RESUMEN PARA EL ESTUDIO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESUMEN PARA EL ESTUDIO"

Transcripción

1 RESUMEN PARA EL ESTUDIO 1. Números de siete cifras U. millón CM DM UM C D U Cómo se lee Cómo se descompone: = 2 U. millón + 8 CM + 9 DM + 6 UM + 7 C + 8 D + 2 U Cómo se compone: 2 U. millón + 8 CM + 9 DM + 6 UM + 7 C + 8 D + 2 U = = Dos millones ochocientos noventa y seis mil setecientos ochenta y dos 2. Aproximaciones De esta forma se aproxima a las DECENAS Por lo tanto, el número 47 está más cerca de 50 De esta forma se aproxima a las CENTENAS Por lo tanto, el número 622 está más cerca de 600 De esta forma se aproxima a las MILLARES Por lo tanto, el número está más cerca de 4.000

2 3. Números romanos I V X L C D M Los demás números se escriben combinando estas letras según cuatro reglas: REGLA DE LA SUMA Una letra colocada a la derecha de otra letra de igual o mayor valor, le suma a ésta su valor. Ejemplos: II = 2 XV = 15 LXI = 61 REGLA DE LA RESTA Las letras I, X, C colocadas a la izquierda de una de las dos letras que le siguen de mayor valor, le restan a ésta su valor. Ejemplos: IV 5-1 = 4 IX 10-1 = 9 XL = 40 XC = 90 CD = 400 CM = 900 REGLA DE LA REPETICIÓN Las letras I, X, C y M se pueden repetir dos o tres veces, pero NUNCA MÁS DE TRES VECES. Ejemplos: XX = 20 CCC = 300 MM = REGLA DE LA MULTIPLICACIÓN Una raya horizontal colocada encima de una letra o de un grupo de letras multiplica su valor por Ejemplos: V 5 x = MM x = Sumas y restas A) PROPIEDADES DE LA SUMA Propiedad conmutativa: en una suma de dos sumandos, si cambiamos el orden de los sumandos el resultado no varía. Ejemplo: = // = º 2º 2º 1º Propiedad asociativa: en una suma de tres sumandos, si cambiamos la agrupación de los sumandos el resultado no varía. Ejemplo: ( ) + 23 = 143 // 90 + ( ) = 143 // ( ) + 30 = 143 B) PRUEBA DE LA RESTA Minuendo Sustraendo Diferencia Para comprobar que la resta está bien hecha le realizamos la prueba de la resta, aplicando la operación contraria (suma): Sustraendo + Diferencia = Minuendo = 457

3 C) ESTIMACIÓN DE SUMAS Y RESTAS Estimación de sumas: Primero aproxima los sumandos y luego suma las aproximaciones. Ejemplos: = = 130 // = = 900 // = = Estimación de restas: Primero aproxima el minuendo y el sustraendo y luego resta las aproximaciones. Ejemplos: = = 50 // = = 500 // = = D) OPERACIONES COMBINADAS DE SUMAS Y RESTAS Cómo se resolvería una operación que contiene sumas y restas al mismo tiempo? DE DOS MANERAS: 1º Si la operación no tiene paréntesis: Se resuelve de izquierda a derecha. Ejemplos: EN VERTICAL EN HORIZONTAL = = = = 523 2º Si la operación tiene paréntesis: Se resuelve PRIMERO LA OPERACIÓN DEL PARÉNTESIS y, una vez resuelto, continuamos de izquierda a derecha. Ejemplos: EN VERTICAL EN HORIZONTAL ( ) - 50 = = = ( ) - 50 = = = Multiplicación A) PROPIEDADES DE LA MULTIPLICACIÓN Propiedad conmutativa: en una multiplicación de dos factores, si cambiamos el orden de los factores el producto no varía. Ejemplo: 25 x 56 = // 56 x 25 = º 2º 2º 1º Propiedad asociativa: en una multiplicación de dos factores, si cambiamos la agrupación de los factores el producto no varía. Ejemplo: (90 x 30) x 23 = // 90 x (30 x 23) = // (23 x 90) x 30 = Propiedad distributiva: - Respecto de la suma: si se multiplica un número por una suma, se obtiene el mismo resultado que al multiplicar ese número por cada uno de los sumandos y, después, sumar los productos obtenidos. Ejemplo:

4 EN VERTICAL (42 + 8) x 5 = Es igual que x 5 = 250 EN VERTICAL (42 + 8) x 5 = (5 x 42) + (5 x 8) = = 250 EN HORIZONTAL (42 + 8) x 5 = 50 x 5 = 250 Es igual que... EN HORIZONTAL (42 + 8) x 5 = (5 x 42) + (5 x 8) = Respecto de la resta: si se multiplica un número por una resta, se obtiene el mismo resultado que al multiplicar ese número por el minuendo y el sustraendo y, después, restar los productos obtenidos. Ejemplo: EN VERTICAL (42-8) x 5 = Es igual que x 5 = 170 EN VERTICAL (42-8) x 5 = (5 x 42) - (5 x 8) = = 170 EN HORIZONTAL (42-8) x 5 = 34 x 5 = 170 Es igual que... EN HORIZONTAL (42-8) x 5 = (5 x 42) - (5 x 8) = 170 B) RESOLVER UNA MULTIPLICACIÓN Por una cifra: Vamos a hacer la siguiente multiplicación: 458 x 3. Tenemos que multiplicar el 3 por cada cifra de 458, empezando por las unidades, después por las decenas y, por último, por las centenas.

5 1) Multiplicamos el 3 por las unidades (8). 2) 3 x 8 es igual a 24: 24 tiene dos cifras, tan sólo escribimos en el resultado las unidades (4). La otra cifra (2), que son las decenas, se la vamos a sumar al resultado de multiplicar 3 x 5: 3) 4) 3 x 5 es igual a 15; le sumamos 2 y nos da 17: 5) Al igual que vimos antes, 17 tiene 2 cifras, en el resultado tan sólo escribimos las unidades (7); la otra cifra (1), que son las decenas, se la vamos a sumar al resultado de multiplicar 3 x 4. 6) 3 x 4 es igual a 12; le sumamos 1 y nos da 13. Como ya no quedan más cifras por multiplicar ahora si escribimos en el resultado el número entero (13). Ya hemos terminado: 458 x 3 = 1.374

6 Por más de una cifra: Vamos a hacer una multiplicación: 637 x 284. Para ello tenemos que realizar 4 pasos: 1er paso: 2do paso: er paso: 4º paso: El resultado es:

7 C) ESTIMAR UNA MULTIPLICACIÓN Para estimar una multiplicación, aproxima el factor aproximación por el otro factor. Ejemplo: de más de una cifra y, después, multiplica la Aprox. a las decenas Aprox. a las centenas Aprox. a las centenas 38 x 6 = 324 x 5 = x 3 = 40 x 6 = x 5 = x 3 = División A) TIPOS DE DIVISIONES Según el resto, una división puede ser de dos tipos: - Exacta: una división es exacta cuando su resto es 0. Ej: 50 : 10 = 5 y de resto 0 - Inexacta: una división es inexacta cuando su resto es distinto de cero (cuando sobra). Ej: 37 : 5 = 7 y de resto 2. B) PRUEBA DE LA DIVISIÓN Dividendo Resto Divisor Cociente Para comprobar que una división está bien resuelta realizamos la prueba de la división. Para ello aplicamos la siguiente fórmula: Divisor x Cociente + Resto = 3 x = = 68 C) RESOLVER UNA DIVISIÓN Por UNA cifra: Vamos a hacer la siguiente división: 153 : 2 PRIMER PASO: empezando de izquierda a derecha en el dividendo (151), tenemos que apartar el menor número, el cual ya podremos dividir entre el divisor (2). Para ello, nos preguntamos: se puede dividir el 1 entre 2? No; siguiente se puede dividir 15 entre 2? SI. PUES COMENZAMOS POR SEGUNDO PASO: Tenemos que buscar un número en el cociente, en la tabla del 2, que multiplicado por dicho número, nos dé como resultado el número 15, o al menos que no se pase de 15.

8 1 5: 2 = 7, porque 7 x 2 = 1 4 hasta 15 va 1. Por tanto, ponemos 7 en el cociente y debajo del 5 (que es la cifra de las unidades) colocamos el TERCER PASO: Bajamos el siguiente número: Volvemos a empezar, pero nos fijamos en el siguiente peldaño del escalón (13). Dividimos 13:2. Ahora tenemos que buscar un número en el cociente, en la tabla del 2, que multiplicado por dicho número, nos dé como resultado el número 13, o al menos que no se pase de 13. Para ello damos con el número x 2= 12. Y decimos: de 12, al siguiente número terminado en 3 que es el 13, va NOS QUEDA ALGÚN NÚMERO POR BAJAR? NO EL RESTO (1) ES MENOR QUE EL DIVISOR (2)? SI ENTONCES TERMINAMOS AQUÍ. El resultado de dividir 153 : 2 = 76 y de resto 1 Por DOS cifras: Vamos a hacer la siguiente división: 1751 : 24 PRIMER PASO: empezando de izquierda a derecha en el dividendo (17513), tenemos que apartar el menor número, el cual ya podremos dividir entre el divisor (24). Para ello, nos preguntamos: se puede dividir el 1 entre 24? No; siguiente se puede dividir 17 entre 24? No; siguiente se puede dividir 175 entre 24? SI. PUES COMENZAMOS POR 175. SEGUNDO PASO: Como tenemos tres cifras apartadas en el dividendo (175), las dos primeras (17) se van a dividir entre las decenas del divisor (2) y la tercera (5), se dividirá entre las unidades del divisor (4) TERCER PASO: Tenemos que buscar un número en el cociente, en la tabla del 2, que multiplicado por dicho número, nos dé como resultado el número 17, o al menos que no se pase de 17 y siempre teniendo en cuenta que, antes de multiplicar por 2 (decenas del divisor), va a multiplicar por 4 (unidades del divisor), con lo que posiblemente se pueda dar el caso de que debamos llevarnos alguna para luego multiplicar por 2. VAMOS PROBANDO:

9 17: 2 = 8, porque 8 x 2 = 1 6. Por tanto, ponemos 8 en el cociente y PROBAMOS 8 Pero comenzamos a multiplicar empezando por las unidades (4) 8 x 4 = 32 Y decimos: de 32, al siguiente número terminado en 5, que es el 35, van 3, y nos llevamos Entonces, 8 x 2 = 16 // que nos hemos llevado son 19. Nos pasamos. Así que, lo borramos todo. CUARTO PASO: El número anterior más pequeño al 8 es el 7. PROBAMOS. Entonces multiplicamos 7 x 4 = 28 7 Y decimos: de 28, al siguiente número terminado en 5, que es el 35, van 7, y nos llevamos Ahora 7 x 2 = 14, que nos hemos llevado son 17. De 17 a 17 van 0. Por tanto, no nos hemos pasado. Esto quiere decir que el 7 NOS VALE. QUINTO PASO: Bajamos el siguiente número: Volvemos a empezar, pero nos fijamos en el siguiente peldaño del escalón (71). Dividimos la primera cifra del peldaño (7) entre la cifra de las decenas del divisor (2) 7:2 = 3. PROBAMOS con x 4= 12. Y decimos: de 12, al siguiente número terminado en 1 que es el 21, van 9, y nos llevamos x 2 = 6 // que nos hemos llevado son 8. Nos pasamos. Volvemos a empezar probando con el número anterior que es el x 4 = 8. Y decimos: de 8, al siguiente número terminado en 1 que es 11, van 3, y nos llevamos 1. 2 x 2 = 4 // que nos llevamos son 5. De 5 a 7 van 2. No nos paso, por lo tanto nos vale.

10 SEXTO PASO: Bajamos el siguiente número del dividendo (3), el último que queda Volvemos a empezar con todo el proceso, pero dividendo el nuevo peldaño (233) Nos volvemos a encontrar con tres cifras. Dividimos los dos primeros números (23) entre la primera cifra del divisor (2). 23 : 2 = 9 El número más próximo, que podemos poner es el 9, ya que el 10 no se puede poner en el cociente. 9 x 4 = 36. Y decimos: de 36, al siguiente número terminado en 3, que es 43, van 7 y nos llevamos Ahora, 9 x 2 = 18, que nos habíamos llevado son 22, hasta 23 van 1. No nos pasamos, con lo cual nos vale. NOS QUEDA ALGÚN NÚMERO POR BAJAR? NO EL RESTO (17) ES MENOR QUE EL DIVISOR (24)? SI ENTONCES TERMINAMOS AQUÍ. El resultado de dividir : 3 = 72 y de resto 17 D) PROPIEDAD DE LA DIVISIÓN EXACTA Al multiplicar o dividir el dividendo y el divisor de una división exacta por un mismo número, el cociente no varía. Ejemplo: Multiplicar por un mismo número 32 : 4 = 8 (32 x 5) : (4 x 5) = 160 : 20 = 8 Dividir por un mismo número 54 : 6 = 9 (54 : 2) : (6 : 2) = 27 : 3 = 9 7. Puntos en un eje de coordenadas Eje vertical Para localizar un punto en un eje de coordenadas: (2,3) 1º- Escribe entre paréntesis el número correspondiente al eje horizontal 2º- Separa con una coma (, ) Eje horizontal 3º- Después de la coma, escribe el número correspondiente al eje vertical. Ej: Marcos se encuentra en el punto (2, 3)

11 8. Recta, semirrecta y segmento A) RECTA Una recta no tiene ni principio ni fin. Ej: Existen tres tipos diferentes de rectas: - Rectas paralelas: las rectas paralelas no se cortan (o no se cruzan) nunca. Ej: - Rectas secantes: las rectas secantes se cortan (o no se cruzan) en un punto formando cuatro ángulos. Ej: - Rectas perpendiculares: las rectas perpendiculares son rectas secantes que, al cortarse (o cruzarse), forman cuatro ángulos rectos. Ej: B) SEMIRRECTA Un punto (que puede ser nombrado por una letra o número) divide a una recta en dos semirrectas. Una semirrecta tiene el origen en dicho punto. a C) SEGMENTO La parte de la recta r comprendida entre los puntos A y B es un segmento. Por tanto, los puntos A y B son los extremos del segmento. r A B Este segmento se llama segmento AB 9. Ángulos C) MEDIR UN ÁNGULO Para medir un ángulo tenemos que utilizar el transportador de ángulos. La medida de un ángulo se expresa en grados. Ej: 90º, 65º, 148º... PASOS A SEGUIR: 1º- Localiza el vértice en el ángulo que tienes que medir. El vértice de un ángulo es el punto de origen de los dos lados del ángulo.

12 2º- Coloca el transportador de manera que su centro coincida con el vértice del ángulo y uno de los lados del ángulo paso por 0º. 3º- Mira en el transportador el número por el que pasa el otro lado del ángulo. Ese número es la medida del ángulo en grados. * Fíjate bien que, cuando el lado de abajo está orientado hacia la derecha, nos tenemos que fijar en los números de la parte de arriba del transportador. ** Sin embargo, cuando el lado de abajo está orientado hacia la izquierda, nos tenemos que fijar en los números de la parte de abajo del transportador. Por lo tanto, este ángulo mide 50º (grados) 50º

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA

Más detalles

1.- NÚMEROS NATURALES Y DECIMALES

1.- NÚMEROS NATURALES Y DECIMALES 1.- NÚMEROS NATURALES Y DECIMALES 1.1 Posición de las cifras de un número natural. Los números naturales son los números que conocemos (0, 1, 2, 3 ). Los números naturales están ordenados, lo que nos permite

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

UNIDAD 5: LA DIVISIÓN.

UNIDAD 5: LA DIVISIÓN. UNIDAD 5: LA DIVISIÓN. ÍNDICE 5.1 Repaso de la división de números naturales. 5.1.1 Términos de la división 5.1.2 Palabras clave de la división 5.1.3 Prueba de la división 5.1.4 Tipos de divisiones según

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

TEMA 3: NÚMEROS DECIMALES

TEMA 3: NÚMEROS DECIMALES TEMA 3: NÚMEROS DECIMALES 1. NÚMEROS DECIMALES Para expresar cantidades comprendidas entre dos números enteros, utilizamos los números decimales. Los números decimales se componen de dos partes separadas

Más detalles

TEMA 9. RECTAS Y ÁNGULOS. Bisectriz de un ángulo

TEMA 9. RECTAS Y ÁNGULOS. Bisectriz de un ángulo TEMA 9. RECTAS Y ÁNGULOS RECTAS EN EL PLANO ÁNGULOS Rectas Segmento Semirrectas Mediatriz de un segmento Ángulos según su abertura: Recto, agudo, obtuso, llano, completo, cóncavo, Ángulos según su posición:

Más detalles

Multiplicación y División de Números Naturales

Multiplicación y División de Números Naturales Multiplicación y División de Números Naturales I. Multiplicación La multiplicación o producto, es una forma rápida de calcular la suma, cuando los sumandos son iguales. 2+2+2+2 = 2 x 4 = 8. También se

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA III : LOS NÚMEROS ENTEROS Los números negativos. Su necesidad. El conjunto de los números enteros. Valor absoluto de un número entero. Opuesto de un número entero. Suma

Más detalles

TABLA DE CONTENIDO. Números Naturales. Series Numéricas. Valor de Posición en Números Naturales. Descomposición de los Números Naturales

TABLA DE CONTENIDO. Números Naturales. Series Numéricas. Valor de Posición en Números Naturales. Descomposición de los Números Naturales TABLA DE CONTENIDO TEMA 1 TEMA 2 TEMA 3 TEMA 4 TEMA 5 TEMA 6 TEMA 7 TEMA 8 TEMA 9 TEMA 10 TEMA 11 TEMA 12 Números Naturales Series Numéricas Valor de Posición en Números Naturales Descomposición de los

Más detalles

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28

NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28 Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa

Más detalles

Los números naturales están ordenados, lo que nos permite comparar dos números naturales:

Los números naturales están ordenados, lo que nos permite comparar dos números naturales: LOS NUMEROS NATURALES. El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Con los números naturales contamos los elementos de un conjunto (número cardinal). O

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES

SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES 1. REPASAMOS LA SUMA Y LA RESTA 1.1. SUMA. La suma o adición consiste en añadir dos números o más para conseguir una cantidad total. Los números

Más detalles

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar OBJETIVO CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: 0 unidades de un orden forman unidad del

Más detalles

2 Escribe con cifras. 3 Cuál es el valor de la cifra 4 en estos números?: 4 Escribe el signo > o <, según corresponda.

2 Escribe con cifras. 3 Cuál es el valor de la cifra 4 en estos números?: 4 Escribe el signo > o <, según corresponda. PREPARO MAT. 6º Nuestro sistema de numeración Agrupamos de diez en diez MILLONES DMM UMM 4 CM MILLARES DM UM 6 0 0 C UNIDADES D U 3 6 8 El número 4 600 368 se lee: «Cuatro millones seiscientos mil trescientos

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

GUIA DE ESTUDIO Operaciones Básicas con Números Naturales

GUIA DE ESTUDIO Operaciones Básicas con Números Naturales GUIA DE ESTUDIO Operaciones Básicas con Números Naturales Suma de números naturales: La suma es la operación matemática que resulta al reunir en una sola varias cantidades. También se conoce la suma como

Más detalles

UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES ÍNDICE 7.1 Unidad decimal. 7.2 Escritura, lectura y descomposición de números decimales. 7.2.1 Escritura de números decimales. 7.2.2 Lectura de números decimales.

Más detalles

DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57).

DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57). DIVISION: Dividir es repartir un número en grupos iguales (del tamaño que indique el divisor). Por ejemplo: 45/ 5 es repartir 45 en grupos de 5. Los términos de la división son: Dividendo: es el número

Más detalles

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad. Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además

Más detalles

Sumar es reunir varias cantidades en una sola.

Sumar es reunir varias cantidades en una sola. ------ Fichas de trabajo 01-A-1/18 Cálculo. Suma (+) Sumar es reunir varias cantidades en una sola. Signo. Es una cruz griega (+) que se lee más. + = 5 + = Términos. Los números que se suman se llaman

Más detalles

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES 1. PARTES DE UN NÚMERO DECIMAL. 2. LECTURA Y ESCRITURA DE DECIMALES. 3. DESCOMPOSICIÓN DE NÚMEROS. DECIMALES Y VALOR RELATIVO DE LAS CIFRAS. 4. COMPARACIÓN Y ORDENACIÓN

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros. Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde

Más detalles

Vamos a ver por separado las operaciones básicas con expresiones algebraicas para monomios y polinomios.

Vamos a ver por separado las operaciones básicas con expresiones algebraicas para monomios y polinomios. L as operaciones con expresiones algebraicas son las mismas operaciones que se realizan con los números reales. Es decir, que con las expresiones algebraicas podemos realizar las cuatro operaciones básicas

Más detalles

Suma de números enteros

Suma de números enteros NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un

Más detalles

FIN EDUCATIVO FIN INSTRUCTIVO

FIN EDUCATIVO FIN INSTRUCTIVO FIN EDUCATIVO Todos somos números en las Matemáticas de la vida, con valores: absolutos, relativos, positivos y negativos. Los primeros representan a nuestras cualidades y virtudes ; los segundos a los

Más detalles

SUMA, RESTA Y MULTIPLICACIÓN DE NÚMEROS NATURALES

SUMA, RESTA Y MULTIPLICACIÓN DE NÚMEROS NATURALES SUMA, RESTA Y MULTIPLICACIÓN DE NÚMEROS NATURALES 1. REPASAMOS LA SUMA Y LA RESTA 1.1. SUMA. La suma o adición consiste en añadir dos números o más para conseguir una cantidad total. Los números que se

Más detalles

02-A-1/8. Nombre: Dividir es repartir a partes iguales. Una división es exacta cuando el resto es igual a cero.

02-A-1/8. Nombre: Dividir es repartir a partes iguales. Una división es exacta cuando el resto es igual a cero. 02-A-1/8 Cálculo. División (:). Dividir es repartir a partes iguales. Signo. Son dos puntos (:) que se leen divido por o dividido entre. : = 4 : = Términos. La división tiene cuatro términos. Dividendo.

Más detalles

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima.

OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima. OBJETIVO COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: unidades de un orden forman unidad del orden siguiente..

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA PRIMER TRIMESTRE: CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA CONTENIDOS: -Valor de posición de una cifra en un número. Equivalencias. -Los números de seis y de siete cifras: la centena

Más detalles

TEMA 1: NÚMEROS NATURALES

TEMA 1: NÚMEROS NATURALES TEMA 1: NÚMEROS NATURALES 1. NÚMEROS NATURALES Todas las civilizaciones han tenido un sistema de numeración. Estos han pasado de unos pueblos a otros y han evolucionado a lo largo del tiempo. Desde la

Más detalles

UNIDAD III NÚMEROS FRACCIONARIOS

UNIDAD III NÚMEROS FRACCIONARIOS UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza

Más detalles

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IX: RECTAS Y ÁNGULOS Puntos, rectas, semirrectas y segmentos en el plano. Posiciones relativas de rectas en el plano. Mediatriz de un segmento. Ángulos. Elementos. Clasificación

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

El sistema de numeración decimal

El sistema de numeración decimal El sistema de numeración decimal. Escribe con letra cada uno de estos números. 5.698 R 287.06 R 2.5.608 R 8.976.05 R 2. Completa la tabla. número M CM DM UM C D U se descompone 25.09 0 8 7 6 0 600.000

Más detalles

Suma de números enteros

Suma de números enteros NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un

Más detalles

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,

Más detalles

Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre.

Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre. ROYAL AMERICAN SCHOOL Asignatura de matemática Miss Pamela Pérez Aguayo Guía de refuerzo Matemática. 5º Básico. II Semestre. Formando personas responsables, respetuosas, honestas y leales Nombre: Objetivo:

Más detalles

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-088.qxd //0 09: Página Números decimales INTRODUCCIÓN El estudio de los números decimales comienza recordando el sistema de numeración decimal, que es la base de la expresión escrita de los números

Más detalles

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

62,415 = ,4 + 0,01 + 0,005

62,415 = ,4 + 0,01 + 0,005 NOMBRE:... Nivel:... FECHA:... LOS NÚMEROS DECIMALES LAS UNIDADES DECIMALES 1 0,1 1 0 0,01 0,1 una décima (d) 0,01 una centésima (c) 0,001 una milésima (m) 1 U = d = 0 c = 1.000 m 1 1.000 0,001 D U, d

Más detalles

Operaciones con ángulos. 1. Suma y resta. 2. Multiplicación por un entero. 3. División entre un entero

Operaciones con ángulos. 1. Suma y resta. 2. Multiplicación por un entero. 3. División entre un entero Los ángulos se clasifican de acuerdo a diferentes criterios. Además, se pueden realizar algunas operaciones matemáticas con ellos y entre ellos. Para ver cada tema haga Click en la opción correspondiente:

Más detalles

Lección 5: Ecuaciones con números naturales

Lección 5: Ecuaciones con números naturales GUÍA DE MATEMÁTICAS I Lección 5: Ecuaciones con números naturales Observe la siguiente tabla y diga cuáles son los números que faltan. 1 2 3 4 5 6 7 8 9 10 11 12 3 6 9 12 Es sencillo encontrar la regla

Más detalles

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS

TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS Por qué aparecen los números enteros? Por qué aparecen los números enteros? La cueva de Voronia, es la cueva conocida más profunda de la Tierra, localizada

Más detalles

286 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 EL SISTEMA SEXAGESIMAL PARA MEDIR ÁNGULOS Y TIEMPOS

286 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 EL SISTEMA SEXAGESIMAL PARA MEDIR ÁNGULOS Y TIEMPOS UTILIZAR OBJETIVO 1 EL SISTEMA SEXAGESIMAL PARA MEDIR ÁNGULOS Y TIEMPOS NOMBRE: CURSO: ECHA: Sexagésimo hace referencia a cada una de las 60 partes en las que se divide un total. Sexagesimal es un término

Más detalles

TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO

TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO TEMA 2 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos

Más detalles

2.- Escribe la lectura o escritura de las siguientes fracciones:

2.- Escribe la lectura o escritura de las siguientes fracciones: EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.

Más detalles

Índice. 1 Los números. 4 Magnitudes y medidas. 5 Ecuaciones. 6 Geometría. 2 Divisibilidad y fracciones. 3 Los porcentajes.

Índice. 1 Los números. 4 Magnitudes y medidas. 5 Ecuaciones. 6 Geometría. 2 Divisibilidad y fracciones. 3 Los porcentajes. Índice 1 Los números pág. 2 Sistema de numeración romano. Suma y resta de números naturales. Sumas y restas combinadas. Producto de números naturales. Cociente de números naturales. Jerarquía de operaciones.

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN OBJETIVOS Conocer los cuatro primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta cuatro cifras.

Más detalles

MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales

MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales 1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 6º Números naturales 1 2 Franklin Eduardo Pérez Quintero LOGRO: Estudiar, analizar y profundizar las operaciones y propiedades de los números

Más detalles

DEPARTAMENTO DE MATEMATICAS DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS DEPARTAMENTO DE MATEMATICAS -. Copia y completa la tabla: -. Escribe el nombre de estos números de cinco cifras: -. Escribe en cifras los siguientes números: número Dieciséis mil doscientos ocho Veintisiete mil cuatrocientos treinta

Más detalles

A veces, un número no se dividirá equitativamente. Cuando esto sucede, tenemos un resto.

A veces, un número no se dividirá equitativamente. Cuando esto sucede, tenemos un resto. Materia: Matemática de Octavo Tema: Operaciones en Z - División Ya averiguaste cuántos cubos de pescado va a necesitar Jonás para alimentar a las focas? Ahora que el sabe cuántas libras de pescado se necesitan,

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA 1

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA 1 PÁGINA: 1 de 9 Nombres y Apellidos del Estudiante: Docente: Área: MATEMATICAS Grado: Cuarto Periodo: Primero GUIA 1 Duración: 25 HORAS Asignatura: MATEMATICAS ESTÁNDAR: Resuelvo y formulo problemas cuya

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

Tema 1: NUMEROS ENTEROS

Tema 1: NUMEROS ENTEROS COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

UNIDAD 9. LOS ÁNGULOS

UNIDAD 9. LOS ÁNGULOS UNIDAD 9. LOS ÁNGULOS 1. LOS ÁNGULOS: ELEMENTOS Y TIPOS. 2. SISTEMA SEXAGESIMAL Y MEDIDA DE ÁNGULOS. 3. SUMA Y RESTA DE ÁNGULOS. 4. MEDIDAS ANGULARES COMPLEJAS E INCOMPLEJAS. 5. PASO DE MEDIDAS COMPLEJAS

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

Suma y resta de ángulos. Multiplicación de un ángulo por un entero. División de un ángulo entre un entero. Conversión de Grados a radianes y viceversa

Suma y resta de ángulos. Multiplicación de un ángulo por un entero. División de un ángulo entre un entero. Conversión de Grados a radianes y viceversa Para ver una explicación completa y ejercicios resueltos y explicados paso a paso sobre operaciones con ángulos o conversión de ángulos de grados a radianes y viceversa, haga Click sobre el nombre de la

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

Unidad 1 Los números de todos los días

Unidad 1 Los números de todos los días CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Más detalles

Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero.

Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero. Números enteros Son el conjunto de números naturales, sus opuestos (negativos) y el cero. Se dividen en tres partes: enteros positivos o números naturales (+1, +2, +3,...), enteros negativos (-1, -2, -3,.)

Más detalles

04-A-1/12 DECI (10) males

04-A-1/12 DECI (10) males 04-A-1/12 DECI (10) males Los números decimales, como los números naturales cambian de 10 en 10. Escribo: Primer orden: Segundo orden: Tercer orden: 1 Enteros 10 A las unidades de primer orden las llamamos

Más detalles

25/10/2010. Tema 2. Aritmética

25/10/2010. Tema 2. Aritmética Tema 2. Aritmética 1 Resumen de lo trabajado Estudio conceptual de las operaciones: - Qué es sumar, restar, multiplicar y dividir. - Tipos de problemas aditivos. - Tipos de problemas multiplicativos -

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

EJERCICIOS SOBRE : NÚMEROS NATURALES

EJERCICIOS SOBRE : NÚMEROS NATURALES 1.- Números Naturales: 1 Sirven para identificar, ordenar y contar. Ejemplo: El número de alumnos de tú clase: treinta. El precio de un bolígrafo: tres euros. El número de asistente de tú aula: veinte.

Más detalles

Unidad didáctica: Leer para aprender. Asignatura: Matemáticas. Título: La División

Unidad didáctica: Leer para aprender. Asignatura: Matemáticas. Título: La División Unidad didáctica: Leer para aprender. Asignatura: Matemáticas Título: La División Curso: 3º E.P Profesor/a: Objetivo: Que el alumno comprenda el concepto de división como reparto en partes iguales. Contenidos

Más detalles

Unidad 3: Operaciones y propiedades de los números naturales

Unidad 3: Operaciones y propiedades de los números naturales Unidad 3: Operaciones y propiedades de los números naturales 3.1. Adición de números naturales Definición: Se llama suma de dos números a y b al número s de elementos del conjunto formado por lo a elementos

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

GAIA.- Números Enteros

GAIA.- Números Enteros GAIA.- Números Enteros 1.- EL CONJUNTO DE LOS NÚMEROS ENTEROS.- El conjunto de los números enteros está formado por todos los números naturales (N) precedidos del signo más (+), los números naturales precedidos

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

UNIDAD 1. Nuestro sistema de numeración es el sistema decimal. En el sistema de numeración decimal, el valor de cada cifra depende de su posición.

UNIDAD 1. Nuestro sistema de numeración es el sistema decimal. En el sistema de numeración decimal, el valor de cada cifra depende de su posición. UNIDAD 1 1. NÚMEROS NATURALES DE CUATRO CIFRAS. 2. COMPARACIÓN DE NÚMEROS DE CUATRO CIFRAS. 3. LA APROXIMACIÓN DE NÚMEROS. 4. LA SUMA Y LA RESTA COMO OPERACIONES CONTRARIAS. 5. LOS NÚMEROS ORDINALES. 1.

Más detalles

POTENCIAS Y RAÍZ CUADRADA

POTENCIAS Y RAÍZ CUADRADA POTENCIAS Y RAÍZ CUADRADA 1. POTENCIAS. 1.1. CONCEPTO DE POTENCIA. ELEMENTOS. Una potencia es un producto de factores iguales. Las potencias están formadas por: Base: factor que se repite. Exponente: número

Más detalles

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc.

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc. NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS. Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el sustraendo, pero en la vida nos encontramos con operaciones de este

Más detalles

REPASO DE Nºs REALES y RADICALES

REPASO DE Nºs REALES y RADICALES REPASO DE Nºs REALES y RADICALES 1º.- Introducción. Números Reales. Números Naturales Los números naturales son el 0, 1,,,. Hay infinitos naturales, es decir, podemos encontrar un natural tan grande como

Más detalles

Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 1 : ÚMEROS ATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2009 Tema 01: úmeros aturales. Divisibilidad IDICE: 01.

Más detalles

Cuaderno de matemáticas 1. Numeración: Concepto y grafía del número 5.

Cuaderno de matemáticas 1. Numeración: Concepto y grafía del número 5. Cuaderno de matemáticas 1 Numeración: Concepto y grafía del número 1. Conceptos matemáticos: Formas geométricas. Nociones espacio-temporales: Dentro, fuera, en el borde. Ampliación y refuerzo: Atención

Más detalles

evaluables Productos Resolución y explicación de los cálculos

evaluables Productos Resolución y explicación de los cálculos Recursos didácticos Agrupamiento Sesiones Instrumento Evaluación Productos evaluables 2 sesiones por estrategia + 5minutos de práctica en distintas ocasiones SECUENCIA DIDÁCTICA Estrategia para los primeros

Más detalles

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos. NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

La Centena.- Continúa la serie de números: Nombre:... Fecha:... Mª C.Tabarés/L.A.Rojo

La Centena.- Continúa la serie de números: Nombre:... Fecha:... Mª C.Tabarés/L.A.Rojo La Centena.- Continúa la serie de números: 100 101 105 109 112 117 120 123 128 131 134 136 139 140 145 149 La Centena.- Continúa la serie de números: 150 153 157 161 166 170 173 178 182 185 189 190 194

Más detalles