2.- Estudio Poblacional y Muestral Univariante

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2.- Estudio Poblacional y Muestral Univariante"

Transcripción

1 .- Estudio Poblacioal y Muestral Uivariate Població: Colectivo de persoas o elemetos co ua característica comú, objeto de estudio. Imposibilidad de estudio de esta característica e toda la població - Coste ecoómico - Destrucció - Tamaño de la població Muestra: Subcojuto de la població La muestra da u coocimieto parcial de la població y debe elegirse co cuidado de forma que represete adecuadamete la població e estudio. La Estadística Descriptiva tiee como pricipal objetivo resumir y presetar de forma secilla los resultados obteidos e la muestra. La presetació se hace mediate tablas uméricas y gráficos. - Tamaño muestral: º de idividuos u objetos bajo observació. - Ceso: El tamaño muestral coicide co el poblacioal Variable: Es la característica a estudiar. - Variable cualitativa: Referete a atributos o categorías o Puras o Ordiales o Procedetes de v. Numéricas - Variable cuatitativa: Toma valores uméricos o Discretas o Cotiuas

2 Tablas estadísticas Tabla de distribució de frecuecias. - tamaño muestral o º de observacioes - Variables categóricas o Frecuecia absoluta: i º de observacioes e la categoría i Suma de frecuecias absolutas: o Frecuecia relativa: i / Suma de frecuecias relativas: Variable: Estudiaste estadística e Bachiller Número de observacioes: 59 Número de categorias: Tabla de distribució de Frecuecias Frecuecia Frecuecia Frecuecia Clase Valor Frecuecia relativa acumulada relativa acum o si Tabla de frecuecias de sexo por cómo _ viees filas 5 Total h 5 8,95% 55,5%,9% 5,5%,9% 5,5% 8,7% 7,78%,9%,5% 5,5% 7,%,% 5,%,% 5,% m 7 5,7%,% 5,8%,95%,9% 9,9% 5,85% 7,97%,%,% 7,% 75,%,9%,7%,% 5,% Columas Total,7%,9%,78% 5,%,9%,%

3 - Variables cuatitativas discretas: R = {x, x,, x } ordeados de meor a mayor o Frecuecia absoluta: i º de veces que la variable toma el valor x i o Frecuecia absoluta acumulada: f i º de veces que la variable toma u valor x i o Suma de frecuecias absolutas: o Frecuecia relativa: i / o Frecuecia relativa acumulada: f i / o Suma de frecuecias relativas: Variable: úmero de calzado Número de observacioes: 59 Rago {5,,..., 8} Tabla de distribució de Frecuecias Frecuecia Frecuecia Frecuecia Clase Valor Frecuecia relativa acumulada relativa acum

4 - Variables cuatitativas cotiuas. Para hacer la tabla de distribució de frecuecias debe elegirse las clases de forma coveiete. o Defiir el recorrido o rago de la variable. o Dividir el recorrido e clases o itervalos que o se solape. o El puto cetral de cada itervalo se deomia marca de clase. o Se procede como e las variables discretas. Variable: Altura Rago:[5,9] Tabla de distribució de frecuecias Límite Límite Marca Clase Iferior Superior clase Frec. abs. Frec. Frec. Relat. Abs.Acu Frec.Rel. Acumu <

5 Represetacioes gráficas: - Variables categóricas o Diagrama de barras Permite visualizar la distribució de frecuecias de ua variable cualitativa diagram a de barras. Estadística e bachiller o si 5 Frecuecia b l Barchart for como_viees by sexo percetage 5 sexo h m 5 como_viees Se dibuja sobre la clase correspodiete ua barra o rectágulo de altura proporcioal a la frecuecia de la clase. Las barras horizotales o verticales. Siempre: El mismo acho Apoyadas sobre ua líea comú. Logitud proporcioal a las frecuecias. 5

6 o Diagrama de sectores: diagrama de sectores 5.8% Bach_Esta o si 9.9% U círculo e el que se represeta sectores de áreas proporcioales a la frecuecia de cada ua de las clases. - Variables cuatitativas discretas o Diagrama de barras diagrama de barras para.calzado frecuecia

7 Barchart for _calzado by sexo frecuecia 8 h m diagrama de barras segú sexo - Variables cuatitativas cotiuas. o Histograma: 5 Histogram for altura frecuecia histograma 7

8 5 Histogram for altura 8 Histogram for altura frecuecia 9 frecuecia histograma histograma Los rectágulos se represeta cotiguos para dar idea de cotiuidad Si la amplitud de las clases es la misma la altura de cada rectágulo es proporcioal a la frecuecia. Si las clases o tiee la misma amplitud el área del rectágulo es proporcioal a la frecuecia. h Frecuecia/log. de la clase. El área total bajo el histograma es La forma varia co la elecció de las clases. No teemos igua iformació sí: Ua sola clase. El histograma es u rectágulo. Cada clase tiee solo u dato Hay que elegir co cuidado el úmero de clases. o Polígoo de frecuecias: Esecialmete equivalete al histograma. Se obtiee uiedo mediate poligoales los putos medios de las bases superiores de los rectágulos del histograma. 8

9 polígoo de frecuecias 5 frecuecia o Diagrama de tallo-hojas: Permite obteer simultáeamete ua distribució de frecuecias de la variable y su represetació gráfica. Se separa el último dígito de la derecha de cada dato (hoja) del bloque de cifras restates (tallo). Procedimieto a seguir: Redodear los datos a u úmero coveiete de cifras sigificativas (dos o tres) Colocarlas e ua tabla co dos columas separaradas por ua líea. Todas cifras meos la última a la izquierda de la líea (tallo) y la última a la derecha (hoja) Cada tallo defie ua clase y se escribe sólo ua vez. El º de hojas represeta la frecuecia de dicha clase. 9

10 Diagrama de tallo-hojas para úmero de calzado: Uidad =. represeta. Mujeres Hombres () Diagrama de tallo-hojas para úmero de calzado: Uidad =. represeta ()

11 Diagrama de tallo-hojas para la variable altura: () Mujeres Hombres (9) () HI 9.

12 Medidas de localizació. - Variables cualitativas: Frecuecia relativa de cada clase. Moda o clase modal: Clase co frecuecia mayor, puede o ser úica - Variables uméricas: o Medidas de cetralizació: Da ua idea del valor cetral e toro al cual se reparte los datos Media muestral: Dada ua muestra de tamaño,,..., = / i Si o coocemos el cojuto origial de datos, sio su distribució de frecuecias = / i i si la variable es discreta = / i c i si la variable es cotiua La media muestral equilibra las desviacioes positivas y egativas de los datos respecto a su valor ( i - ) = Actúa como el cetro geométrico o cetro de gravedad. Media poblacioal μ = E() = p i i si la variable es discreta μ = E() = x f(x) dx si la variable es cotiua Mediaa muestral: Dada ua muestra de tamaño,,..., Las ordeamos de meor a mayor (), (),..., () La mediaa separa las observacioes e dos grupos. La mitad o más de las observacioes so meores o iguales que la mediaa y la mitad o más de las observacioes so mayores o iguales que la mediaa. Si es impar med = ((+)/) Si es par la mediaa es cualquier valor compredido etre (/) y ((/)+)

13 Datos agrupados: Itervalo mediaa: Es la clase e la que se ecuetra la mediaa. Mediaa poblacioal: Es u valor m tal que P( m) ½ P( m) ½ Moda: Es el valor más frecuete e la muestra. Moda, mediaa y media aporta iformació complemetaria sobre los datos. La media utiliza todos los datos y es sesible a observacioes atípicas, es preferible para datos homogéeos. La mediaa sólo tiee e cueta el orde de los datos y o su magitud. Cambia poco si se altera algua observació. Coviee calcular las dos. Si so similares la distribució es simétrica (datos homogéeos). Si so muy diferetes la distribució es asimétrica (datos heterogéeos). o Otras medidas de localizació: Media poderada = w i i / w i Media geométrica: = (Π i )/ Media armóica: = (/ i ) - Percetiles: percetil p es aquel valor tal que el p% o más de las observacioes so meores o iguales que el y el (-p)% o más de las observacioes so mayores o iguales que él. Cuartiles: Divide a la població e cuatro partes Primer cuartil Q : percetil 5 Segudo cuartil Q : la mediaa o percetil 5 Tercer cuartil Q : el percetil 75. Rago itercuartílico: RI = Q -Q

14 Summary Statistics for altura Total Mujeres Hombres Cout 59 8 Average Media Mode Variace Stadard deviatio Miimum Maximum Rage 5... Lower quartile Upper quartile Iterquartile rage. 8.. Skewess Kurtosis Percetiles for altura Total Mujeres Hombres.% %.. 8..% % % % % % %

15 Summary Statistics for _calzado Total Hombres Mujeres Cout 59 8 Average Media Mode Variace Stadard deviatio Miimum Maximum Rage. 8.. Lower quartile Upper quartile Iterquartile rage... Skewess Kurtosis...8 Percetiles for _calzado Total Mujeres Hombres.% % % % % % % % %

16 Represetacioes gráficas - Diagrama de cajas Es ua represetació semigráfica dode se muestra características importates de la població estudiada y se señala posibles datos atípicos. Su costrucció está basada e los cuartiles. o Se ordea los datos de la muestra de meor a mayor y se obtiee máximo, míimo, Q, Q y Q. o Se dibuja u rectágulo co extremos Q y Q y se señala la mediaa Q mediate ua líea recta. o Se calcula los límites superior e iferior admisibles. LI = Q.5 RI LS = Q +.5 RI Si LI < míimo etoces LI = míimo Si LS > máximo etoces LS = máximo o Se dibuja ua líea de cada extremo del rectágulo hasta LI y LS o Se idetifica todos los datos fuera del itervalo (LI, LS) mostrádolos como atípicos. o Los datos atípicos so de gra iterés ya que puede ser debidos a errores o puede sumiistrar ua iformació relevate sobre el comportamieto de la població. Box-ad-Whisker Plot h m altura

17 Box-ad-Whisker Plot altura Box-ad-Whisker Plot _calzado Box-ad-Whisker Plot h m _calzado 7

18 Medidas de Dispersió: - Variaza muestral: S i= = - Desviació típica muestral: ( i S ) i= = ( i ) - Variaza Poblacioal: σ = E{( μ) } - Desviació típica poblacioal: σ = E{( μ) } La variaza es la media de las desviacioes de las observacioes a la media elevadas al cuadrado y mide la cocetració de los datos e toro a la media. ( ci ) i i= Para datos agrupados S = - Regla de Chebychev: El porcetaje de observacioes que dista de la media meos de k desviacioes típicas es mayor o igual que ( /k ). - Desigualdad de Chebychev: P( -μ kσ) - /k P(μ - kσ μ - kσ) - /k - Meda: Mide la variació de las observacioes respecto de la mediaa. Es la mediaa de las desviacioes absolutas de los datos respecto de la mediaa. Si las observacioes so,,..., Defiimos Y i = i Med Meda = Med Y Los valores extremos ifluye meos e la meda que e la variaza Medidas de forma: - Coeficiete de variació: CV = S / Sirve para comparar la dispersió de variables que aparece e uidades distitas 8

19 ( i ) i= - Coeficiete de asimetría: CA = S Distribució simétrica: CA = Distribució asimétrica a la derecha: CA > Distribució asimétrica a la izquierda: CA < ( i i= - Coeficiete de aputamieto o curtosis: CAP = Describe lo picuda o plaa que es ua distribució Para datos agrupados ( ci ) i CA ( c i i= i= = CAP = S S ) Las medidas poblacioales se defie CV = σ / μ CA E( μ) E( μ) = CAP = σ σ Otras medidas: - Mometo de orde k respecto al orige k i i= m = m k = E( k ) k - Mometo de orde k respecto a la media k μ μ k = E(-μ) k k ( i ) i= = i S ) 9

20 Posició relativa de media y mediaa segú simetría de la distribució,,,, x Distribució simétrica: media, mediaa y moda iguales,,8,,, x Distribució asimétrica a la dcha: moda<mediaa<media,,,,8 x Distribució asimétrica a la izqda: media<mediaa<moda

21 Trasformacioes de los datos: Los datos se trasforma para - Obteer mejores propiedades de la distribució (simetría) - Comparar valores correspodietes a distribucioes distitas - Trasformacioes lieales: Cambio de localizació y escala Y = a + b Propiedades: o μ Y = aμ + b o σ Y = a σ o med(y) = a med() + b o Meda(Y) = a meda() o RI Y = a RI o Los coeficietes de asimetría y curtosis o cambia - Variable tipificada Y σ μ = μ Y = σ Y = Las trasformacioes lieales o corrige la asimetría de la distribució - Trasformació iversa Y = / - Trasformació logarítmica Y = log - Trasformació radical Y = - Trasformació potecia Y = Las tres primeras comprime los valores altos y expade los bajos, so adecuadas para corregir asimetría a la derecha.

22 ,,8,,, x La última actúa e setido cotrario, comprime los valores pequeños y expade los altos, es adecuada para corregir datos co asimetría a la izquierda,,,,8 x E todos los casos el efecto de la trasformació depede del rago de los datos.

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN.

TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN. TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN. Medidas de localizació. Medidas de dispersió. Coeficiete de variació. Mometos

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

ESTADÍSTICA. estadística. Recogida de datos. Las muestras de una población. Las variables estadísticas 03/06/2012

ESTADÍSTICA. estadística. Recogida de datos. Las muestras de una población. Las variables estadísticas 03/06/2012 ESTADÍSTICA estadística Grupo 4 Opció A La estadística estudia u cojuto de datos para obteer iformació y poder tomar decisioes. Por tato,las FASES de utrabajoestadístico será: Recogida de datos. Orgaizació

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente.

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente. º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA.- ESTADÍSTICA DESCRIPTIVA.- TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística : Es la ciecia que estudia cojutos de datos obteidos de la realidad. Estos datos

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill. GLOSARIO ESTADÍSTICO Fuete: Murray R. Spiegel, Estadística,, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio cietífico de los La estadística posee tres campos métodos para recoger, orgaizar,

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UIDIMESIOAL..- ITRODUCCIÓ A LA ESTADÍSTICA.- Objeto de la estadística La Estadística es el cojuto de métodos ecesarios para recoger, clasificar, represetar y resumir datos así como para iferir

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

Tema 1. Estadística Descriptiva

Tema 1. Estadística Descriptiva Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 1 Estadística Descriptiva 1 Itroducció 1 2 Coceptos geerales 2 3 Distribucioes de frecuecias 3 4 Represetacioes

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

BIOESTADÍSTICA I 1. DEFINICIONES

BIOESTADÍSTICA I 1. DEFINICIONES BIOESTADÍSTICA I 1. DEFINICIONES 1.1 ESTADÍSTICA. Es ua disciplia, que hace parte de la matemática aplicada, que provee métodos y procedimietos para colectar, clasificar, resumir y aalizar iformació (datos)

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Equipo académico ESTADÍSTICA APLICADA 1 CC-401 / II-401. Evaluaciones. Consideraciones Relevantes CAPÍTULO 1 ESTADÍSTICA DESCRIPTIVA

Equipo académico ESTADÍSTICA APLICADA 1 CC-401 / II-401. Evaluaciones. Consideraciones Relevantes CAPÍTULO 1 ESTADÍSTICA DESCRIPTIVA Equipo académico ESTADÍSTICA APLICADA 1 CC-401 / II-401 Igeiería Civil Idustrial Atofagasta Profesor: Eduardo Moreo email: e.moreo.ram@gmail.com celular: 6680757 Ayudates: Ramó Auad Fracisco Álvarez Cristóbal

Más detalles

Resumen de fórmulas estadísticas y funciones en Excel

Resumen de fórmulas estadísticas y funciones en Excel Resume de fórmulas estadísticas y fucioes e Excel 1. Medidas de posició o tedecia cetral Estadístico Fórmula Fució e Excel Media aritmética =A VERAGE(rago de datos) muestral para datos Xi o X = =AVERAGE(A

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadísticos I Prof. Gudberto J. Leó R. I- 46 Medidas Descriptivas Numéricas Frecuetemete ua colecció de datos se puede reducir a ua o uas cuatas medidas uméricas secillas que resume

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo.

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. Admítelo ua salchicha o es ua zaahoria. Así decía la revista El Cosumidor e u cometario sobre la baja calidad utricioal de las salchichas. Hay tres tipos

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Estadística descriptiva

Estadística descriptiva UNIDAD Estadística descriptiva Objetivos Al fializar la uidad, el alumo: eplicará el cocepto de estadística y otros relacioados (muestra, població, estadístico, parámetro, etcétera) describirá las diferetes

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

2. MODELOS PROBABILISTICOS

2. MODELOS PROBABILISTICOS . MODELOS PROBABILISTICOS. Fucioes de Probabilidad.. Variable Discreta U modelo probabilístico de u experimeto requiere asociar u valor de probabilidad a cada puto del espacio muestral. E el caso de las

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta?

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta? TEMA 5 ESTADÍSTICA Estadística obteció, estudio e iterpretació de grades masas de datos Població es el cojuto de todos los elemetos que cumple ua determiada característica. Muestra es cualquier parte de

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

T. 4 Estadísticos de dispersión

T. 4 Estadísticos de dispersión T. 4 Estadísticos de dispersió 1 1. Variables categóricas: la razó de variació y el ídice de variació cualitativa.. Variables ordiales: el rago y el rago itercuartil. 3. Variables cuatitativas: la variaza,

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Itroducció Qué es la Estadística? Cuado coloquialmete se habla de Estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA

INTRODUCCIÓN A LA ESTADÍSTICA INTRODUCCIÓN A LA ESTADÍSTICA DIRECCIÓN DE LA PRODUCCIÓN Por: LUIS ARENCIBIA SÁNCHEZ www.laformacio.com - www.libroelectroico.et 1 Ídice. 1. Cotrol estadístico de calidad.. Datos..1. Presetació de datos...

Más detalles

Notas Docentes. Estadística para Economistas. Carlos Casacuberta. Nota Docente No. 08

Notas Docentes. Estadística para Economistas. Carlos Casacuberta. Nota Docente No. 08 Notas Docetes Estadística para Ecoomistas Carlos Casacuberta Nota Docete No. 08 Diploma e Ecoomía 004 Departameto de Ecoomía Facultad de Ciecias Sociales Estadística Notas de clase. Itroducció La estadística

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

Test de Wilcoxon de rangos signados

Test de Wilcoxon de rangos signados 5 Elea J. Martíez do cuat. 0 Test de Wilcoxo de ragos sigados Hemos visto que, co míimas hipótesis sobre la distribució subyacete (úica mediaa y distribució cotiua), el test del sigo es UMP para las hipótesis

Más detalles

PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA

PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA GUIA DEL TALLER DE PREPARACION DE PROBABILIDAD Y ESTADISTICA I (2015A) PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA RECOPILACION DE LA INFORMACION Para el aálisis de u feómeo cualquiera

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA POBLACIÓN, INDIVIDUO Y MUESTRA ESTADÍSTICA DESCRIPTIVA 1. El director del istituto se ha llevado ua sorpresa cuado el represetate de ua coocida marca de artículos deportivos etra e su despacho y le dice

Más detalles

Víctor Manuel Sirgo Manrique - 1 -

Víctor Manuel Sirgo Manrique - 1 - Víctor Mauel Sirgo Marique - 1 - INDICE Tema ágia Coteido de la Estadística 3 oblació y muestra 3 Variable 5 Distribució de frecuecias para datos o agrupados 6 Distribució de frecuecias para datos agrupados

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

Laboratorio: Las magnitudes físicas

Laboratorio: Las magnitudes físicas Laboratorio: Las magitudes físicas Departameto de Física CONTENIDO Las magitudes físicas y sus medidas. Aálisis dimesioal. Errores o icertidumbres eperimetales. La medida de magitudes físicas y sus errores.

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

Tema 9. Introducción a la Inferencia Estadística. Presentación y Objetivos. Esquema Inicial. Probabilidades y Estadística I

Tema 9. Introducción a la Inferencia Estadística. Presentación y Objetivos. Esquema Inicial. Probabilidades y Estadística I Tema 9. Itroducció a la Iferecia Estadística Presetació y Objetivos. La iferecia utiliza el leguaje de la probabilidad para sacar coclusioes de los datos y acompañar esas coclusioes por ua declaració formal

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es MATEMÁTICAS I 1º Bachillerato Capítulo 9: 393 Ídice 1. ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL 1.1. INTRODUCCIÓN 1.. MÉTODO ESTADÍSTICO 1.3. CONCEPTOS BÁSICOS 1.4. TIPOS DE VARIABLES 1.5. DISTRIBUCIONES

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

TRATAMIENTO ESTADÍSTICO

TRATAMIENTO ESTADÍSTICO TRATAMIETO ESTADÍSTICO DESCRIPCIÓ DE LOS DATOS - Tipos de datos - Distribución de frecuencias - Representación de frecuencias DESCRIPCIÓ DE LOS DATOS - Medidas de posición - Medidas de dispersión ÚMEROS

Más detalles

ANALISIS ESTADISTICO DE VALORES EXTREMOS

ANALISIS ESTADISTICO DE VALORES EXTREMOS ANALISIS ESTADISTICO DE VALORES EXTREMOS Aplicacioes e hidrología Gloria Elea Maggio Dr. Jua F. Aragure 84 - Bueos Aires 4988 0083 www.oldor.com.ar oldor@oldor.com.ar R E S U M E N El objetivo de este

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles