Distribución normal estándar. Juan José Hernández Ocaña

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Distribución normal estándar. Juan José Hernández Ocaña"

Transcripción

1 Distribución normal estándar Juan José Hernández Ocaña

2 Tipos de variables

3 Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades. Cada modalidad que se presenta se denomina atributo o categoría y la medición consiste en una clasificación de dichos atributos. Las variables cualitativas pueden ser ordinales y nominales Por ejemplo Colores : rojo, azul, blanco Profesiones : Ingeniería, Médico, Administrador Genero : Hombre o mujer

4 Variables Cuantitativas Discretas Son aquellas que toman normalmente valores enteros positivos. Por ejemplo número de alumnos de FACS; número de autos en el estacionamiento; número de reactivos en un examen Asociadas con el proceso de contar Continuas. Son aquellas que pueden tomar numero enteros o fracciones de éstos Peso, volumen Asociadas con el proceso de medir

5 Variable aleatoria Una variable aleatoria es una variable con un valor numérico único, que se determina al azar, para cada resultado de algún procedimiento. Podemos clasificar a las variables aleatorias como: Discretas Continuas

6 Tipos de variables Las Variables aleatorias continuas pueden tomar un número infinito de posibles valores y los valores pueden diferir unos de otros de manera infinitesimal Por ejemplo: el peso, la estatura

7 Distribución Probabilística teórica Una distribución probabilística es una distribución de probabilidades y sí cada una de las cuales está asociada con cada uno de los posibles valores diferentes de la variable aleatoria, entonces podemos decir que es una distribución teórica La probabilidad de cualquier valor particular de x es una proporción en la población

8 Propiedades 1. P(x) = 1 la suma de las probabilidades de todos los valores posibles de la variable aleatoria debe ser igual a P(x) 1 P(x) debe estar entre 0 y 1 para cualquier valor de x

9 Título del eje Al tirar dos dados la probabilidad de obtener la suma de 7 es de 0.166, ya que implica todas las siguientes posibilidades 1+6; 6+1; 2+5; 5+2; 3+4 y 4+3 La probabilidad de obtener la suma de 12 al tirar dos dados es sólo de 0.277

10 Distribución uniforme Distribución uniforme Una variable aleatoria continua tiene una distribución uniforme sí sus valores se dispersan uniformemente a través del rango de posibilidades Podemos tener en el caso de una distribución uniforme las siguientes funciones : una distribución exponencial una distribución uniforme una distribución normal uniforme

11 Distribución exponencial

12 Distribución uniforme

13 Distribución normal uniforme Si la distribución de los datos sigue una distribución normal uniforme entonces podríamos calcular el área bajo la curva de una curva que se distribuye simétricamente

14 Todas las distribuciones de los datos siguen un patrón de una distribución normal uniforme?

15 PORCENTAJE PORCENTAJE MEXICO 2006 CIENCIAS MENOS DE A A A 558 MAYOR A 558 DISTRIBUCIÓN DE RESULTADOS FINLANDIA 2006 CIENCIAS MENOS DE A A A 558 MAYOR A 558 DISTRIBUCIÓN DE RESULTADOS

16 TEOREMA DEL LIMITE CENTRAL Cómo estandarizar las mediciones sí para cada distribución de datos tendríamos un tipo diferente de distribución?

17 DISTRIBUCION PROBABILISTICA NORMAL ( usual o típica) La variable aleatoria normal es de naturaleza continua debido a que su espacio muestral consiste en un número infinitamente grande de valores reales que pueden arreglarse de acuerdo a una escala continua. El TEOREMA CENTRAL DEL LIMITE ( video) Nos dice que la distribución de las medias muestrales es aproximadamente normal sin importar la formar de distribución de la población, siempre y cuando el tamaño de la población sea relativamente grande.

18 Teorema del límite central Si empleamos valores de medias muestrales 1.- La dispersión de los datos es relativamente pequeña, esto es, los datos individuales tienen una mayor dispersión que los datos de medias muestrales. 2.- Cuando el tamaño de las muestras de las medias es grande, la distribución de los datos seguirá una distribución normal

19 La distribución normal es una distribución de datos continuos que produce una curva simétrica en forma de campana Si un histograma de eventos al azar se divide en clases cada vez más pequeñas y sí se tiene un número grande de eventos tendríamos una curva como la que vemos Sí una curva de densidad satisface las siguientes propiedades: 1.- El área total bajo la curva es igual a 100% 2.- Cada punto de la curva tiene una altura vertical superior a 0 Entonces hay una correspondencia entre área y probabilidad La gráfica de una distribución de probabilidad continua se llama curva de densidad

20 Una distribución de probabilidad normal es simétrica. La desviación estándar determina el ancho de la curva La curva se extiende desde menos infinito a mas infinito Consideremos que la mayoría de los valores se encuentran cerca del valor medio Una distribución normal estándar es una distribución normal de probabilidad con una media de cero y una desviación estándar de 1. Sí consideramos que el área total debajo de la curva es igual al 100% entonces en términos de probabilidad podemos afirmar que la probabilidad de encontrar un valor bajo la curva es mayor a cero y su sumatoria de 1

21 Curva normal estándar Hay que considerar que en el punto más alto de la curva normal se tiene la media, la moda y la mediana En ese punto el valor de la puntación z es igual a cero Las puntuaciones Z son las distancias a lo largo de la escala horizontal de un punto en particular respecto a la media en términos de desviación estándar La base está dada en unidades de desviación estándar (puntuaciones Z ) y es la coordenada sobre el eje horizontal entre el promedio y el valor observado en un elemento de la población

22 Aplicaciones de las distribuciones normales MEDIDAS DE POSICIÓN RELATIVA

23 Relación entre Tendencia Central y la Simetría de la distribución Debido a que la curva normal presenta la distribución probabilística de una variable aleatoria continua es imposible referirse a un punto en particular, sólo se puede calcular la probabilidad cuando se hace referencia al cálculo de intervalos Podemos medir el área bajo la curva siempre y cuando se emplee un intervalo

24 Si una variable aleatoria continua tiene una distribución con una gráfica simétrica en forma de campana y puede ser descrita por la siguiente ecuación, entonces decimos que tiene una distribución normal y podemos calcular el área mediante la siguiente ecuación f(x)= Afortunadamente para una curva normal estandarizada ya se han realizado los cálculos para una infinidad de valores y los podemos encontrar empleando tablas o mediante el empleo de software como SPSS,EXCEL MINITAB

25 Calculo del área bajo la curva Uso de tablas

26 Ejercicios USO DE TABLA puntuación z 1.- Cuál es la probabilidad de encontrar un valor entre el intervalo de valores de z de: z= 1.98, y de z = Realice la gráfica correspondiente. 2.- Cuál es la probabilidad de encontrar un valor entre el intervalo de los valores de z = y z= Cuál es la probabilidad de encontrar un valor menor a Z= - 2.0

27 Ejercicios USO DE TABLA puntuación z 4.- Cuál es la probabilidad de encontrar un valor de z menor o igual a Realice la gráfica correspondiente. 5.- Cuál es la probabilidad de un encontrar un valor de z mayor o igual a z= Cuál es la probabilidad de encontrar un valor entre el intervalo de valores de z de : z = y de. z = Realice la gráfica correspondiente 7.- Cuál es la probabilidad de encontrar un valor entre el intervalo de valores de z de: z = y z=

28 Todas las curvas normales tienen la misma forma?

29 F(x)= Dado que y e son constantes, para cada combinación de la media y la desviación estándar tendríamos una curva diferente por lo que es necesario estandarizar

30 Distribución normal estándar Si consideramos que los datos de una variable aleatoria tienen una media igual a cero y una desviación estándar igual a uno, entonces podríamos estandarizar las mediciones para una curva que tiene una distribución normal

31 Utilidad de la curva normal estándar Hay que considerar que las distribuciones normales reales no tienen una desviación estándar de 1 y una media de 0. Por lo que se hace necesario transformar cualquier distribución normal en una distribución estándar para poder seguir realizando los cálculos relacionando área bajo la curva con probabilidad

32 Esta formula nos permite convertir una distribución normal no estándar de una variable a una distribución estándar Esencialmente lo que hacemos es transformar un valor de una variable x en una puntuación z equivalente. La ecuación nos dice que tanto se aleja un valor de x respecto a su media en términos de desviación estándar

33 EJERCICIOS PARA RESOLVER EN CLASE

34 Ejercicio Z1 Según una encuesta sobre adicción al empleo de medios electrónicos, los estudiantes a nivel universitario emplean la computadora para actividades no escolares en un promedio de 27 horas por semana. Suponga que aplica la distribución normal y que la desviación estándar es de 8 horas. Cuál es el porcentaje de la población estudiantil que utiliza la computadora MENOS de 11 horas. Cuál es el porcentaje de la población estudiantil que usa la computadora entre 25 y 35 horas. Cuál es el porcentaje de población estudiantil que usa la computadora entre 30 y 35 horas. Cual es el porcentaje de la población estudiantil que utiliza mas de 28 horas la computadora.

35 Z2 EL profesor de estadística ha determinado que el tiempo necesario para que los estudiantes concluyan un examen final se distribuye normalmente con una media de 100 minutos y una desviación típica de 10 minutos. Cuál es la probabilidad de que un estudiante elegido al aleatoriamente concluya el examen en menos de dos horas? Cuál es la probabilidad de que un estudiante elegido aleatoriamente concluya el examen en 125 minutos o más? Si hay 50 estudiantes en la clase, cuántos de ellos concluirán el examen antes de una hora y 50 minutos?

36 Z3 El salario semanal para un obrero no calificado en Estados Unidos fue de $ 440 el año anterior. Suponga que los datos disponibles indican que los salarios tienen una distribución normal con una desviación estándar de 90 dólares. 1.- cuál es la probabilidad de que gane entre 400 y 500? 2.- Cuánto tiene ganar un obrero para ser considerado entre el 20% de los que ganan más 3.- cuánto tiene que ganar para que le den un bono para vivienda. Se da a los obreros que están en el 5% de los que menos ganan?

37 Z4 Una persona debe tener una puntuación en el 2% superior de la población en un prueba de CI para calificar como miembro de MITAL. Si las puntuaciones de CI tienen un distribución normal con una media de 100 y una desviación estándar de 15 qué puntación debe obtener una persona para ser miembro de MITAL?

38 Un estudio de investigación de mercado revela que una familia típica en la zona norte de la ciudad de México, gasta en promedio 490 pesos cuando acude al cine en los fines de semana. Si los datos siguen una distribución normal y considerando que los datos tienen una desviación estándar de 90 pesos. Cuál es el porcentaje de las familia que gastan más de 200 pesos y menos de 490 pesos? Cuál es el porcentaje de familias que gastan menos de 430 pesos Cuál es el porcentaje de familias que gastan entre 500 y 600 pesos? Cuál es el porcentaje de las familias que gastan más de 550 pesos? Cómo estrategia de mercadotecnia, Cinevamos está pensando ofrecer un par de boletos de regalo para aquellas familias que se encuentran en el 2% de las que más gastan en sus visitas al cine. Cuál sería el consumo mínimo en la visita al cine para poder aspirar a dicho beneficio?

39 Dudas??

40 .- Estudios realizados en la Universidad revelan que el promedio general obtenido por los alumnos (as) de las carreras de Psicología, Pedagogía Y Administración en las asignaturas cursadas en el año 2009 fue de 8.00, y presentan una desviación estándar de 1.5. Si consideramos que la población de LAS TRES carreras es de 480 alumnos (as) y consideramos que los datos se distribuyen normalmente. Que porcentaje de la población obtuvo calificaciones menores a 8.5 Si se otorga una beca al 10% de los alumnos con mejores calificaciones, cuál es el promedio mínimo que debieron obtener para conseguir dicha beca?. Si el CADE está considerando implementar un plan de apoyo para aquellos alumnos que obtuvieron un promedio de 7 o menor, a cuántos alumnos atenderá? La universidad ha decidido que los alumnos que se encuentren dentro del 5% con los peores resultados, cursen programas de recuperación en clases sabatinas. Cuál sería la calificación promedio mínima que se requiere para evitar ser enviado a dichos cursos?

41 Bibliografía empleada Triola,Mario: Estadística Pearson Education. Novena edición. México, 2004.

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

CAPÍTULO 6: VARIABLES ALEATORIAS

CAPÍTULO 6: VARIABLES ALEATORIAS Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos

Más detalles

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL Variable discreta.- Es aquella que casi siempre asume solamente un conjunto

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD JUAN JOSÉ HERNÁNDEZ OCAÑA

DISTRIBUCIÓN DE PROBABILIDAD JUAN JOSÉ HERNÁNDEZ OCAÑA DISTRIBUCIÓN DE PROBABILIDAD VARIABLES DISCRETAS Variable aleatoria UNA VARIABLE ALEATORIA ES AQUELLA DONDE LOS RESULTADOS SE PRESENTAN AL AZAR VARIABLE ALEATORIA DISCRETA Es aquella característica que

Más detalles

Tema 1: Análisis de datos univariantes

Tema 1: Análisis de datos univariantes Tema 1: Análisis de datos univariantes 1 En este tema: Conceptos fundamentales: muestra y población, variables estadísticas. Variables cualitativas o cuantitativas discretas: Distribución de frecuencias

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Estadística descriptiva VARIABLES CUANTITATIVAS

Estadística descriptiva VARIABLES CUANTITATIVAS Estadística descriptiva VARIABLES CUANTITATIVAS DESCRIPTIVA Medidas de tendencia central Media Mediana Moda Medidas de dispersión Rango Varianza Desviación estándar Coeficiente de variación Cuantiles (

Más detalles

Hoja 6: Estadística descriptiva

Hoja 6: Estadística descriptiva Hoja : Estadística descriptiva Hoja : Estadística descriptiva May Dada la siguiente distribución de frecuencias, halle: a) la mediana; b) la media. Número (x) Frecuencia (y) May De enero a septiembre la

Más detalles

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010

Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una

Más detalles

2. Distribuciones de Muestreo

2. Distribuciones de Muestreo 2. Distribuciones de Muestreo Conceptos básicos Para introducir los conceptos básicos consideremos el siguiente ejemplo: Supongamos que estamos interesados en determinar el número medio de televisores

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Distribución Muestral.

Distribución Muestral. Distribución Muestral jujo386@hotmail.com Uno de los objetivos de la Estadística es tratar de inferir el valor real de los parámetros de la población Por ejemplo Cómo podríamos asegurar que una empresa

Más detalles

Teorema del límite central

Teorema del límite central TEMA 6 DISTRIBUCIONES MUESTRALES Teorema del límite central Si se seleccionan muestras aleatorias de n observaciones de una población con media y desviación estándar, entonces, cuando n es grande, la distribución

Más detalles

PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II

PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II 1.- Las tallas de una muestra de 1000 personas siguen una distribucióormal de media 1,76 metros y desviación

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

Unidad I: Descripción y gráficos estadísticos

Unidad I: Descripción y gráficos estadísticos Unidad I: Descripción y gráficos estadísticos A. Objetivo General: Proporcionar los conceptos y métodos necesarios de la Estadística para que el estudiante pueda organizar y resumir datos a partir de una

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Muestreo y Distribuciones en el Muestreo

Muestreo y Distribuciones en el Muestreo Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo

Más detalles

Tema 4 Variables Aleatorias

Tema 4 Variables Aleatorias Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)

PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9) PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12

Más detalles

Habilidades Matemáticas. Alejandro Vera

Habilidades Matemáticas. Alejandro Vera Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos

Más detalles

EJERCICIOS DISTRIBUCIONES MUESTRALES

EJERCICIOS DISTRIBUCIONES MUESTRALES EJERCICIOS DISTRIBUCIONES MUESTRALES 1. Se desea tomar una muestra aleatoria de tamaño n = 200 de la población estudiantil de la FES-C, que vamos a suponer asciende a N = 12000 estudiantes, con el objeto

Más detalles

Construcción de Gráficas en forma manual y con programados

Construcción de Gráficas en forma manual y con programados Universidad de Puerto Rico en Aguadilla División de Educación Continua y Estudios Profesionales Proyecto CeCiMaT Segunda Generación Tercer Año Título II-B, Mathematics and Science Partnerships Construcción

Más detalles

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz

Análisis de datos y gestión n veterinaria. Tema 1 Estadística descriptiva. Prof. Dr. José Manuel Perea Muñoz Análisis de datos y gestión n veterinaria Tema 1 Estadística descriptiva Prof. Dr. José Manuel Perea Muñoz Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, de Septiembre

Más detalles

El modelo de la curva normal. Concepto y aplicaciones

El modelo de la curva normal. Concepto y aplicaciones Métodos de Investigación en Educación 1º Psicopedagogía Grupo Mañana Curso 2009-2010 2010 MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN Tema 7 El modelo de la curva normal. Concepto y aplicaciones Objetivos Comprender

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Qué veremos 1. OBJECTIVOS DEL CURSO. DEFINICIONES IMPORTANTES 2. TIPOS DE VARIABLES 3 5 1. Estadísticos de tendencia central 2. Estadísticos de posición 3. Estadísticos de variabilidad/dispersión

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Tema 1. Tabulación y representación gráfica de los datos

Tema 1. Tabulación y representación gráfica de los datos Tema 1. Tabulación y representación gráfica de los datos Resumen del tema 1.1. Introducción a la Estadística Estadística: ciencia que se ocupa de recoger, clasificar, representar y resumir los datos de

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS I. IDENTIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I CÓDIGO DE LA ASIGNATURA 33102106 ÁREA CIENCIAS BASICAS DE INGENIERIA SEMESTRE SEGUNDO PLAN DE ESTUDIOS 1996 AJUSTE 2002 HORAS TOTALES POR SEMESTRE 64 HORAS

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

La Distribución Normal

La Distribución Normal La Distribución Normal Alejandro Vera Trejo La Distribución ib ió Normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones

Más detalles

Estadística. Análisis de datos.

Estadística. Análisis de datos. Estadística Definición de Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL DEFINICIÓN DE VARIABLE Una variable estadística es cada una de las características o cualidades que poseen los individuos de una población. TIPOS DE VARIABLE ESTADÍSTICAS Ø Variable

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Distribución normal. Resumen. Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 5, Mayo Open Access, Creative Commons.

Distribución normal. Resumen. Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 5, Mayo Open Access, Creative Commons. Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 5, Mayo 2011. Open Access, Creative Commons. Distribución normal Autor: Fernando Quevedo Ricardi (1) Filiación: (1) Departamento de

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos.

Un estudio estadístico consta de las siguientes fases: Recogida de datos. Organización y representación de datos. Análisis de datos. La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2

Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2 Curso de nivelación Estadística y Matemática Cuarta clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2016 Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

GUIA N 1: Estadistica descriptiva.

GUIA N 1: Estadistica descriptiva. UNIVERSIDAD DE VALPARAÍSO Ingeniería Civil, primer semestre 2016 GUIA N 1: Estadistica descriptiva. EJERCICIO 1 Clasificar cada una de las siguientes variables: si es cualitativa (nominal u ordinal) o

Más detalles

CONCEPTOS BÁSICOS DE INFERENCIA

CONCEPTOS BÁSICOS DE INFERENCIA CONCEPTOS BÁSICOS DE INFERENCIA Ciencia encargada de suministrar diferentes técnicas y procedimientos que permitan recolectar, organizar, analizar e interpretar datos. La estadística es un método empleado

Más detalles

Medidas de posición relativa

Medidas de posición relativa Medidas de posición relativa Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 3.1-1 Medidas de posición relativa Son medidas que pueden utilizarse para comparar valores de diferentes

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Primera clase: Estadística Descriptiva Programa Técnico en Riesgo, 2016 Agenda 1 Tipos de variables y niveles de medición 2 3 Tipos de variables Variables Cuantitativas

Más detalles

1. Considera los datos siguientes: 6, 8, 2, 5, 4, 2, 7, 8, 6, 1, 7, 9 calcula lo que se te pide

1. Considera los datos siguientes: 6, 8, 2, 5, 4, 2, 7, 8, 6, 1, 7, 9 calcula lo que se te pide UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS Toda cosa grande, majestuosa y bella en este mundo, nace y se forja en el interior el hombre Gibrán Jalil

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer

Más detalles

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016

Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Estadística Básica COMISIÓN 1. 1 Cuatrimestre 2016 Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Básica COMISIÓN 1 1 Cuatrimestre 2016 s. La palabra Estadística procede del vocablo Estado, pues era función principal de los Gobiernos

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS

Cátedra: Estadística Técnica Facultad de Ingeniería UNCuyo. Índice D. Fernández & M. Guitart TABLA DE CONTENIDOS Cátedra: TABLA DE CONTENIDOS INTRODUCCIÓN Qué es la Probabilidad? Qué es la Estadística? La evolución histórica de la Estadística Algunos conceptos imprescindibles Fuentes de datos Tipos de datos y escalas

Más detalles

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1

1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 2, 1, 1, 4, 1 8 Estadística 81 Distribuciones unidimensionales Tablas de frecuencias En este tema nos ocuparemos del tratamiento de datos estadísticos uestro objeto de estudio será pues el valor de una cierta variable

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD

5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina

Más detalles

ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL Organiza: INSTITUTO CÁNTABRO DE ESTADÍSTICA http://www.icane.es Responsable: Francisco Parra Rodríguez Jefe de Servicio de Estadísticas

Más detalles

ESTADÍSTICA CICLO 6 CAPACITACIÓN 2000

ESTADÍSTICA CICLO 6 CAPACITACIÓN 2000 INTRODUCCIÓN La estadística día a día esta ocupando un lugar importante en nuestra sociedad colaborando así al progreso humano y su bienestar. Aunque en sus comienzos era aplicada únicamente a asuntos

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Tercera clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2015 Agenda 1 Variable aleatoria Continua Valor esperado de una variable

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Medidas de Distribución

Medidas de Distribución Medidas de Distribución Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen éste capítulo. En la hoja 2 y en

Más detalles

MÉTODOS CUANTITATIVOS. Freddy Higuera Departamento de Ingeniería Industrial Universidad Católica del Norte

MÉTODOS CUANTITATIVOS. Freddy Higuera Departamento de Ingeniería Industrial Universidad Católica del Norte MÉTODOS CUANTITATIVOS Freddy Higuera Departamento de Ingeniería Industrial Universidad Católica del Norte Estadística La estadística tradicionalmente ha sido clasificada en dos tipos, la estadística descriptiva

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 6 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas

Más detalles

ÁREAS DE LA ESTADÍSTICA

ÁREAS DE LA ESTADÍSTICA QUÉ ES LA ESTADÍSTICA? Es el arte de realizar inferencias y sacar conclusiones a partir de datos imperfectos. ÁREAS DE LA ESTADÍSTICA Diseño: Planeamiento y desarrollo de investigaciones Descripción: Resumen

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Unidad 1. Obtención, Medición y Representación de Datos. Estadística E.S.O.

Unidad 1. Obtención, Medición y Representación de Datos. Estadística E.S.O. Unidad 1 Obtención, Medición y Representación de Datos Estadística E.S.O. Objetivos Distinguir, localizar y manejar las fuentes de información estadística más usuales que proporcionan información útil.

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Escuela Secundaria. Prontuario del Curso Estadística y Probabilidad

Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Escuela Secundaria. Prontuario del Curso Estadística y Probabilidad Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Escuela Secundaria Prontuario del Curso Estadística y Probabilidad Preparado por:, Ed.D. I. Curso: Probabilidad y estadística, Codificación:

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

Distribuciones Continuas

Distribuciones Continuas Capítulo 5 Distribuciones Continuas Las distribuciones continuas mas comunes son: 1. Distribución Uniforme 2. Distribución Normal 3. Distribución Eponencial 4. Distribución Gamma 5. Distribución Beta 6.

Más detalles

EJERCICIOS RESUELTOS TEMA 1.

EJERCICIOS RESUELTOS TEMA 1. EJERCICIOS RESUELTOS TEMA 1. 1.1. El proceso por el cual se asignan números a objetos o características según determinadas reglas se denomina: A) muestreo; B) estadística; C) medición. 1.2. Mediante la

Más detalles

9.1. Nociones básicas.

9.1. Nociones básicas. TEMA 9. ESTADÍSTICA 9.1. ociones básicas. Población y muestra. Fases y tareas de un estudio estadístico. Tipos de muestreo. Representatividad de las muestras. 9.2. Variable discreta y continua. Tablas

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 36 alumnos de un curso de Estadística de la Universidad de Talca. En esta base de datos

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

TEOREMA DEL LÍMITE CENTRAL

TEOREMA DEL LÍMITE CENTRAL Material de clase n 2 Domingo 13 Junio TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproxima a una distribución normal con una media x = µ

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles