ANÁLISIS DIMENSIONAL Y SEMEJANZA EN MECÁNICA DE FLUIDOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS DIMENSIONAL Y SEMEJANZA EN MECÁNICA DE FLUIDOS"

Transcripción

1 TEA 5 ANÁISIS DIENSIONA Y SEEJANZA EN ECÁNICA DE FUIDOS El Análisis Dimensional: Utilidad y Justificación 5..- os Fundamentos del Análisis Dimensional Otención de Parámetros Adimensionales y el Teorema Pi Aplicación del Teorema Pi Parámetros Adimensionales Comunes en la ecánica de Fluidos

2 5.1.- Justificación del Análisis Dimensional El comportamiento de los fluidos puede caracterizarse mediante: ECUACIONES TEÓRICAS DIRECTAS: Ej: conservación del momento, ecuación de Bernouilli, teorema de arrastre de Reynolds,,etc ECUACIONES EXPERIENTAES: Se emplea cuando no existen ecuaciones que modelen directamente los fenómenos que se quieren entender APROXIACIÓN odelado teórico El ANÁISIS DIENSIONA SIPIFICA Y REDUCE E TRABAJO EXPERIENTA OK SI VAIDACIÓN EXPERIENTA Planificación del traajo experimental Resultados similares a predicción de modelo? NO Refinar la aproximación

3 5.1.- Justificación del Análisis Dimensional Ejemplo de planificación de traajo experimental: Cómo determinar experimentalmente la fuerza de arrastre F sore una esfera lisa de diámetro D que se mueve en un medio fluido de densidad ρ y viscosidad µ, con velocidad uniforme V? Se supone que la fuerza de arrastre F tendrá la siguiente forma: F f (ρ, µ, V, D) El traajo experimental para evaluar la función f sería el siguiente: Determinar la influencia de cada una de las 4 variales (ρ, µ, V, D)enF, manteniendo fijos los valores de las 3 variales restantes. Repetir cada pruea al menos para 10 valores diferentes de la variale. Número de prueas 10x10 (valores de ρ y µ fijos!!!) odificando las 4 variales, el número de prueas es 10x10x10x10!!!!! Traajo experimental ARGO Y COSTOSO Una alternativa es el ANÁISIS DIENSIONA

4 5..- os Fundamentos del Análisis Dimensional El ANÁISIS DIENSIONA permite agrupar las variales implicadas en un fenómeno en parámetros adimensionales, y expresar el prolema en términos de la relación funcional de estos parámetros. En el caso anterior, solo hay dos parámetros adimensionales independientes, que como se verá después, son: Entonces se puede escriir la relación: a forma de la función f se puede determinar experimentalmente, pero con mucho menos traajo experimental, ya que se reduce en número de variales independientes (en este caso de 4 a 1). Para variar el parámetro independiente, es suficiente variar la velocidad de la corriente de fluido, y asta con usar solo un fluido (por ejemplo el aire) y un solo tamaño de esfera. El ANÁISIS DIENSIONA ha reducido el número de prueas inicial de a 10!!!!

5 5..- os Fundamentos del Análisis Dimensional QUÉ ES UN PARÁETRO ADIENSIONA? Es un conjunto de variales agrupadas de tal forma que su dimensión es 1, es decir, no tiene dimensiones. Cada una de las magnitudes utilizadas en mecánica está asociada con una dimensión física. AGNITUDES FUNDAENTAES agnitud Dimensión Unidad SI asa Kg ongitud m Tiempo T s EJEPO de PARÁETRO ADIENSIONA: Ecuación de la viscosidad: du τ xy µ dy AGNITUDES DERIVADAS agnitud Dimensión Unidad SI Velocidad T -1 m/s Presión -1 T - Pa (N/m ) Viscosidad -1 T -1 Kg / (m s) Expresión dimensional equivalente: T T T 1 T Parámetro adimensional: du µ dy τ xy T T [1]

6 5..- os Fundamentos del Análisis Dimensional Principio de Homogeneidad Dimensional ( PHD ) Cualquier ecuación que descrie por completo un fenómeno físico dee ser dimensionalmente homogénea: 1.- as dimensiones en amos lados de la ecuación deen ser las mismas.- as dimensiones de todos los términos aditivos de la ecuación deen ser iguales EJEPO de PHD: Ecuación de Bernouilli p V Dividiendo por la altura z + + H T ρ g g Expresión T ( ) dimensional T T 3 T + + CONCUSIONES IPORTANTES DE PHD: 1+ ρ p g z 1+ V + g z + H z 1.- Se pueden otener parámetros adimensionales a partir de una ecuación teórica que relacione las variales que intervienen en un fenómeno físico dado..- a homogeneidad dimensional se podrá emplear para plantear las ecuaciones experimentales a resolver mediante el análisis dimensional. T

7 5.3.- Otención de Parámetros Adimensionales y el Teorema Pi Teorema de Π de Buckingham Existe un número de parámetros adimensionales independientes fijo para un prolema dado, y es igual a la diferencia entre número total de variales menos el número de dimensiones fundamentales. Es decir : I N R donde: I: número de parámetros adimensionales independientes N: número de variales implicadas en el prolema R: número de dimensionales fundamentales (Ej: asa, ongitud, Tiempo) IPORTANTE!!!!: 1.- El teorema Π sólo sienta la ase teórica para afirmar que la reducción de N a R parámetros se puede hacer, pero no indica cómo hacerla, ni cuanto vale R. Ni tan siquiera existe una única reducción para cada prolema..- El conjunto de parámetro adimensionales dee escogerse de manera que sean INDEPENDIENTES. Aunque existe un número fijo de estos parámetros para cada prolema, éstos se pueden cominar formando nuevos parámetros tamién adimensionales, pero que en este caso NO serán independientes

8 5.4.- Aplicación del Teorema Π 1.- Elaorar un listado con las variales significativas implicadas en el prolema..- Calcular la expresión dimensional equivalente de cada una de las variales otenidas en el punto Determinar las dimensiones fundamentales usadas en las variales del prolema. 4.- Determinar el número de parámetros adimensionales independientes en los que se pueden agrupar las variales del prolema mediante el Teorema de Π. 5.- Generar los parámetros adimensionales. 6.- Comproar que cada parámetro adimensional otenido no tiene dimensiones.

9 5.4.- Aplicación del Teorema Π EJEPO DE APICACIÓN Determinar los parámetros adimensionales formados con las variales involucradas en el flujo de un fluido sore un cuerpo sólido de forma esférica. 1.- istado de variales significativas: Fuerza de arrastre F, diámetro del cuerpo esférico D, densidad ρ, viscosidad µ y velocidad V del fluido. (N5).- Expresión dimensionales equivalentes de cada variale: VARIABE DIENSIONES FUERZA T - DIÁETRO DENSIDAD -3 VISCOSIDAD -1 T -1 VEOCIDAD T -1

10 5.4.- Aplicación del Teorema Π 3.- Dimensiones fundamentales usadas: DIENSIÓN ONGITUD ASA TIEPO SÍBOO T R Número de parámetros adimensionales independientes: I N R 5 3

11 5.4.- Aplicación del Teorema Π 5.- Determinación de parámetros adimensionales: a variale de estudio, F, puede ser expresada como función exponencial de las 4 restantes: a expresión dimensional de (1) es: Agrupando los exponentes de la misma ase: Igualando exponentes a amos lados, se otiene el sistema de ecuaciones: Resolviendo el sistema para a, d y c: Sustituyendo en (1) y reagrupando: d c a V D K F µ ρ ( ) ( ) ( ) d c a T T T ( ) ( ) ( ) d d c a a T T c d a 1 (1) () (3) d d c a a V D K V D F V D V D K F V D K F ρ µ ρ ρ ρ µ µ ρ ) ( PARÁETROS ADIENSIONAES

12 5.5.- Parámetros Adimensionales Comunes en la mecánica de Fluidos

13

14

15

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

Análisis Dimensional y Semejanza

Análisis Dimensional y Semejanza 87 Capítulo 8 Análisis Dimensional y Semejanza Dado que el número de problemas que se puede resolver en forma puramente analítica es pequeño, la gran mayoría requiere algún grado de resultados empíricos

Más detalles

ANALISIS DIMENSIONAL FENÓMENOS DE TRANSPORTE

ANALISIS DIMENSIONAL FENÓMENOS DE TRANSPORTE FEÓMEOS DE TRASPORTE Ing. Mag. Myriam E Villarreal UIDADES Y MEDIDAS MEDIR Desconocido COMPARAR Conocido UIDAD que representa una cantidad conocida Consta de RELACIO entre la cantidad medida y la cantidad

Más detalles

Análisis Dimensional y Modelos a Escala

Análisis Dimensional y Modelos a Escala Análisis Dimensional y Modelos a Escala Santiago López 1. Análisis Dimensional Es interesante saber que las unidades de una cantidad física pueden ser explotadas para estudiar su relación con otras cantidades

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

MECÁNICA DE FLUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOLUCIÓN

MECÁNICA DE FLUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOLUCIÓN Ejercicio 1 Un campo de velocidades viene dado por MECÁNICA DE FUIDOS I GUÍA DE EJERCICIOS TEMA 4 SOUCIÓN V = 4txi 2t 2 yj + 4xzk Es el flujo estacionario o no estacionario? Es bidimensional o tridimensional?

Más detalles

En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución se basa en que si

En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución se basa en que si CAPÍTULO XI ECUACIONES EXPONENCIALES E IRRACIONALES.. ECUACIONES EXPONENCIALES En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución

Más detalles

1.1. Análisis Dimensional

1.1. Análisis Dimensional ,.. Análisis Dimensional... Introducción El análisis dimensional es un proceso mediante el cual se examinan las dimensiones de los fenómenos físicos y de las ecuaciones asociadas, para tener una nueva

Más detalles

palabra igual ya que es fundamental para todo lo se que realiza en matemática.

palabra igual ya que es fundamental para todo lo se que realiza en matemática. ECUACIONES ALGEBRAICAS. Introducción Parte de la genialidad que tuvo la humanidad fue la creación de la palara igual ya que es fundamental para todo lo se que realiza en matemática. Pero descriir tal palara

Más detalles

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS 1 PRACTICA # 1 PROPIEDADE FIICA DE LO FLUIDO 1.1 DENIDAD Es una propiedad intensiva que se define como la masa (m) por unidad de volumen (V), y es denotada con la letra "ρ", donde: masa de la sustancia

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

DETERMINACIÓN DE LA CONSTANTE DE GRAVITACIÓN UNIVERSAL "G" ,, G = x 10

DETERMINACIÓN DE LA CONSTANTE DE GRAVITACIÓN UNIVERSAL G ,, G = x 10 DETERMINACIÓN DE LA CONSTANTE DE GRAVITACIÓN UNIVERSAL "G" OBJETIVO Determinar el valor de la Constante de Gravitación Universal "G", mediante una alanza de torsión que mide el valor de la fuerza de atracción

Más detalles

Análisis matemático del problema de un objeto fijo, sobre una escalera que se desliza, desde un contexto físico

Análisis matemático del problema de un objeto fijo, sobre una escalera que se desliza, desde un contexto físico Universidad Interamericana de Puerto Rico - Recinto de Ponce 1 Análisis matemático del prolema de un ojeto fijo, sore una escalera que se desliza, desde un contexto físico Por Prof. Carlos Oliveras Martínez

Más detalles

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

Semana 5 Productos notables. Parte I

Semana 5 Productos notables. Parte I Multiplicación y división de polinomios Semana 4 Empecemos! Bienvenidos a otro encuentro con el saer matemático. En esta oportunidad estudiaremos los productos notales; la ventaja de estos es que nos permiten

Más detalles

ANÁLISIS DIMENSIONAL

ANÁLISIS DIMENSIONAL GTU.- s todo aquello que de manera experimental, ya sea directa o indirecta se puede medir. jemplo: a altura de un edificio. egún su origen, las magnitudes se clasifican en: agnitudes Fundamentales y magnitudes

Más detalles

TEMA 5. MAGNITUDES FISICAS Y UNIDADES DE MEDIDA. 4ª. PARTE

TEMA 5. MAGNITUDES FISICAS Y UNIDADES DE MEDIDA. 4ª. PARTE 1 TEMA 5. MAGNITUDES FISICAS Y UNIDADES DE MEDIDA. 4ª. PARTE Mario Melo Araya Ex Profesor Universidad de Chile melomarioqca@gmail.com 11. EQUIVALENCIAS Y CONVERSION DE UNIDADES DE MEDIDA. Para toda magnitud

Más detalles

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional.

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional. Índice Introducción Capítulo 1: físicas, unidades y análisis dimensional. Introducción Capítulo 1:. Índice Leyes Físicas y cantidades físicas. Sistemas de unidades Análisis dimensional. La medida física.

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Ejemplos Desarrollados

Ejemplos Desarrollados Universidad de Santiago de Chile Departamento de Ingeniería Mecánica Mecánica de Medios Continuos Eugenio Rivera Mancilla Ejemplos Desarrollados 1. Una placa rectangular homogénea, de masa m, cuyas aristas

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons

SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons SENSORES DE FLUJO Referencias bibliográficas Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons Sensores y acondicionamiento de señal, R. Pallás

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

ECUACIONES DE DIMENSIÓN

ECUACIONES DE DIMENSIÓN Tea 6-1 Ecuaciones de Diensión - 1 Tea 6 Curso 006/07 Departaento de Física y Quíica Aplicadas a la Técnica Aeronáutica Curso 006/07 Tea 6- Se representan las agnitudes fundaentales con letras ayúsculas:

Más detalles

UNIDAD Nº 1: DERIVACION E INTEGRACIÓN. APLICACIONES

UNIDAD Nº 1: DERIVACION E INTEGRACIÓN. APLICACIONES Complemento de Matemática UNIDAD Nº : DERIVACION E INTEGRACIÓN. APLICACIONES La derivada Vamos a recordar esta noción que se empezó a estudiar en Matemática de primer año. Definición Sean f una función

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

5.3 Estructura térmica de la litósfera oceánica

5.3 Estructura térmica de la litósfera oceánica 513314 Geofísica de la Tierra Sólida 165 5.3 Estructura térmica de la litósfera oceánica 5.3.1 Introducción La estructura térmica de la litósfera oceánica esta restringida por las observaciones de: 1.

Más detalles

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.5 Viscosidad Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación CENTRIFUGACIÓN Fundamentos. Teoría de la centrifugación Fuerzas intervinientes Tipos de centrífugas Tubular De discos Filtración centrífuga 1 SEDIMENTACIÓN Se basa en la diferencia de densidades entre

Más detalles

DINÁMICA DE FLUIDOS (Septiembre 1999)

DINÁMICA DE FLUIDOS (Septiembre 1999) (Septiembre 1999) Teoría: 1.- Considérese un flujo plano. Dígase cómo se deformaría el cuadrado adjunto si: a) La vorticidad es nula b) No hay deformación pura. c) Voriticidad y deformación son ambas distintas

Más detalles

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

UNIDAD 4 TRIGONOMETRÍA

UNIDAD 4 TRIGONOMETRÍA UNIDAD 4 TRIGONOMETRÍA http://elpostulante.wordpress.com/category/teoria-y-practica/geometria-y-trigonometria/ UNIDAD 4: Trigonometría. Introducción. Ángulos. Relaciones trigonométricas de un ángulo. Sistemas

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

CAPÍTULO PRINCIPIOS DE FLUIDIZACIÓN. La fluidización es la levitación de una masa (lecho) de partículas por la acción de un fluido

CAPÍTULO PRINCIPIOS DE FLUIDIZACIÓN. La fluidización es la levitación de una masa (lecho) de partículas por la acción de un fluido CAPÍTULO 3 PRINCIPIOS DE FLUIDIZACIÓN La fluidización es la levitación de una masa (lecho) de partículas por la acción de un fluido que se observa cuando el lecho entra en contacto con un flujo vertical

Más detalles

Módulo 3: Fluidos reales

Módulo 3: Fluidos reales Módulo 3: Fluidos reales 1 Fluidos reales Según la ecuación de Bernouilli, si un fluido fluye estacionariamente (velocidad constante) por una tubería horizontal estrecha y de sección transversal constante,

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

Geometría de masas: Cálculos del tensor de Inercia

Geometría de masas: Cálculos del tensor de Inercia Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia

Más detalles

Se entiende por sistema numérico a los símbolos y al conjunto de reglas que se aplican sobre ellos para realizar la representación de una cantidad.

Se entiende por sistema numérico a los símbolos y al conjunto de reglas que se aplican sobre ellos para realizar la representación de una cantidad. CAPITULO Nº SISTEMAS NUMÉRICOS. Introducción. La necesidad del homre de representar cantidades lo ha llevado a inventar símolos que las representen. Se entiende por número a una expresión formada por un

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

Tecnología Eléctrica ( Ingeniería Aeronáutica )

Tecnología Eléctrica ( Ingeniería Aeronáutica ) Problema 2 Es necesario seleccionar un motor trifásico de inducción para accionar un compresor de aire. Para dicha selección se han prefijado los parámetros siguientes: El compresor debe girar a una velocidad

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

ENERGÍA EÓLICA E HIDRÁULICA

ENERGÍA EÓLICA E HIDRÁULICA ENERGÍA EÓLICA E HIDRÁULICA Lección 4: Diseño de rotores eólicos Damián Crespí Llorens Máquinas y Motores Térmicos Ingeniería Mecánica y Energía 1 Índice 4.1.Introducción 4.1.Objetivo 4.2. Resumen de conceptos

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel SGUIC3M0M311-A15V1 Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje es

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional.

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Análisis dimensional Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Se consideran siete cantidades

Más detalles

ECUACIONES ADIMENSIONALES Y ORDENES DE MAGNITUD

ECUACIONES ADIMENSIONALES Y ORDENES DE MAGNITUD CUACIONS ADIMNSIONAS Y ORDNS D MAGNITUD Prof. C. Dopazo Área de Mecánica de Fluidos Centro Politécnico Superior Universidad de Zaragoza Septiembre 2005 Índice PROBMA TRMICO 4 2 PROBMA MASICO 5 3 ORDNS

Más detalles

Flujo de Fluidos: Interacción Sólido-Fluido

Flujo de Fluidos: Interacción Sólido-Fluido Flujo de Fluidos: Interacción Sólido-Fluido Existen operaciones básicas de separación sólido-fluido que tienen gran aplicación y se presentan en muchos de los procesos industriales: filtración, sedimentación,

Más detalles

Cuarta Lección. Principios de la física aplicados al vuelo.

Cuarta Lección. Principios de la física aplicados al vuelo. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.

Más detalles

Polinomiosy transformadarápida

Polinomiosy transformadarápida Polinomiosy transformadarápida de Fourier: Polinomios Los polinomios son una parte importante del Álgera. Están presentes en todos los contextos científicos y tecnológicos: desde los ordenadores y la informática

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Ecuaciones no Algebraicas

Ecuaciones no Algebraicas Capítulo 6 Ecuaciones no Algebraicas G eneralmente para lograr resolver problemas de la vida cotidiana utilizando matemática, se ocupan ecuaciones algebraicas, ya que estas son suficientes para la mayoría

Más detalles

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica PRÁCTICA 1 PRESIÓN Laboratorio de Termodinámica M del Carmen Maldonado Susano Enero 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular carece de forma propia y adopta

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES DETERMINACIÓN DE LA CONSTANTE UNIERSAL DE LOS GASES La ley general de los gases relaciona la presión P, el volumen, la temperatura T, el número de moles n, y la constante universal de los gases R, como

Más detalles

BLOQUE 1: MAGNITUDES Y VECTORES

BLOQUE 1: MAGNITUDES Y VECTORES BLOQUE 1: MAGNITUDES Y VECTORES Sistemas de unidades BLOQUE 1: Magnitudes y vectores Sistemas de Unidades Sistemas tradicionales Sistema Internacional (SI) Análisis dimensional BLOQUE 1: Magnitudes y vectores

Más detalles

ANÁLISIS DIMENSIONAL Y SEMEJANZA. José Agüera Soriano

ANÁLISIS DIMENSIONAL Y SEMEJANZA. José Agüera Soriano ANÁLISIS DIMENSIONAL Y SEMEJANZA José Agüera Soriano 011 1 José Agüera Soriano 011 ANÁLISIS DIMENSIONAL Y SEMEJANZA EXPERIMENTACIÓN EN MECÁNICADE FLUIDOS ADIMENSIONALES EN MECÁNICA DE FLUIDOS SEMEJANZA

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo PRÁCTICA 3 PRESIÓN Laboratorio de Principios de Termodinámica y Electromagnetismo M del Carmen Maldonado Susano 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2 Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................

Más detalles

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción Problemas de Practica: Fluidos AP Física B de PSI Nombre Preguntas de Multiopción 1. Dos sustancias; mercurio con una densidad de 13600 kg/m 3 y alcohol con una densidad de 0,8kg/m 3 son seleccionados

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

ACTUACIONES DE COMPONENTES DE AERORREACTORES

ACTUACIONES DE COMPONENTES DE AERORREACTORES ACTUACIONES DE COMPONENTES DE AERORREACTORES COMPRESORES TURBINAS CÁMARAS S DE COMBUSTIÓN ENTRADAS TOBERAS Ref.: José Luis Montañes. Motores de Reacción. Apuntes ETSIA http://aristoteles.gate.upm.es/moodle/course/view.php?id=142

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN ANALOGÍAS Y ANÁLISIS DIMENSIONAL XII..- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles