TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES"

Transcripción

1 TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA: es u sucesió uméric e l cul cd térmio se obtiee sumdo u vlor costte, llmdo difereci (d), l térmio terior. SUCESIÓN GEOMÉTRICA: es u sucesió uméric e l cul cd térmio se obtiee multiplicdo por u vlor costte llmdo rzó (r), l térmio terior ( r 0 y r ) FÓRMULAS PARA USAR! SUCESIONES ARITMÉTICAS ( ) + d SUCESIONES GEOMÉTRICAS r. S + S. r r.- Clculr los cico primeros térmios y el 00-ésimo térmio de l sucesió uméric defiid por cd fórmul. Grficr ) + b) c) + d) ( ) g) h) f) + ( ) 0 i) ( ) ( ).- Ecotrr u expresió del térmio geerl de cd sucesió: ) ; ; ; 7; 9 b) -; ;-;;- c) ; ; ; ; ;...; d) ; ; ; ; ;...; d),,,,... 8,, -9,, - f) ) 0,, 0,, 0,... g), -,, -,....- E ls siguietes sucesioes recursivs, clculr los cico primeros térmios. ) ( + ) pr b) + pr ( ) (sucesió de Fibocci) Ejercicios extrídos de distits bibiogrfís recomedds pr igresos ls Uiversiddes

2 c) ( ) pr 7 d) + pr y ( ) pr +.- Hllr l sum de los primeros cie úmeros turles.- Clculr ls siguietes sums ) b) 0 c) d) 8.- Expresr cd sum co l otció de sigm ) b) log log log log8 c) d) Determir los seis primeros térmios de ls siguietes sucesioes ritmétics ), 7,... b) 0,,... c) 0, -, Determir el sexto térmio, el 00-ésimo térmio y e -ésimo térmio e ls siguietes sucesioes ritmétics ),, 8, 0,... b) 0, -, -,,... c),.,.,.,.,... d), 00, 99, 98, Clculr los térmios idicdos de ls siguietes sucesioes ritmétics. ) El primer térmio, sbiedo que el décimo es / y el segudo es 7/ b) El vigésimo térmio, coociédose el -ésimo igul y el quito 8 c) Cuál térmio es 88 de l sucesió ritmétic:,, ? 0.- Clculr ls sums prciles de ls siguietes sucesioes ritmétics ), d, 0 b) 00, d -, 8 c), d, 0.- Clculr ls sums prciles b) -0 -,9 9, , Ejercicios extrídos de distits bibiogrfís recomedds pr igresos ls Uiversiddes

3 ) c) ( + 0, ) d) ( ).- Alguos problems ) Se lmce postes de teléfoos e u pil co postes e l primer cp, e l segud y sí sucesivmete. Si hy cps, cuátos postes hy e totl? b) A u perso le ofrece u trbjo co u sueldo de $0 000 ules, y firm u cotrto co umetos ules de $ 00. Clculr los igresos totles l cbo de 0 ños de trbjr. c) E u ply de estciomietos hy lugres pr estcior 0 utomóviles e l primer fil, e l segud, e l tercer y sí sucesivmete. Si hy fils, clculr l ctidd de utos que puede estciorse. d) Se diseñ u tetro co butcs e l primer fil, 8 e l segud, e l tercer, etc. Si el tetro debe teer 870 lugres, cuáts fils debe hber e el diseño del rquitecto?.- Determir si l sucesió es geométric. E cso de serlo clculr l rzó. ),, 8,, b),, 8, c),,,,... d),,,,....- Determir l rzó, el quito y el -ésimo térmio de l sucesió geométric ),, 8,, b) 8 7,,,, c),,,,... d),,,,... t t t t,,,,... f) 8,,,, Resolver: ) El primer térmio de u sucesió geométric es y el tercero es, clculr el quito térmio. b) El primer térmio es 8 y el segudo es, clculr el curto térmio. c) L rzó de u sucesió geométric es y el curto térmio es. Clculr el tercer térmio. Ejercicios extrídos de distits bibiogrfís recomedds pr igresos ls Uiversiddes

