Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A"

Transcripción

1 Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A

2 Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs / predictoras) sobre una variable de resultados (VD).

3 Qué es la regresión? El análisis de regresión: Intenta describir la naturaleza de la asociación mediante la creación de un modelo matemático de "mejor ajuste".

4 Qué es la regresión? El uso del término predicción es central. Se analiza si una variable predice (explica / impacta) a otra variable.

5 Qué es la regresión? Al utilizar la regresión lineal asumimos que: Las variables están medidas a nivel cuantitativo, y las variables se asocian de manera lineal.

6 Qué es la regresión? Ejemplo: Asociación entre: Consumo de tabaco y Pérdida de fijación dental

7 Qué es la regresión? Línea de ajuste de la asociación entre el consumo de tabaco (número de cigarros fumados por día) y la pérdida de fijación dental (en mm). N = 28 fumadores. smoking amount and attachment level (28 smokers) mean attachment level (mm) Pérdida media de fijación dental (mm) Número de cigarros self-reported fumados cigarettes por smoked/day día (autorreporte)

8 MODELO DE REGRESIÓN LINEAL Para variables que posiblemente están asociadas (X y Y) asumimos el modelo: Coeficientes desconocidos Y = α + β X + ε α = β 0 β = β 1 Variables que observamos Parte de Y que X no explica. Es el error aleatorio que define los valores de la vida real.

9 Modelo de regresión lineal ε = error (diferencia entre lo observado y lo predicho α = β 0 Intercepto La ecuación Y = α + β X define la asociación promedio entre X e Y. β ε (x, y) β 1 Pendiente α es un valor constante e indica el punto en el que la línea cruza el eje de las ordenadas (donde X = 0). β es el valor de la pendiente. Valor predicho para Y por Xi Valor observado para Y por Xi x

10 Regresión lineal vs. Correlación La correlación es una medida de la fuerza de la asociación. ρ 2 (coeficiente de determinación) puede describirse como el porcentaje de variación en Y que es explicado por la variación en X. La regresión intenta describir la forma de la asociación. El parámetro β (la pendiente) está relacionada con ρ: Y X

11 Encontrar la línea del mejor ajuste Para encontrar la línea que ajuste mejor se evalúa qué tan cercanamente se ajusta cada una de las posibles líneas a los datos observados. Para ello se calculan las distancias verticales de todos los puntos (x,y) a la línea. Estas distancias se llaman residuales y corresponden al error, e i.

12 Encontrar la línea del mejor ajuste x La línea de mejor ajuste se define como aquélla en la que la suma de los cuadrados de los residuales es mínima.

13 Encontrar la línea del mejor ajuste Los coeficientes de la línea de mejor ajuste, a y b (las estimaciones de α y β, respectivamente), pueden calcularse con las fórmulas: ( x x)( y i i i b ( x x) 2 i i y) a y bx

14 Ejemplo: Pérdida de fijación dental y cigarros fumados por día mean attachment level (mm) Pérdida media de fijación dental (mm) Consumo de tabaco y pérdida de fijación dental (28 fumadores) smoking amount and attachment level (28 smokers) Número de self-reported cigarros fumados cigarettes por smoked/day día (autorreporte)

15 Ejemplo: Pérdida de fijación dental y cigarros fumados por día Coef ficients a α Model Unstandardized Coefficients B Std. Error Standardized Coefficients Beta t Sig. 1 (Constant) β a. cigar ettes sm oked/day Dependent Variable: mean attachment level Este resultado de SPSS dice que: a = 2.319, b = La línea de mejor ajuste es: Y = X Donde Y = nivel promedio de fijación y X = cigarros fumados por día.

16 Ejemplo: Pérdida de fijación dental y cigarros fumados por día Y = X puede interpretarse como: Cada cigarro fumado extra por día se asocia con una pérdida adicional de mm de fijación dental." También : Cada paquete fumado al día (20 cigarros) se asocia con una pérdida adicional de = 1.34 mm de fijación dental."

17 Las predicciones basadas en regresión La mejor estimación (estimación puntual o predicción) de Y a partir de X es: y = a + bx Ejemplo: Qué nivel de fijación dental tendrá alguien que fuma 30 cigarros al día?

18 Utilización del modelo estimado para predecir La mejor estimación del nivel de pérdida de fijación dental promedio de las personas que fuman 30 cigarrillos / día es: Y = X Y = (0.067 x 30) = mm

19 Bondad de ajuste Una medida clave de la fuerza de la asociación es la Media Cuadrática de Error", las MCE o MSE, que es básicamente la media de los residuales elevados al cuadrado. MSE 1 n 2 e 1 n 2 y i ( a i ) 2 i i bx i Si este valor es pequeño con respecto a la varianza de la muestra de y s, entonces se considera que el modelo de regresión es una buena explicación de la asociación. 2

20 Bondad de ajuste La MCE o MSE también se utiliza para estimar el error estándar (ES) de b. SE( b) ( n MSE 1) 2 s x Hay que tener en cuenta que: 1. El ES(b) en la medida en que MCE 2. El ES(b) en la medida en que s x Es decir, se obtienen mejores estimaciones de β cuando la línea constituye un buen ajuste, y cuando los puntajes de X son más dispersos.

21 Bondad de ajuste El ajuste del modelo se prueba con el estadístico F: ANOVA b Model 1 Regression Residual Total Sum of Squares df Mean Square F Sig a a. Predictors: (Constant), self report cigs./day b. Dependent Variable: mean attachment level (mm) Número de cigarros fumados por día (autorreporte) Pérdida media de fijación dental (mm) Descriptive Statistics Número de cigarros fumados mean attachment por día (autorreporte) level (mm) Pérdida media de fijación self dental r eport cigs./day (mm) Mean Std. Deviation N

22 Inferencia para los coeficientes de regresión Es posible probar H0: β = 0 vs H1: β 0 utilizando el estadístico t: t b SE(b)

23 Ejemplo: Pérdida de fijación dental y cigarros fumados por día 1. Hipótesis de investigación: El autorreporte de cigarros fumados por día está relacionado con la fijación dental. 2. Hipótesis estadísticas: H0: β = 0 H1: β Prueba estadística: Prueba t para la regresión lineal.

24 Ejemplo: Pérdida de fijación dental y cigarros fumados por día 4. Regla de decisión: Puede rechazarse Ho, con p < 0.05, si t 26 > Cálculos: Model 1 (Constant) cigar ettes sm oked/day Dependent Variable: mean attachment level Coef ficients a Unstandardized Coefficients B Std. Error Standardized Coefficients Beta t Sig. t a. p( t 26 > 2.098) = 0.046).

25 Ejemplo: Pérdida de fijación dental y cigarros fumados por día 6. Resultados Se rechaza Ho. 7. Conclusión: Existe relación entre el número de cigarros fumados diariamente y la fijación dental.

26 Intervalo de confianza para β Un intervalo de confianza de 1-α para β es: b t SE( b n 2,1 / 2 b: Constante (pendiente de la línea de regresión) t: valor de t en tablas n 2: grados de libertad % de confianza: 1-α: 1-error tipo 1 / 2 (dos colas) MSE SE(b): Media cuadrática de b SE( b) 2 ) ( n 1) s x

27 Intervalo de confianza para β Ejemplo: Pérdida de fijación dental y cigarros fumados por día b = n = 28 gl = 26 α = 05/2 colas =.025 t = SE(b) = El intervalo de confianza de 95% para β es: b t SE( b n 2,1 / ± )

28 REGRESIÓN LINEAL MÚLTIPLE

29 REGRESIÓN LINEAL MÚLTIPLE La regresión múltiple es una extensión muy utilizada de la regresión lineal. El modelo de regresión lineal se puede ampliar para incluir múltiples variables independientes. Y = α + β1 X1 + β2 X βk Xk + ε. Examina el efecto de múltiples predictores X1, X2, Xk sobre una VD (Y).

30 REGRESIÓN LINEAL MÚLTIPLE Los coeficientes se estiman minimizando los residuales cuadrados. En esta situación más complicada no hay fórmulas sencillas para las estimaciones. Generalmente se utiliza una computadora para el cálculo de los coeficientes.

