2.- Estudio Poblacional y Muestral Univariante

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2.- Estudio Poblacional y Muestral Univariante"

Transcripción

1 .- Estudio Poblacioal y Muestral Uivariate Població: Colectivo de persoas o elemetos co ua característica comú, objeto de estudio. Imposibilidad de estudio de esta característica e toda la població - Coste ecoómico - Destrucció - Tamaño de la població Muestra: Subcojuto de la població La muestra da u coocimieto parcial de la població y debe elegirse co cuidado de forma que represete adecuadamete la població e estudio. La Estadística Descriptiva tiee como pricipal objetivo resumir y presetar de forma secilla los resultados obteidos e la muestra. La presetació se hace mediate tablas uméricas y gráficos. - Tamaño muestral: º de idividuos u objetos bajo observació. - Ceso: El tamaño muestral coicide co el poblacioal Variable: Es la característica a estudiar. - Variable cualitativa: Referete a atributos o categorías o Puras o Ordiales o Procedetes de v. Numéricas - Variable cuatitativa: Toma valores uméricos o Discretas o Cotiuas

2 Tablas estadísticas Tabla de distribució de frecuecias. - tamaño muestral o º de observacioes - Variables categóricas o Frecuecia absoluta: i º de observacioes e la categoría i Suma de frecuecias absolutas: o Frecuecia relativa: i / Suma de frecuecias relativas: Variable: Estudiaste estadística e Bachiller Número de observacioes: 59 Número de categorias: Tabla de distribució de Frecuecias Frecuecia Frecuecia Frecuecia Clase Valor Frecuecia relativa acumulada relativa acum o si Tabla de frecuecias de sexo por cómo _ viees filas 5 Total h 5 8,95% 55,5%,9% 5,5%,9% 5,5% 8,7% 7,78%,9%,5% 5,5% 7,%,% 5,%,% 5,% m 7 5,7%,% 5,8%,95%,9% 9,9% 5,85% 7,97%,%,% 7,% 75,%,9%,7%,% 5,% Columas Total,7%,9%,78% 5,%,9%,%

3 - Variables cuatitativas discretas: R = {x, x,, x } ordeados de meor a mayor o Frecuecia absoluta: i º de veces que la variable toma el valor x i o Frecuecia absoluta acumulada: f i º de veces que la variable toma u valor x i o Suma de frecuecias absolutas: o Frecuecia relativa: i / o Frecuecia relativa acumulada: f i / o Suma de frecuecias relativas: Variable: úmero de calzado Número de observacioes: 59 Rago {5,,..., 8} Tabla de distribució de Frecuecias Frecuecia Frecuecia Frecuecia Clase Valor Frecuecia relativa acumulada relativa acum

4 - Variables cuatitativas cotiuas. Para hacer la tabla de distribució de frecuecias debe elegirse las clases de forma coveiete. o Defiir el recorrido o rago de la variable. o Dividir el recorrido e clases o itervalos que o se solape. o El puto cetral de cada itervalo se deomia marca de clase. o Se procede como e las variables discretas. Variable: Altura Rago:[5,9] Tabla de distribució de frecuecias Límite Límite Marca Clase Iferior Superior clase Frec. abs. Frec. Frec. Relat. Abs.Acu Frec.Rel. Acumu <

5 Represetacioes gráficas: - Variables categóricas o Diagrama de barras Permite visualizar la distribució de frecuecias de ua variable cualitativa diagram a de barras. Estadística e bachiller o si 5 Frecuecia b l Barchart for como_viees by sexo percetage 5 sexo h m 5 como_viees Se dibuja sobre la clase correspodiete ua barra o rectágulo de altura proporcioal a la frecuecia de la clase. Las barras horizotales o verticales. Siempre: El mismo acho Apoyadas sobre ua líea comú. Logitud proporcioal a las frecuecias. 5

6 o Diagrama de sectores: diagrama de sectores 5.8% Bach_Esta o si 9.9% U círculo e el que se represeta sectores de áreas proporcioales a la frecuecia de cada ua de las clases. - Variables cuatitativas discretas o Diagrama de barras diagrama de barras para.calzado frecuecia

7 Barchart for _calzado by sexo frecuecia 8 h m diagrama de barras segú sexo - Variables cuatitativas cotiuas. o Histograma: 5 Histogram for altura frecuecia histograma 7

8 5 Histogram for altura 8 Histogram for altura frecuecia 9 frecuecia histograma histograma Los rectágulos se represeta cotiguos para dar idea de cotiuidad Si la amplitud de las clases es la misma la altura de cada rectágulo es proporcioal a la frecuecia. Si las clases o tiee la misma amplitud el área del rectágulo es proporcioal a la frecuecia. h Frecuecia/log. de la clase. El área total bajo el histograma es La forma varia co la elecció de las clases. No teemos igua iformació sí: Ua sola clase. El histograma es u rectágulo. Cada clase tiee solo u dato Hay que elegir co cuidado el úmero de clases. o Polígoo de frecuecias: Esecialmete equivalete al histograma. Se obtiee uiedo mediate poligoales los putos medios de las bases superiores de los rectágulos del histograma. 8

9 polígoo de frecuecias 5 frecuecia o Diagrama de tallo-hojas: Permite obteer simultáeamete ua distribució de frecuecias de la variable y su represetació gráfica. Se separa el último dígito de la derecha de cada dato (hoja) del bloque de cifras restates (tallo). Procedimieto a seguir: Redodear los datos a u úmero coveiete de cifras sigificativas (dos o tres) Colocarlas e ua tabla co dos columas separaradas por ua líea. Todas cifras meos la última a la izquierda de la líea (tallo) y la última a la derecha (hoja) Cada tallo defie ua clase y se escribe sólo ua vez. El º de hojas represeta la frecuecia de dicha clase. 9

10 Diagrama de tallo-hojas para úmero de calzado: Uidad =. represeta. Mujeres Hombres () Diagrama de tallo-hojas para úmero de calzado: Uidad =. represeta ()

11 Diagrama de tallo-hojas para la variable altura: () Mujeres Hombres (9) () HI 9.

12 Medidas de localizació. - Variables cualitativas: Frecuecia relativa de cada clase. Moda o clase modal: Clase co frecuecia mayor, puede o ser úica - Variables uméricas: o Medidas de cetralizació: Da ua idea del valor cetral e toro al cual se reparte los datos Media muestral: Dada ua muestra de tamaño,,..., = / i Si o coocemos el cojuto origial de datos, sio su distribució de frecuecias = / i i si la variable es discreta = / i c i si la variable es cotiua La media muestral equilibra las desviacioes positivas y egativas de los datos respecto a su valor ( i - ) = Actúa como el cetro geométrico o cetro de gravedad. Media poblacioal μ = E() = p i i si la variable es discreta μ = E() = x f(x) dx si la variable es cotiua Mediaa muestral: Dada ua muestra de tamaño,,..., Las ordeamos de meor a mayor (), (),..., () La mediaa separa las observacioes e dos grupos. La mitad o más de las observacioes so meores o iguales que la mediaa y la mitad o más de las observacioes so mayores o iguales que la mediaa. Si es impar med = ((+)/) Si es par la mediaa es cualquier valor compredido etre (/) y ((/)+)

13 Datos agrupados: Itervalo mediaa: Es la clase e la que se ecuetra la mediaa. Mediaa poblacioal: Es u valor m tal que P( m) ½ P( m) ½ Moda: Es el valor más frecuete e la muestra. Moda, mediaa y media aporta iformació complemetaria sobre los datos. La media utiliza todos los datos y es sesible a observacioes atípicas, es preferible para datos homogéeos. La mediaa sólo tiee e cueta el orde de los datos y o su magitud. Cambia poco si se altera algua observació. Coviee calcular las dos. Si so similares la distribució es simétrica (datos homogéeos). Si so muy diferetes la distribució es asimétrica (datos heterogéeos). o Otras medidas de localizació: Media poderada = w i i / w i Media geométrica: = (Π i )/ Media armóica: = (/ i ) - Percetiles: percetil p es aquel valor tal que el p% o más de las observacioes so meores o iguales que el y el (-p)% o más de las observacioes so mayores o iguales que él. Cuartiles: Divide a la població e cuatro partes Primer cuartil Q : percetil 5 Segudo cuartil Q : la mediaa o percetil 5 Tercer cuartil Q : el percetil 75. Rago itercuartílico: RI = Q -Q

14 Summary Statistics for altura Total Mujeres Hombres Cout 59 8 Average Media Mode Variace Stadard deviatio Miimum Maximum Rage 5... Lower quartile Upper quartile Iterquartile rage. 8.. Skewess Kurtosis Percetiles for altura Total Mujeres Hombres.% %.. 8..% % % % % % %

15 Summary Statistics for _calzado Total Hombres Mujeres Cout 59 8 Average Media Mode Variace Stadard deviatio Miimum Maximum Rage. 8.. Lower quartile Upper quartile Iterquartile rage... Skewess Kurtosis...8 Percetiles for _calzado Total Mujeres Hombres.% % % % % % % % %

16 Represetacioes gráficas - Diagrama de cajas Es ua represetació semigráfica dode se muestra características importates de la població estudiada y se señala posibles datos atípicos. Su costrucció está basada e los cuartiles. o Se ordea los datos de la muestra de meor a mayor y se obtiee máximo, míimo, Q, Q y Q. o Se dibuja u rectágulo co extremos Q y Q y se señala la mediaa Q mediate ua líea recta. o Se calcula los límites superior e iferior admisibles. LI = Q.5 RI LS = Q +.5 RI Si LI < míimo etoces LI = míimo Si LS > máximo etoces LS = máximo o Se dibuja ua líea de cada extremo del rectágulo hasta LI y LS o Se idetifica todos los datos fuera del itervalo (LI, LS) mostrádolos como atípicos. o Los datos atípicos so de gra iterés ya que puede ser debidos a errores o puede sumiistrar ua iformació relevate sobre el comportamieto de la població. Box-ad-Whisker Plot h m altura

17 Box-ad-Whisker Plot altura Box-ad-Whisker Plot _calzado Box-ad-Whisker Plot h m _calzado 7

18 Medidas de Dispersió: - Variaza muestral: S i= = - Desviació típica muestral: ( i S ) i= = ( i ) - Variaza Poblacioal: σ = E{( μ) } - Desviació típica poblacioal: σ = E{( μ) } La variaza es la media de las desviacioes de las observacioes a la media elevadas al cuadrado y mide la cocetració de los datos e toro a la media. ( ci ) i i= Para datos agrupados S = - Regla de Chebychev: El porcetaje de observacioes que dista de la media meos de k desviacioes típicas es mayor o igual que ( /k ). - Desigualdad de Chebychev: P( -μ kσ) - /k P(μ - kσ μ - kσ) - /k - Meda: Mide la variació de las observacioes respecto de la mediaa. Es la mediaa de las desviacioes absolutas de los datos respecto de la mediaa. Si las observacioes so,,..., Defiimos Y i = i Med Meda = Med Y Los valores extremos ifluye meos e la meda que e la variaza Medidas de forma: - Coeficiete de variació: CV = S / Sirve para comparar la dispersió de variables que aparece e uidades distitas 8

19 ( i ) i= - Coeficiete de asimetría: CA = S Distribució simétrica: CA = Distribució asimétrica a la derecha: CA > Distribució asimétrica a la izquierda: CA < ( i i= - Coeficiete de aputamieto o curtosis: CAP = Describe lo picuda o plaa que es ua distribució Para datos agrupados ( ci ) i CA ( c i i= i= = CAP = S S ) Las medidas poblacioales se defie CV = σ / μ CA E( μ) E( μ) = CAP = σ σ Otras medidas: - Mometo de orde k respecto al orige k i i= m = m k = E( k ) k - Mometo de orde k respecto a la media k μ μ k = E(-μ) k k ( i ) i= = i S ) 9

20 Posició relativa de media y mediaa segú simetría de la distribució,,,, x Distribució simétrica: media, mediaa y moda iguales,,8,,, x Distribució asimétrica a la dcha: moda<mediaa<media,,,,8 x Distribució asimétrica a la izqda: media<mediaa<moda

21 Trasformacioes de los datos: Los datos se trasforma para - Obteer mejores propiedades de la distribució (simetría) - Comparar valores correspodietes a distribucioes distitas - Trasformacioes lieales: Cambio de localizació y escala Y = a + b Propiedades: o μ Y = aμ + b o σ Y = a σ o med(y) = a med() + b o Meda(Y) = a meda() o RI Y = a RI o Los coeficietes de asimetría y curtosis o cambia - Variable tipificada Y σ μ = μ Y = σ Y = Las trasformacioes lieales o corrige la asimetría de la distribució - Trasformació iversa Y = / - Trasformació logarítmica Y = log - Trasformació radical Y = - Trasformació potecia Y = Las tres primeras comprime los valores altos y expade los bajos, so adecuadas para corregir asimetría a la derecha.

22 ,,8,,, x La última actúa e setido cotrario, comprime los valores pequeños y expade los altos, es adecuada para corregir datos co asimetría a la izquierda,,,,8 x E todos los casos el efecto de la trasformació depede del rago de los datos.

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL I.E.S. Virge de la Paz. Alcobedas DEPARTAMETO DE MATEMÁTICAS Itroducció ESTADÍSTICA UIDIMESIOAL El ombre de Estadística alude al eorme iterés de esta rama matemática para los asutos del Estado y su itroducció

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN.

TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN. TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN. Medidas de localizació. Medidas de dispersió. Coeficiete de variació. Mometos

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Tema 1 Estadística descriptiva: Medidas de centralización y dispersión

Tema 1 Estadística descriptiva: Medidas de centralización y dispersión Tema 1 Estadística descriptiva: Medidas de cetralizació y dispersió Curso 2017/18 Grados e biología saitaria Departameto de Física y Matemáticas Marcos Marvá Ruiz A partir de los valores de ua variable

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

ESTADÍSTICA. estadística. Recogida de datos. Las muestras de una población. Las variables estadísticas 03/06/2012

ESTADÍSTICA. estadística. Recogida de datos. Las muestras de una población. Las variables estadísticas 03/06/2012 ESTADÍSTICA estadística Grupo 4 Opció A La estadística estudia u cojuto de datos para obteer iformació y poder tomar decisioes. Por tato,las FASES de utrabajoestadístico será: Recogida de datos. Orgaizació

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Asignatura: TRATAMIENTO DE DATOS CON ORDENADOR Curso TEORÍA Y EJEMPLOS DEL TEMA 2

Asignatura: TRATAMIENTO DE DATOS CON ORDENADOR Curso TEORÍA Y EJEMPLOS DEL TEMA 2 Tema.- Estadísticos Descriptivos Uivariates Asigatura: TRATAMIETO DE DATOS CO ORDEADOR Curso 9- º Estudios simultáeos de L.A.D.E. y Derecho Profesora: Agela Diblasi TEORÍA Y EJEMPLOS DEL TEMA TEMA.- ESTADÍSTICOS

Más detalles

Slide 1. Slide 2. Slide 3. # Categorias. Distribución de Frecuencia. Ejemplo: Taller de Reparaciones Hudson

Slide 1. Slide 2. Slide 3. # Categorias. Distribución de Frecuencia. Ejemplo: Taller de Reparaciones Hudson Slide 1 Ejemplo Práctico: Taller de Reparacioes Hudso Supoga que al admiistrador de u taller de reparacioes le gustaría teer ua mejor idea de la distribució de sus costos relacioados a comprar Autopartes

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente.

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente. º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA.- ESTADÍSTICA DESCRIPTIVA.- TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística : Es la ciecia que estudia cojutos de datos obteidos de la realidad. Estos datos

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Tema 1. Estadística Descriptiva

Tema 1. Estadística Descriptiva Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 1 Estadística Descriptiva 1 Itroducció 1 2 Coceptos geerales 2 3 Distribucioes de frecuecias 3 4 Represetacioes

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill. GLOSARIO ESTADÍSTICO Fuete: Murray R. Spiegel, Estadística,, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio cietífico de los La estadística posee tres campos métodos para recoger, orgaizar,

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UIDIMESIOAL..- ITRODUCCIÓ A LA ESTADÍSTICA.- Objeto de la estadística La Estadística es el cojuto de métodos ecesarios para recoger, clasificar, represetar y resumir datos así como para iferir

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

3. Las medidas de centralización

3. Las medidas de centralización FUOC XP00/71004/00017 21 Las medidas de cetralizació 3. Las medidas de cetralizació La mediaa y la media aritmética Los diagramas de tallos y hojas y los histogramas proporcioa ua descripció geeral de

Más detalles

MEDIDAS DE DISTRIBUCION

MEDIDAS DE DISTRIBUCION MEDIDAS DE DISTRIBUCION ASIMETRIA Y CURTOSIS Dr. EDGAR APAZA ZUÑIGA UNIVERSIDAD NACIONAL DEL ALTIPLANO MEDIDAS DE DISTRIBUCIÓN Las Medidas de Distribució permite idetificar y caracterizar la forma e que

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Equipo académico ESTADÍSTICA APLICADA 1 CC-401 / II-401. Evaluaciones. Consideraciones Relevantes CAPÍTULO 1 ESTADÍSTICA DESCRIPTIVA

Equipo académico ESTADÍSTICA APLICADA 1 CC-401 / II-401. Evaluaciones. Consideraciones Relevantes CAPÍTULO 1 ESTADÍSTICA DESCRIPTIVA Equipo académico ESTADÍSTICA APLICADA 1 CC-401 / II-401 Igeiería Civil Idustrial Atofagasta Profesor: Eduardo Moreo email: e.moreo.ram@gmail.com celular: 6680757 Ayudates: Ramó Auad Fracisco Álvarez Cristóbal

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

BIOESTADÍSTICA I 1. DEFINICIONES

BIOESTADÍSTICA I 1. DEFINICIONES BIOESTADÍSTICA I 1. DEFINICIONES 1.1 ESTADÍSTICA. Es ua disciplia, que hace parte de la matemática aplicada, que provee métodos y procedimietos para colectar, clasificar, resumir y aalizar iformació (datos)

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Medidas estadísticas

Medidas estadísticas Medidas estadísticas Medidas de Tedecia Cetral: Se llama así debido a que ua vez bie calculadas, sus valores tiede a estar ubicadas e el cetro de la distribució ordeada. Esta característica la posee la

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Resumen de fórmulas estadísticas y funciones en Excel

Resumen de fórmulas estadísticas y funciones en Excel Resume de fórmulas estadísticas y fucioes e Excel 1. Medidas de posició o tedecia cetral Estadístico Fórmula Fució e Excel Media aritmética =A VERAGE(rago de datos) muestral para datos Xi o X = =AVERAGE(A

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

TEMA 3: MEDIDAS QUE CARACTERIZAN UNA DISTRIBUCIÓN DE FRECUENCIAS

TEMA 3: MEDIDAS QUE CARACTERIZAN UNA DISTRIBUCIÓN DE FRECUENCIAS TEMA 3: MEDIDAS QUE CARACTERIZA UA DISTRIBUCIÓ DE FRECUECIAS 3.1.- MEDIDAS DE POSICIÓ 3.2.- MEDIDAS DE DISPERSIÓ 3.3.- MEDIDAS DE FORMA 3.4.- MEDIDAS DE COCETRACIÓ La iformació sumiistrada por ua tabla

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Secretaría de Extensión Universitaria. Trabajo Practico N 3

Secretaría de Extensión Universitaria. Trabajo Practico N 3 Trabajo Practico N 3 Medidas de Tedecia Cetral La Media (promedio), se deota como x, de ua muestra es el promedio aritmético de sus valores. Y se calcula mediate al formula: Si aparece los datos agrupados

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadísticos I Prof. Gudberto J. Leó R. I- 46 Medidas Descriptivas Numéricas Frecuetemete ua colecció de datos se puede reducir a ua o uas cuatas medidas uméricas secillas que resume

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

MATEMATICAS I Primer curso de Ciencias Ambientales / Curso HOJA 1

MATEMATICAS I Primer curso de Ciencias Ambientales / Curso HOJA 1 MATEMATICAS I Primer curso de Ciecias Ambietales / Curso 006-007 HOJA 1 1. E 1978, H. Cavedish realizó ua serie de 9 experimetos co objeto de medir la desidad de la tierra. Sus resultados, tomado como

Más detalles

2. REPASO DE ESTADÍSTICA

2. REPASO DE ESTADÍSTICA 2. REPASO DE ESTADÍSTICA ESTADÍSTICA APLICADA Necesidad de la Estadística. Necesidad de razoamietos iductivos a partir de datos: Se hace afirmacioes acerca de u colectivo de idividuos u objetos, habiedo

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Figura 10. No se satisface el supuesto de linealidad.

Figura 10. No se satisface el supuesto de linealidad. Regresió Lieal Simple Dra. Diaa Kelmasky 04 Figura 8 Figura 9. No se satisface el supuesto de homoscedasticidad Si graficáramos los residuos cotra los valores de X los putos debería estar distribuidos

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

Estimación de parámetros. Biometría

Estimación de parámetros. Biometría Estimació de parámetros Biometría Estimació Las poblacioes so descriptas mediate sus parámetros Para variables cuatitativas, las poblacioes so descriptas mediate y Para variables cualitativas, las poblacioes

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

GUIA TEORICO - PRÁCTICA DE BIOESTADÍSTICA I

GUIA TEORICO - PRÁCTICA DE BIOESTADÍSTICA I UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE MEDICINA ESCUELA DE BIOANÁLISIS CATEDRA DE MATEMATICA Y BIOESTADÏSTICA GUIA TEORICO - PRÁCTICA DE BIOESTADÍSTICA I BIOESTADÍSTICA I CARÁCTER: Teórico-Práctico

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado e Geomática y Topografía Escuela Técica Superior de Igeieros e Topografía, Geodesia y Cartografía. Uiversidad Politécica de Madrid

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

R de Pearson para dos variables cuantitativas Vicente Manzano Arrondo 2014

R de Pearson para dos variables cuantitativas Vicente Manzano Arrondo 2014 R de Pearso para dos variables cuatitativas Vicete Mazao Arrodo 014 Teemos ua muestra aleatoria de expedietes académicos de estudiates de eseñazas medias. Tomamos sus resultados e las materias de geografía

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

Tenemos k objetos distintos para distribuir en n cajas distintas con

Tenemos k objetos distintos para distribuir en n cajas distintas con Departameto de Matemática Aplicada. ETSIIf. UPM. SELECCIONES ORDENADAS Teemos objetos distitos para distribuir e cajas distitas co de cuátas formas distitas se puede itroducir los objetos e las cajas,

Más detalles

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo.

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. Admítelo ua salchicha o es ua zaahoria. Así decía la revista El Cosumidor e u cometario sobre la baja calidad utricioal de las salchichas. Hay tres tipos

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

CARTILLA BASE PARA BIO-ESTADÍSTICA UNO

CARTILLA BASE PARA BIO-ESTADÍSTICA UNO 1 CARTILLA BASE PARA BIO-ESTADÍSTICA UNO 1. INTRODUCCIÓN El presete documeto es ua recopilació de los coceptos básicos para u curso itroductorio a la estadística. La cosulta de los textos de estadística

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA PARTE : ESTADÍSTICA INFERENCIAL 0. RECORDATORIO Estadística iferecial.

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual Tema I : Fucioes reales de variable real. Límites y cotiuidad 1. La recta real : itervalos y etoros. 2. Fucioes reales de variable real. 3. Fucioes elemetales y sus gráficas. 4. Límites de fucioes reales

Más detalles