4 d) L rzó de u sucesió geométric es y el quito térmio es. Clculr los tres primeros térmios..- Clculr l sum prcil de ls siguietes sucesioes geométrics ), r, b), r, c) 8,, 7.- Determir ls sums de: ) b) c) Clculr l sum de cd serie geométric hst el térmio idicdo. ) + + +,... b) c) d) Alguos problems de sucesioes geométrics ) U coloi de bcteris tiee l pricipio.000 uiddes y su tmño umet 8% por hor. Cuáts bcteris hbrá l fil de hors? Deducir u fórmul pr clculr l ctidd de bcteris presetes después de hors. b) U mujer muy pciete dese llegr ser millori. Se peg u esquem secillo: prt cetvo el Reimer dí, el segudo, el tercero, etc. Duplicdo l ctidd de cetvos cd dí. Cuáto diero tedrá psdos 0 dís? Cuátos dís deberá trscurrir pr que llegue teer mil milloes de pesos? c) Rim populr iftil: Al ir S Dims Ecotré u señor co siete csts Cd cst co siete scos Cd sco co siete gtos Cd gto co siete pulgs Pulgs, gtos, scos y csts Cuátos ib S Dims? d) El tío Gilito y Cruell de Ville, fmosos por sus riquezs, hce u trto por el que el Tío Gilito drá Cruell $.000 el primer dí del mes, $.000 l dí siguiete, $.000 el tercero y sí sucesivmete hst completr el mes. Simultáemete, Cruell drá l Tío Gilito cetvo el primer di, cetvos el segudo, cetvos el tercero, 8 cetvos el curto dí y sí sucesivmete, hst cumplir el mes. Quié obtedrá myor beeficio? Ejercicios extrídos de distits bibiogrfís recomedds pr igresos ls Uiversiddes

5 RESPUESTAS:.- ),,,, 0 b),,,7,9,,99 c) 0,,8,,, 9999 d),,,,, /,/, /,/,/ 00/0 f) -/,/,-/9,/,- /, /00 g) h),,,,, i) -9,-8,-7,-,-, 90,,7,,, ) b) ( ) c) d) d) ( )..( ) + f) ( ).-) ;9;;0;; b) ;;;;8;; c)7; ;-;-;-0 d) ;;;8; -;;-/;/;-/; ) b) 7/0 c) d) 77.- ) b) log c) d) 7.- ) ;7;-;-9;-7;- b)0;;;-9;-99;-9 c)0;-;-;-9;-;- 8.-), 00 0 b) 0, ( ) + c),, 00,9 d) 9, ( )0,,9 + 0, + ( ) ) b) 0 8 c) ) S ) S 00 b) o es posible l sucesió ( d u,7 d) S 99 úmero egtivo).- postes b) $0 00 c) 80 utos d) 8 fils.- ) Si, r B) NO C)SI, r 0, d) NO.- ) r ; ; ( ) b) r ; ; 7 8 ( ) c) r ; ; ( ) d) r / ; ; ( ) r t ; t ; / t f) r ; / ;.-) b) c) d) /8; 8/7; /9;.-) S 80 /8 7.- ) S 80 0/, ) S 0 / 7 /8 78/ d) S 7/ ), 8x b) proximdmete $ S 99 y tedrá que psr 0 dís c) 80 d) El tío Gilito porque el diero que recibe se comport como u serie geométric + Ejercicios extrídos de distits bibiogrfís recomedds pr igresos ls Uiversiddes

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

4 Sucesiones. Progresiones

4 Sucesiones. Progresiones Sucesioes. Progresioes ACTIVIDADES INICIALES.I. Aliz l fotogrfí co teció y señl l meos dos formcioes turles que se igules o teg u estructur muy precid. El iterior de los itestios y los lvéolos pulmores..ii.

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)

GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos) Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

1.3.6 Fracciones y porcentaje

1.3.6 Fracciones y porcentaje Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:

Más detalles

3 Potencias y raíces de números

3 Potencias y raíces de números Potecis y ríces de úeros reles. Potecis de expoete turl. Defiició. El producto tiee sus siete fctores igules. Este producto se puede idicr de for brevid coo. se ll poteci, y l fctor, bse. El úero de veces

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.

En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración. Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

Anillos de Newton Fundamento

Anillos de Newton Fundamento Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que

Más detalles

TEMA 10 OPERACIONES DE AMORTIZACION O PRESTAMO (I)

TEMA 10 OPERACIONES DE AMORTIZACION O PRESTAMO (I) Fcultd de.ee. Dpto. de Ecoomí Ficier I Dipoitiv Mtemátic Ficier TEM OPERIONES DE MORTIZION O PRESTMO (I). Pltemieto geerl 2. Método prticulre de mortizció - Prétmo merico - Prétmo frcé - Prétmo co cuot

Más detalles

Capítulo 7. Series Numéricas y Series de Potencias.

Capítulo 7. Series Numéricas y Series de Potencias. Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El

Más detalles

Matemática 1 Capítulo 4

Matemática 1 Capítulo 4 Mtemátic Cpítulo 4 Comitori Ejemplo Cuáts comids diferetes que coste de u plto pricipl y u eid puede hcerse prtir del siguiete meú? Etrds Sop Esld Pltos priciples Pst Miles de pollo Filete de pescdo Beids

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles

ANALISIS MATEMATICO I Ciclo Lectivo 2009. Guía de Estudio y Práctica 11 SUCESIONES Y SERIES. Ing. Jorge J. L. Ferrante

ANALISIS MATEMATICO I Ciclo Lectivo 2009. Guía de Estudio y Práctica 11 SUCESIONES Y SERIES. Ing. Jorge J. L. Ferrante ANALII MATEMATICO I Ciclo Lectivo 009 Guí de Estudio y Práctic UCEIONE Y ERIE Ig. Jorge J. L. Ferrte I CONOLIDACIÓN DE CONCEPTO e iici est Guí de Estudio y Práctic co u meció especil Leordo de Pis, llmdo

Más detalles

Empleo de Matemática Financiera

Empleo de Matemática Financiera FACULTAD DE CONTABILIDAD Y AUDITORIA Empleo de temátic Ficier Ig. rco Guchimboz Septiembre 008 Eero 009 ABATO ECUADOR PRESENTACIÓN L mtemátic fi costituye u de ls áre más útiles e iterestes de l mtemátic

Más detalles

Z={...,-4,-3,-2,-1,0,1,2,3,4,...}

Z={...,-4,-3,-2,-1,0,1,2,3,4,...} TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID / Grl. Ampudi, 6 Teléf.: 9 5-9 55 9 ADRID FBRRO 5 UNIVRSIDAD PONTIFIIA D SALAANA ATÁTIAS DISRTAS FBRRO 5 (TARD) PROBLA : Se cooce el siguiete comportmieto de Luis e u resturte l que v comer: - No es verdd

Más detalles

Sucesiones sumables (Series) Mario Augusto Bunge Ciclo Básico Común Universidad de Buenos Aires

Sucesiones sumables (Series) Mario Augusto Bunge Ciclo Básico Común Universidad de Buenos Aires ucesioes sumbles (eries) Mrio Augusto Buge Ciclo Básico Comú Uiversidd de Bueos Aires El símbolo de sumtori upógse dd u ctidd fiit de úmeros, digmos,, 3,, y cosidermos su sum + + 3 +... + E ocsioes es

Más detalles

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:

1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias: EJERCICIOS de POTENCIAS º ESO FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( ) e) f) (

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de

Más detalles

MATEMATICA SUPERIOR APLICADA

MATEMATICA SUPERIOR APLICADA Mtemátic Superior Aplicd Wilo Crpio Cáceres 6/04/ SUCESIONES y SERIES MATEMATICA SUPERIOR APLICADA Wilo Crpio Cáceres 0 Mtemátic Superior Aplicd Wilo Crpio Cáceres 6/04/ SUCESIONES y SERIES A mis mdos

Más detalles

Ejercicios resueltos de Matemática discreta: Combinatoria, funciones generatrices y sucesiones recurrentes.

Ejercicios resueltos de Matemática discreta: Combinatoria, funciones generatrices y sucesiones recurrentes. Ejercicios resueltos de Mtemátic discret: Combitori, fucioes geertrices y sucesioes recurretes. (º Igeierí iformátic. Uiversidd de L Coruñ José Muel Rmos Gozález Itroducció Estos ejercicios h sido propuestos

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució grtuit y lleg grcis Cieci Mtemátic El myor portl de recursos eductivos tu servicio! Los poliomios de Beroulli y sus pliccioes Pblo De Nápoli versió 0.. Los poliomios de

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS:

EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS: Mtemátic II do Mgisterio IFD Celoes XPRSIÓN DCIMAL D LOS NÚMROS RACIONALS ABSOLUTOS: Vmos clsificr los úmeros rcioles solutos e dos cojutos disjutos D y D P ( D D φ ). P D Q D P Se / el represette cóico

Más detalles

Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1

Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1 Tem 1 Los úmeros reles Mtemátics CCSS1 1º Bchillerto 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros rcioles: Se crcteriz porque puede expresrse: E form de frcció,

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda*

EL TEOREMA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE. Alberto E. J. Manacorda* EL TEOREA DEL PUNTO FIJO Y APLICACIONES SEGUNDA PARTE Alerto E. J. cord* *Igeiero Geogrfo Profesor Titulr de Alisis temtico II Fcultd de Ciecis Ecoomics Estdistic Uiversidd Nciol de Rosrio 5.- Aliccioes

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

UNIVERSIDAD DE CONCEPCIÓN

UNIVERSIDAD DE CONCEPCIÓN CAPITULO 4: CÁLCULO INTEGRAL 4.. Primitivs e itegrció idefiid UNIVERSIDAD DE CONCEPCIÓN Hst este istte hemos resuelto el prolem: dd u fució, hllr sui derivd. E muchs pliccioes importtes prece el prolem

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES . TERMINOLOGÍA Y NOTACIÓN A prtir de los coociietos de ritétic, se desrrollrá u leguje edite síolos térios, pr elorr u serie de técics de cálculo; el leguje ls técics, costitue u r iportte de l teátic,

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE POTENCIACIÓN Y RADICACIÓN DOCENTE: IDALY MONTOYA A.

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE POTENCIACIÓN Y RADICACIÓN DOCENTE: IDALY MONTOYA A. . POTENCIACIÓN FACULTAD DE INGENIERIA Y CIENCIAS BASICAS Llos poteci de u úero reltivo, l producto de torlo coo fctor tts veces coo se quier. Si es u úero reltivo culquier es u úero turl, tedreos l otció,

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)

FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x) FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes

Más detalles

A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES.

A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS PROPIEDADES. CAPÍTULO X. INTEGRACIÓN DEFINIDA SECCIONES A. Defiició de fució itegrble. Primers propieddes. B. Teorems fudmetles del cálculo itegrl. C. Ejercicios propuestos. A. DEFINICIÓN DE FUNCIÓN INTEGRABLE. PRIMERAS

Más detalles

1, 4, 16, 64,. Cuál regla define esta sucesión? Puedes indicar los próximos dos elementos?

1, 4, 16, 64,. Cuál regla define esta sucesión? Puedes indicar los próximos dos elementos? UCEIONE Prof. Evel Dávil Cálculo Reviso ABRIL 0 U sucesió o sucesió cosiste e u eumerció o listo e elemetos los cules los escribe u regl o ptró por tto el ore e sus elemetos es fumetl.,,,,. Cuál regl efie

Más detalles

2. Sucesiones, límites y continuidad en R

2. Sucesiones, límites y continuidad en R . Sucesioes, límites y cotiuidd e R. Sucesioes de úmeros reles { } =,,...,,... es u sucesió: cd turl correspode u rel. Mtemáticmete, como u fució sig cd elemeto de u cojuto u úico elemeto de otro: : N

Más detalles

MATEMÁTICA. 2.- La simplificación de: 3.- Al Simplificar: Se obtiene: A) B) C) D) E) β αβ. 5.- Simplificar. A) 1 B) a -30 C) a 30 D) a E) 3 a

MATEMÁTICA. 2.- La simplificación de: 3.- Al Simplificar: Se obtiene: A) B) C) D) E) β αβ. 5.- Simplificar. A) 1 B) a -30 C) a 30 D) a E) 3 a TEM POTENCICIÓN Y RDICCIÓN I.- Potecició: Es l operció que cosiste e repetir u úmero llmdo se tts veces como idic otro úmero llmdo epoete, l resultdo de est operció se le llm poteci..- L simplificció de:

Más detalles

HISTORIA DE LOS LOGARITMOS

HISTORIA DE LOS LOGARITMOS APUNTES DE HISTORIA DE LAS MATEMÁTICAS VOL., NO., MAYO 003 HISTORIA DE LOS LOGARITMOS M.O. Frcisco Jvier Tpi Moreo MARCO HISTÓRICO El pso de l Edd Medi los tiempos moderos estuvo mrcdo por trsformcioes

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

Liceo Marta Donoso Espejo Raíces para Terceros

Liceo Marta Donoso Espejo Raíces para Terceros . Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES

Mg. Marco Antonio Plaza Vidaurre 1 LA TASA DE INTERÉS ANTICIPADA Y SUS APLICACIONES Mg. Mrco Atoio Plz Viurre LA TASA E ITERÉS ATICIPAA Y SUS APLICACIOES L ts e iterés veci es quell que se utiliz e u operció ficier cuy liquició se efectú l fil el u perioo y l ts e iterés ticip, ifereci

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Unidad 4. Función Exponencial

Unidad 4. Función Exponencial Fució Epoecil Uidd Cocepto Al bombrder u átomo de urio co eutroes, su úcleo se divide e dos úcleos más livios, liberdo eergí y eutroes. Bjo cierts codicioes, es decir, si eiste u ms crític de urio, se

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

REALES EALES. DEFINICIÓN Y LÍMITES

REALES EALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES EALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

Programación Lineal. Introducción. Ejemplo 1:

Programación Lineal. Introducción. Ejemplo 1: Progrmció Liel. Itroducció. E los últimos 7 ños ls empress cd ve myores y complejs h origido u ciert clse de problems de optimició dode el iterés rdic e sutos tles como l mer más eficiete de mejr u ecoomí

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor

Más detalles

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos.

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos. Capítulo 2 Teoría Combiatoria La Teoría Combiatoria es la rama de las matemáticas que se ocupa del estudio de las formas de cotar Aparte del iterés que tiee e sí misma, la combiatoria tiee aplicacioes

Más detalles

La Integral Definida

La Integral Definida Cpítulo 5 L Itegrl Defiid 5.. Prtició U cojuto fiito de putos P = {x, x, x,, x } es u prtició de [, b] si, y solmete si, = x x x x = b. 5.. Sum Superior y Sum Iferior Se y = f(x), u fució cotiu e [, b].

Más detalles

La integral de Riemann

La integral de Riemann Cpítulo 6 L itegrl de Riem Vmos dr u defiició precis de l itegrl de u fució defiid e u itervlo. Este tiee que ser u itervlo cerrdo y cotdo, es decir [,b] co < b R, y l defiició que dremos de itegrl solo

Más detalles

LOS NÚMEROS REALES. n, se llaman números irracionales. Una diferencia entre los

LOS NÚMEROS REALES. n, se llaman números irracionales. Una diferencia entre los LOS NÚMEROS REALES Los úmeros,, so usdos pr cotr Normlmete se los cooce como el cojuto de los úmeros turles, dicho cojuto se lo deot ormlmete co l letr N, sí N {,,K } Si se sum dos úmeros turles el resultdo

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

Media aritmética, media geométrica y otras medias Desigualdades Korovkin

Media aritmética, media geométrica y otras medias Desigualdades Korovkin Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

MATEMÁTICAS: 4ºB ESO Capítulo 3: Expresiones algebraicas. Polinomios. www.apuntesmareaverde.org.es

MATEMÁTICAS: 4ºB ESO Capítulo 3: Expresiones algebraicas. Polinomios. www.apuntesmareaverde.org.es MATEMÁTICAS: ºB ESO Cítulo : Eresioes lgebrics. Poliomios. commos.wikimedi Eresioes lgebrics. Poliomios. ºB ESO Ídice. INTRODUCCIÓN. EXPRESIONES ALGEBRAICAS.. INTRODUCCIÓN.. EXPRESIONES ALGEBRAICAS. POLINOMIOS.

Más detalles

Tema 7: Series Funcionales

Tema 7: Series Funcionales I.T.Telecomuiccioes Curso 99/ Tem 7: Series Fucioles Al estudir el teorem de Tylor se oservó l posiilidd de epresr u fució f ifiitmete derivle como u sum ifiit de fucioes moomiles, lgo sí como u poliomio

Más detalles

SÍLABO DEL CURSO DE GEOMETRÍA DESCRIPTIVA

SÍLABO DEL CURSO DE GEOMETRÍA DESCRIPTIVA SÍLABO DEL CURSO DE GEOMETRÍA DESCRIPTIVA I. INFORMACIÓN GENERAL: 1.1 Fcultd: Igeierí 1.2 Crrer Profesiol: Igeierí Geológic 1.3 Deprtmeto: ---------------- 1.4 Requisito: Dibujo de Igeierí /1º ciclo 1.5

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Matemáticas aplicadas a las Ciencias Sociales

Matemáticas aplicadas a las Ciencias Sociales Mtemátics plicds ls Ciecis Sociles SERIE RESUELVE El liro Mtemátics plicds ls Ciecis Sociles I pr. er curso de Bchillerto, es u or colectiv coceid, diseñd y cred e el Deprtmeto de Edicioes Eductivs de

Más detalles

1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS

1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS C/ Eilio Ferrri, 87 - Mdrid 8017 www.slesissjose.es Deprteto de Ciecis Nturles MT01. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS 1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS Ates de epezr Seguro que ás de u vez

Más detalles

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Deprtmeto de Igeierí de Sitem y Automátic Tem 4. Aálii de l Repuet Temporl de Sitem LTI Automátic º Curo del Grdo e Igeierí e Tecologí Idutril Deprtmeto de Igeierí de Sitem y Automátic Coteido Tem 4.-

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

Cómo realizar cálculos aproximados de integrales definidas con la calculadora Casio fx 9860G?

Cómo realizar cálculos aproximados de integrales definidas con la calculadora Casio fx 9860G? Cómo relizr cálculos proximdos de itegrles defiids co l clculdor Csio fx 986G? Cálculo II Práctic Prof Robiso Arcos OBJETIVO GENERAL: Al culmir est práctic el estudite estrá e cpcidd de relizr cálculos

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,

Más detalles