31 REGRESIÓN LINEAL MÚLTIPLE

32 Regresión lineal múltiple En el ejemplo del efecto del número de cigarros fumados (Y) sobre la pérdida de fijación dental (X1), se puede agregar la edad como un segundo predictor (X2): X1.402 Y X2.440

33 Regresión lineal múltiple ANOVA b Model 1 Regression Residual Total Sum of Squar es df Mean Squar e F Sig a a. Predictors: (Constant), age (yrs), self report cigs./day Edad, Número de cigarros fumados por día (autorreporte) b. Dependent Variable: mean Pérdida attachment media level de fijación (mm) dental (mm) El ajuste del modelo mejora con una segunda variable predictiva buena.

34 Regresión lineal múltiple En el ejemplo del efecto del número de cigarros fumados (Y) sobre la pérdida de fijación dental (X1), se puede agregar la edad como un segundo predictor (X2): Coef ficients a α Model 1 (Constant) Unstandardized Coefficients B Std. Error Standardized Coefficients Beta 95% Confidence Interval for B t Sig. Lower Bound Upper Bound β1 β2 self report cigs./day Número de cigarros fumados por día age (y rs) Edad a. Dependent Variable: mean attachment Pérdida level media (mm) de fijación dental (mm) Y = α + β1 X1 + β2 X2 + ε Y = X X2 + ε

35 Ejemplo 2. Regresión Múltiple Satisfacción con los restaurantes Satisfacción con los precios Satisfacción con un destino turístico Nacionalidad del turista 1 = europeos 2 = norteamericanos

36 Modelo de Regresión Múltiple 1er. paso: Obtener las correlaciones entre las VIs y la VD Satisfacción con los restaurantes r = 2.53 Satisfacción con los precios r = 0.13 Satisfacción con un destino turístico r = 2.59 Nacionalidad del turista

37 Tablas en Regresión Múltiple 2o. paso: Correr el análisis 3er. paso: Interpretar los resultados Hay tres tablas generales que deben interpretarse en los resultados del análisis de regresión. 1ª Resumen del modelo 2ª ANOVA 3ª Coeficientes

38 Regresión múltiple en SPSS 1ª tabla La información que se toma de esta tabla es el R 2, que es la proporción de variación en la VD que es explicada por las VIs. Se expresa como porcentaje. También se llama coeficiente de determinación.

39 Modelo de Regresión Múltiple Satisfacción con los restaurantes Satisfacción con los precios Nacionalidad del turista r = 2.53 r = 0.13 r = 2.59 R 2 = 12.1% Satisfacción con un destino turístico El 12.1% de la variación en la satisfacción turística total (VD) puede ser explicada por las tres VIs del modelo: satisfacción con los restaurantes, satisfacción con los precios y nacionalidad del turista.

40 Regresión múltiple en SPSS 2ª tabla La tabla prueba el modelo. Muestra si la proporción de varianza explicada en la primera tabla es significativa. También dice si el efecto total de las VIs sobre la VD es significativa.

41 Regresión múltiple en SPSS 2ª tabla En el ejemplo, la significancia (p) es.000, que es menor al nivel de.05; por tanto, se concluye que el modelo total es estadísticamente significativo, o que las variables tienen un efecto combinado significativo sobre la VD (la satisfacción total).

42 Regresión múltiple en SPSS 3ª tabla Lo primero que se ve es la significancia para determinar cuáles son los predictores significativos de (o significativamente relacionados con) la VD.

43 Regresión múltiple en SPSS 3ª tabla Los coeficientes beta estandarizados indican la fuerza y dirección de la relación (se interpretan como coeficientes de r).

44 Regresión múltiple en SPSS 3ª tabla En el ejemplo, puede observarse que la nacionalidad (p =.000) y la satisfacción con los restaurantes (p =.000) son predictores significativos de la satisfacción turística total.

45 Regresión múltiple en SPSS 3ª tabla La nacionalidad es una variable dicotómica, donde 1 = europeos, y 2 = norteamericanos. El coeficiente se interpreta como que los turistas americanos reportaron niveles más altos de satisfacción total en comparación con los europeos.

46 Redacción de resultados de Regresión múltiple Se efectuó un análisis de regresión múltiple para examinar si la nacionalidad, la satisfacción con los restaurantes y la satisfacción con los precios impactan la satisfacción total con el destino. El modelo explicó 13.3% de la varianza, lo cual resultó significativo estadísticamente, F (3,216) = 11.09, p <.001. Los datos de los predictores individuales revelaron que la satisfacción con los restaurantes (b =.25, p <.001) y la nacionalidad (b =.26, p <.001) fueron predictores significativos de la satisfacción turística total con el destino.

47 Redacción de resultados de Regresión múltiple Los niveles más altos de satisfacción con los restaurantes se asociaron con los niveles más altos de satisfacción total con el destino, y los turistas norteamericanos reportaron significativamente más satisfacción que los europeos.

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Ejercicios de Regresión Lineal

Ejercicios de Regresión Lineal 1 Ejercicios de Regresión Lineal 1º) En un determinado proceso industrial, se piensa que la producción Y en toneladas, está linealmente relacionada con la temperatura X. Se toman dos observaciones de producción

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL Msc. Lácides Baleta Octubre 16 Página 1 de 11 REGRESIÓN Y CORRELACIÓN LINEAL Son dos herramientas para investigar la dependencia de una variable dependiente Y

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Aniel Nieves-González () LSP 1 / 16 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por departamento. La v.a. dependiente

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

4. Regresión Lineal Simple

4. Regresión Lineal Simple 1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

Práctica 3: Regresión simple con R

Práctica 3: Regresión simple con R Estadística II Curso 2010/2011 Licenciatura en Matemáticas Práctica 3: Regresión simple con R 1. El fichero de datos Vamos a trabajar con el fichero salinity que se encuentra en el paquete boot. Para cargar

Más detalles

5. Regresión Lineal Múltiple

5. Regresión Lineal Múltiple 1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente

Más detalles

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada

Estadística para el análisis de los Mercados S3_A1.1_LECV1. Estadística Descriptiva Bivariada Estadística Descriptiva Bivariada En el aspecto conceptual, este estudio puede ser generalizado fácilmente para el caso de la información conjunta de L variables aunque las notaciones pueden resultar complicadas

Más detalles

Aplicación de Correlación en la Investigación Correlation Application in Research

Aplicación de Correlación en la Investigación Correlation Application in Research Aplicación de Correlación en la Investigación Correlation Application in Research Guillen, A., M.H. Badii & M.S. Acuña Zepeda UANL, San Nicolás, N.L., México, aguillen77@yahoo.com Abstract: Se describe

Más detalles

EJERCICIOS PROPUESTOS - ANÁLISIS DE REGRESION MULTIPLE

EJERCICIOS PROPUESTOS - ANÁLISIS DE REGRESION MULTIPLE EJERCICIOS PROPUESTOS - ANÁLISIS DE REGRESION MULTIPLE. En un estudio diseñado para analizar l efect de añadir avena a la dieta estadounidense tradicional, se dividieron aleatoriamente l individu en d

Más detalles

Cómo se hace la Prueba t a mano?

Cómo se hace la Prueba t a mano? Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Gráfico 1: Evolución del exceso de rentabilidad de la empresa y de la cartera de mercado

Gráfico 1: Evolución del exceso de rentabilidad de la empresa y de la cartera de mercado Caso 1: Solución Apartado a) - 2 0 2 4 6 0 2 0 4 0 6 0 8 0 1 0 0 p e r i o d E x c e s s r e t u r n, c o m p a n y a e x c e s s r e t u r n m a r k e t p o r t f o l i o Gráfico 1: Evolución del exceso

Más detalles

Repaso de estadística básica. Juan D. Barón Santiago de Chile, 8 de abril de 2013

Repaso de estadística básica. Juan D. Barón Santiago de Chile, 8 de abril de 2013 Repaso de estadística básica Juan D. Barón Santiago de Chile, 8 de abril de 2013 1 I. CONCEPTOS ESTADÍSTICOS BÁSICOS 2 Las decisiones se toman bajo incertidumbre Las decisiones se basan en información

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Transformaciones de Box-Cox

Transformaciones de Box-Cox Transformaciones de Box-Cox Resumen El procedimiento para las Transformaciones de Box-Cox es diseñado para determinar una transformación optima para Y mientras se estima un modelo de regresión lineal.

Más detalles

Análisis de Regresión

Análisis de Regresión Análisis de Regresión por Universidad Nacional de Colombia, Sede Medellín 202 Tipos de gráficos para el análisis residuales Percen nt Normal Probability Plot of the Residuals 99 90 50 0-3.0 -.5 0.0.5 3.0

Más detalles

Análisis de Regresión Lineal Simple para Predicción. (Simple Linear Regression Analysis for Prediction)

Análisis de Regresión Lineal Simple para Predicción. (Simple Linear Regression Analysis for Prediction) Daena: International Journal of Good Conscience. 7(3) 67-81. Noviembre 2012. ISSN 1870-557X Análisis de Regresión Lineal Simple para Predicción (Simple Linear Regression Analysis for Prediction) Badii,

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

Técnicas Cuantitativas para el Management y los Negocios

Técnicas Cuantitativas para el Management y los Negocios Segundo cuatrimestre - 4 Técnicas Cuantitativas para el Management y los Negocios Mag. María del Carmen Romero 4 romero@econ.unicen.edu.ar Módulo III: APLICACIONES Contenidos Módulo III Unidad 9. Análisis

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1 IV. RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1 Ver gráficos en ANEXO 1 4.2 SELECTIVIDAD Placebo de excipientes: No

Más detalles

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Página de CAPÍTULO (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Relaciones entre dos variables cuantitativas A menudo nos va a interesar describir la relación o asociación entre dos variables. Como

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Coeficiente de Correlación

Coeficiente de Correlación Coeficiente de Correlación Al efectuar un análisis de regresión simple (de dos variables) necesitamos hacer las siguientes suposiciones. Que las dos variables son mensurables Que la relación entre las

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

PRINCIPALES FACTORES QUE INTERVIENEN EN LA FORMACIÓN BRUTA DEL CAPITAL FIJO DEL ECUADOR

PRINCIPALES FACTORES QUE INTERVIENEN EN LA FORMACIÓN BRUTA DEL CAPITAL FIJO DEL ECUADOR PRINCIPALES FACTORES QUE INTERVIENEN EN LA FORMACIÓN BRUTA DEL CAPITAL FIJO DEL ECUADOR Petróleo Banano Recaudación Tributaria Introducción En nuestro país la formación bruta de capital fijo está dada

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA DATOS BÁSICOS DE LA ASIGNATURA Nombre: Titulación: Centro: Tipo: Créditos: Curso: Prerrequisitos: Profesor: Dpto.: Estadística Aplicada. Licenciatura

Más detalles

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows. TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:

Más detalles

LAMPIRAN-LAMPIRAN LAMPIRAN- LAMPIRAN

LAMPIRAN-LAMPIRAN LAMPIRAN- LAMPIRAN LAMPIRAN-LAMPIRAN LAMPIRAN- LAMPIRAN Data penelitian Lampiran 1 Data Penelitian n t+1 t0 BANK BULAN BULAN Y X1 X2 X3 SYARIAH t+1 t0 (ROA) (BOPO) (CAR) (QR) 1 Jun-11 0,20 101,38 21,72 76,83 Mar-11 2 Sep-11

Más detalles

CORRELACION Y REGRESIÓN LINEAL

CORRELACION Y REGRESIÓN LINEAL LECCION Nº 5 CORRELACION Y REGRESIÓN LINEAL OBJETIVOS ESPECIFICOS Diferenciar los conceptos de correlación lineal, y regresión lineal. Determinar el índice o coeficiente de correlación en una distribución

Más detalles

Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1

Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1 Estadísticas Elemental Tema 3: Describir la relación entre dos variables: Correlación y regresión 3.1-1 Relación entre dos variables Al estudiar conjuntos de variables con más de una variable, una pregunta

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Diplomado en Estadística Aplicada

Diplomado en Estadística Aplicada Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad

Más detalles

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos:

15. Regresión lineal. Te recomiendo visitar su página de apuntes y vídeos: 15. Regresión lineal Este tema, prácticamente íntegro, está calacado de los excelentes apuntes y transparencias de Bioestadística del profesor F.J. Barón López de la Universidad de Málaga. Te recomiendo

Más detalles

Motivación. Motivación PRONOSTICOS DE DEMANDA

Motivación. Motivación PRONOSTICOS DE DEMANDA 4 PRONOSTICOS DE DEMANDA Dr. Jorge Ibarra Salazar Profesor Asociado Departamento de Economía Tecnológico de Monterrey Motivación Estudio de los métodos para pronosticar las ventas a partir de datos observados.

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

Prácticas Tema 2: El modelo lineal simple

Prácticas Tema 2: El modelo lineal simple Prácticas Tema 2: El modelo lineal simple Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 2.1- Se han analizado sobre una muestra de 10 familias las variables

Más detalles

LAB 13 - Análisis de Covarianza - CLAVE

LAB 13 - Análisis de Covarianza - CLAVE LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).

Más detalles

paramétrica comparar dos grupos de puntuaciones

paramétrica comparar dos grupos de puntuaciones t de Student Es una prueba paramétrica de comparación de dos muestras independientes, debe cumplir las siguientes características: Asignación aleatoria de los grupos Homocedasticidad (homogeneidad de las

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

Mínimos Cuadrados Parciales

Mínimos Cuadrados Parciales Mínimos Cuadrados Parciales Resumen El procedimiento Mínimos Cuadrados Parciales (PLS Partial Least Squares) está diseñado para construir un modelo estadístico que relaciona múltiples variables independientes

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

METODOS ESTADISTICOS PARA ANALISIS BIVARIADO

METODOS ESTADISTICOS PARA ANALISIS BIVARIADO CAPITULO 5 METODOS ESTADISTICOS PARA ANALISIS BIVARIADO El análisis bivariado permite examinar si existe relación (asociación) entre dos variables. Las variables pueden ser ambas numéricas, una numérica

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

MODELOS DE REGRESIÓN

MODELOS DE REGRESIÓN MISIÓN Formar profesionales altamente capacitados, desarrollar investigación y realizar actividades de extensión en Matemáticas y Computación, así como en sus diversas aplicaciones. MODELOS DE REGRESIÓN

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

Análisis Probit. StatFolio de Ejemplo: probit.sgp

Análisis Probit. StatFolio de Ejemplo: probit.sgp STATGRAPHICS Rev. 4/25/27 Análisis Probit Resumen El procedimiento Análisis Probit está diseñado para ajustar un modelo de regresión en el cual la variable dependiente Y caracteriza un evento con sólo

Más detalles

Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa

Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa Paola Ilabaca Baeza 1 José Manuel Gaete 2 paolailabaca@usal.es jmgaete@usal.es

Más detalles

Regresión con variables cualitativas

Regresión con variables cualitativas 3 Regresión con variables cualitativas. Introducción Hasta ahora hemos abordado el tema de la correlación y la regresión con variables cuantitativas. Sin embargo, un estudio de regresión similar puede

Más detalles

Ejercicio 1(10 puntos)

Ejercicio 1(10 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa

Más detalles

Julio Deride Silva. 4 de junio de 2010

Julio Deride Silva. 4 de junio de 2010 Curvas ROC y Regresión Lineal Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 4 de junio de 2010 Tabla de Contenidos Curvas ROC y Regresión Lineal

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión

Bioestadística. Tema 3: Estadística descriptiva bivariante y regresión lineal. Relaciones entre variables y regresión Bioestadística Tema 3: Estadística descriptiva bivariante y regresión lineal. Tema 3: Estadística bivariante 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Abril 2013 Aniel Nieves-González () Time Series Abril 2013 1 / 15 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

Análisis de datos en los estudios epidemiológicos III Correlación y regresión

Análisis de datos en los estudios epidemiológicos III Correlación y regresión Análisis de datos en los estudios epidemiológicos III Correlación y regresión Salinero. Departamento de Investigación Fuden Introducción En el capitulo anterior estudiamos lo que se denomina estadística

Más detalles

3 Regresión y correlación lineales

3 Regresión y correlación lineales 3 Regresión y correlación lineales 3.1 Introducción En esta unidad se analizará la relación entre dos o más variables y desarrollamos una ecuación que nos permite estimar una variable con base en otra.

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

07 Estimación puntual e introducción a la estadística inferencial

07 Estimación puntual e introducción a la estadística inferencial 07 Estimación puntual e introducción a la estadística inferencial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Qué es la estadística inferencial?

Más detalles

Estadística Descriptiva II: Relación entre variables

Estadística Descriptiva II: Relación entre variables Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de

Más detalles

Estadística descriptiva bivariante y regresión lineal.

Estadística descriptiva bivariante y regresión lineal. Estadística descriptiva bivariante y regresión lineal. 1 Relaciones entre variables y regresión El término regresión fue introducido por Galton en su libro Natural inheritance (1889) refiriéndose a la

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles