0 (φ, λ, ψ) (φ, λ, ψ ) Los nodos raiz se corresponden con P(F) Induce estructuras naturales de árbol en el subconjunto T str y en el cociente T = T str / La aplicación T str T conserva la longitud de los caminos

14 primos Definición Una representación OM de F P es un par [t F, φ], donde t F T str y la biyección canónica T P/ envia [t F ] [F ] φ es un representante de t F Los datos discretos de t F son una especie de secuencia de ADN compartida por todos los individuos en la clase [F ] φ [F ] O[x] es una buena aproximación de F. La calidad de la aproximación se mide por el número racional positivo v(φ(θ)) = δ 0 (F ) + λ/e(f ), λ Z >0 donde F (θ) = 0 y λ = mínima pendiente de N r+1 (F ) := N v r,φ (F ) En la práctica, identificamos la representación OM con el tipo (t F ; (φ, λ, ψ)), donde ψ = R r+1 (F ) := R vr,φ,λ(f )

15 Factorizaciones OM Definición Sea g O[x] mónico con factores primos g = G 1 G s en O v [x] Una factorización de Okutsu de g es una expresión g P 1 P s, con P 1,..., P s P O[x] tales que P j G j para todo 1 j s, a menos de la ordenación de los factores Si los G j son todos equivalentes a P, entonces g P s es una factorización de Okutsu que no distingue los factores de g Definición P j [G j ] es una aproximación de Montes a G j como factor de g si v(p j (θ j )) > v(p j (θ k )), k j (G k (θ k ) = 0, k) Una factorización OM de g es una factorización de Okutsu g P 1 P s tal que cada P j es una aproximación de Montes a G j como factor de g

16 Árbol genómico de un polinomio primo Dado F P, consideremos t F T str tal, que la aplicación biyectiva T P/ envia [t F ] [F ] El árbol genómico de F es el subárbol T(F ) T formado por el camino que une [t F ] con su nodo-raiz. (φ 1, λ 1, ψ 1 ) (φ r, λ r, ψ r ) ψ 0 Una representación OM de F, dada por un tipo t = (t F ; (φ, λ, ψ)), se representa mediante un árbol (φ 1, λ 1, ψ 1 ) (φ r, λ r, ψ r ) (φ, λ, ψ) ψ 0 La arista punteada nos recuerda que el tipo t no es (jamás) fuertemente óptimo, con lo que no da lugar a un elemento de T

17 Representación OM de un polinomio libre de cuadrados Sea f O[x] un polinomio libre de cuadrados con factores primos f = F 1 F t en O v [x] El árbol genómico de f es T(f ) = T(F 1 ) T(F t ) Definición Una representación OM de f es una familia [t Fj, φ Fj ] de representaciones OM de cada factor primo F j, con la propiedad que f φ F1 φ Ft es una factorización OM de f. Si completamos cada representación OM en un tipo t j = ( t Fj ; (φ Fj, λ Fj, ψ Fj ) ), entonces podemos asociar a cada representación OM un árbol de tipos. Por ejemplo:

18 Árbol de una representación OM t F1 t 1... t 2... tf2 t3 t F4... t 4 En este ejemplo, f = F 1 F 4, con F 2 F 3 Las hojas de este árbol se corresponden con los factores primos de f y el tipo determinado por el camino que une la hoja con el nodo raiz es una representación OM de este factor Si suprimimos los nodos hoja del árbol y las aristas punteadas, nos queda el árbol genómico de f La estructura de este árbol es útil para ciertas cuestiones donde necesitemos conocer con precisión la información genética que comparten dos factores. Por ejemplo, para calcular v(res(f i, F j ))

19 Objetivos (I) Calcular una representación OM de un polinomio dado f, libre de cuadrados Tendremos la información genética de cada factor primo y una primera buena aproximación a cada uno de los factores (II) A partir de una representación OM de un factor primo F de f, obtener una aproximación a F con una calidad prefijada Nos proporcionará un algoritmo de factorización v-ádico Estas tareas son llevadas a cabo por el Algoritmo de Montes y el Algoritmo SFL (Single-factor lifting), respectivamente

20 Muchas gracias por vuestra atención.

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Programación lineal

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO

SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO Francisco Ugarte Guerra 1,2 Mayo, 2011 Resumen Para etender técnicas tipo Polígono de Newton a ecuaciones algebraicas con coeficientes en cuerpos

Más detalles

FICHAS DE ESTUDIO No.1. Definición del conjunto N NOMBRE FECHA

FICHAS DE ESTUDIO No.1. Definición del conjunto N NOMBRE FECHA 21 FICHAS DE ESTUDIO No.1. UNIDAD 1: NUMEROS NATURALES Lámina 1.1 Definición del conjunto N NOMBRE FECHA I OBJETIVOS: Al concluir esta Guía podrás: 1. Identificar los elementos del conjunto de los números

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo. Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Álgebra. Curso de junio de Grupo B

Álgebra. Curso de junio de Grupo B Álgebra. Curso 2008-2009 9 de junio de 2009. Grupo B Primera parte Ejercicio. 1. Sea D un dominio noetheriano que no es un cuerpo. Demuestra que son equivalentes: (a) D es un dominio de Dedekind. (b) Todo

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

ELEMENTOS DE LA MATEMATICA

ELEMENTOS DE LA MATEMATICA ELEMENTOS DE LA MATEMATICA SEMESTRE: Primero CODIGO ANTERIOR: 22G7 CODIGO: 8101 REQUISITOS: No tiene CREDITOS: 6 HORAS DE TEORIA: 4 HORAS DE PRACTICA : 4 TEMA 1: Lógica simbólica. Las conectivas lógicas.

Más detalles

6.1. Anillos de polinomios.

6.1. Anillos de polinomios. 1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x

Más detalles

Grafos. Algoritmos y Estructuras de Datos III

Grafos. Algoritmos y Estructuras de Datos III Grafos Algoritmos y Estructuras de Datos III Grafos Un grafo G = (V, X ) es un par de conjuntos, donde V es un conjunto de puntos o nodos o vértices y X es un subconjunto del conjunto de pares no ordenados

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Anillos de polinomios 3 Mínimo Común Divisor y Mínimo Común Múltiplo Algoritmo de Euclides Algoritmo

Más detalles

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal

MATE 4032: Álgebra Abstracta. 1. Suponga que I, J son ideales de un anillo R. Demuestre que I J es un ideal Solución Asignación 9. Universidad de Puerto Rico Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan Puerto Rico MATE 4032: Álgebra Abstracta 1. Suponga que I J son ideales

Más detalles

Binary Decision Diagrams

Binary Decision Diagrams Rodríguez Blanco 2006-05-18 Introduccion Equivalencia Tablas de verdad eficientes Construcción de Equivalencia Tablas de verdad eficientes Equivalencia de dos fórmulas A 1 y A 2. Construir su tabla de

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas

Más detalles

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R.

Anillos. a + (b + c) = (a + b) + c. 3) Existe un elemento 0 en R, el cual llamaremos cero, tal que. a + 0 = 0 + a = a para todo a en R. Capítulo 7 Anillos 7.1 Definiciones Básicas El concepto de Anillo se obtiene como una generalización de los números enteros, en donde están definidas un par de operaciones, la suma y el producto, relacionadas

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos

Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos Algoritmos y Estructuras de Datos I 1 cuatrimestre de 009 Departamento de Computación - FCEyN - UBA Programación funcional - clase Tipos algebraicos Tipos algebraicos y abstractos ya vimos los tipos básicos

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

MAT web:

MAT web: Clase No. 7: MAT 251 Matrices definidas positivas Matrices simétricas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.

Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano. Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

UNIDAD 2: SISTEMA DE NUMERACIÓN DECIMAL Y SEXAGESIMAL

UNIDAD 2: SISTEMA DE NUMERACIÓN DECIMAL Y SEXAGESIMAL UNIDAD 2: SISTEMA DE NUMERACIÓN DECIMAL Y SEXAGESIMAL OBJETIVOS Expresar, representar en la recta graduada y ordenar números decimales. Emplear los números decimales para estimar, cuantificar e interpretar

Más detalles

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos.

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos. Grafos Los grafos son estructuras que constan de vértices o nodos y de aristas o arcos que conectan los vértices entre sí. Un grafo G consiste en dos cosas: 1. Un conjunto V de elementos llamados nodos

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia

Más detalles

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL MATEMÁTICAS VII. (1er BIMESTRE) INSTITUTO CHAPULTEPEC MIDDLE SCHOOL. 2009-2010 1) SIGNIFICADO Y USO DE LOS NÚMEROS a) Lectura y escritura de números naturales. - Operaciones con números naturales. - Problemas

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales

Introducción a los Sistemas Digitales. Conceptos básicos de matemática aplicada a los sistemas digitales Curso-0 1 Introducción a los Sistemas Digitales Conceptos básicos de matemática aplicada a los sistemas digitales 2 Contenidos Conjuntos numéricos Notación científica Redondeo Logaritmos Resumen 3 Conjuntos

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

El estudiante de Pitágoras

El estudiante de Pitágoras COLEGIO INTEGRADO SIMÓN BOLÍVAR GUÍA PARA EL ESTUDIANTE MBP354 FORMATO 1 ASIGNATURA: ARITMÉTICA DOCENTE: CLAUDIA RODRIGUEZ PERIODO: SEGUNDO VALORACIÓN TEMA:NUMEROS RACIONALES. I ESTUDIANTE: FECHA: GRADO:SEPTIMO

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x

Más detalles

Operadores estrictamente singulares en retículos de Banach

Operadores estrictamente singulares en retículos de Banach Operadores estrictamente singulares en retículos de Banach 4 de abril de 2008 Tesis en curso dirigida por F. L. Hernández y J. Flores 1 Preliminares Definiciones Dos problemas naturales 2 3 Factorización

Más detalles

ECUACIONES. Ecuaciones. Indicadores. Contenido ECUACIÓN

ECUACIONES. Ecuaciones. Indicadores. Contenido ECUACIÓN Indicadores ECUACIONES Determina el conjunto solución de una ecuación. Resuelve ecuaciones de primer y segundo grado, así como sistemas de ecuaciones Contenido Ecuaciones De primer grado Sistemas de ecuaciones

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

(CR) Prof. Manuel López Mateos Curso de Cálculo I,

(CR) Prof. Manuel López Mateos Curso de Cálculo I, (página 81) CAPÍTULO 3 FUNCIONES REALES Función es dependencia. A velocidad fija, la distancia recorrida depende del tiempo transcurrido. El tiempo que tarda en caer una piedra depende de la altura que

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #19: viernes, 24 de junio de 2016. 3 Polinomios y funciones racionales

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) =

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) = ESPACIO DUAL 1. Espacio Dual En temas anteriores dados V y V espacios vectoriales sobre k, definíamos en Hom(V, V ) una suma y un producto por elementos de k que convertían este conjunto en un espacio

Más detalles

Funtores derivados. Manuel Melo. Universidad de Concepción. 27 de Junio de 2012

Funtores derivados. Manuel Melo. Universidad de Concepción. 27 de Junio de 2012 Funtores derivados Manuel Melo Universidad de Concepción 27 de Junio de 2012 Manuel Melo (Universidad de Concepción) Funtores derivados 27 de Junio de 2012 1 / 13 Cateogorías abelianas Definición: Una

Más detalles

Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G.

Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G. 1 Definición y propiedades Definición 1.1 Sea G un conjunto. Una operación binaria en G es una aplicación m: G G G. Definición 1.2 Sea G un conjunto i) Si G tiene una operación binaria definida en G, se

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS

CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Modelo 4 de Sobrantes de 2004

Modelo 4 de Sobrantes de 2004 Ejercicio n de la opción A del modelo 4 de 24 9 Considera la integral definida I d + [ 5 puntos] Epresa la anterior integral definida aplicando el cambio de variables + t. [ punto] Calcula I. I d + Cambio

Más detalles

Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana

Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Minicurso de Teoría de Gráficas Escuela de Verano 014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Índice 1. Conceptos básicos 1 1.1. Nomenclatura...................................

Más detalles

Tema 2: El grupo de las permutaciones

Tema 2: El grupo de las permutaciones Tema 2: El grupo de las permutaciones Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2014 Olalla (Universidad de Sevilla) Tema 2: El grupo de las

Más detalles

PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO )

PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO ) PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO 2015-2016) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. Criterio 1: Identificar

Más detalles

1. GENERALIDADES SOBRE LOS POLINOMIOS.

1. GENERALIDADES SOBRE LOS POLINOMIOS. GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

Inversas de las matrices triangulares superiores

Inversas de las matrices triangulares superiores Inversas de las matrices triangulares superiores Ejercicios Objetivos. Demostrar que la inversa a una matriz triangular superior también es triangular superior. Requisitos. Algoritmo de inversión de una

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN

TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir

Más detalles

LOS NUMEROS COMPLEJOS. En cursos previos se ha visto que algunas ecuaciones polinómicas- esto es, ecuaciones de la forma:

LOS NUMEROS COMPLEJOS. En cursos previos se ha visto que algunas ecuaciones polinómicas- esto es, ecuaciones de la forma: LOS NUMEROS COMPLEJOS. INTRODUCCION: En cursos previos se ha visto que algunas ecuaciones polinómicas- esto es, ecuaciones de la forma: n n a 0 + a +... + an + an = 0 () -no tienen soluciones en R. El

Más detalles

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelos ARMA Definición: Ruido blanco. Se dice que el proceso {ɛ t } es ruido blanco ( white noise ) si: E(ɛ t ) = 0 Var(ɛ t ) = E(ɛ 2 t ) = σ 2 Para todo

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

TEXTO: ALGEBRA MULTILINEAL

TEXTO: ALGEBRA MULTILINEAL UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIECIAS NATURALES Y MATEMÁTICA UNIDAD DE INVESTIGACIÓN DE LA FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA INFORME FINAL DEL TEXTO TEXTO: ALGEBRA MULTILINEAL AUTOR

Más detalles

Tema 4. Espacio Proyectivo.

Tema 4. Espacio Proyectivo. Tema 4. Espacio Proyectivo. Definición y modelos. *) El origen de la geometría proyectiva está relacionado con el estudio de la perspectiva, para conseguir cuadros o planos realistas del mundo 3-dimensional;

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles