AREA ASIGNATURA: Estadística FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez

Tamaño: px
Comenzar la demostración a partir de la página:

Download "AREA ASIGNATURA: Estadística FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez"

Transcripción

1 AREA ASIGNATURA: Estadística GRADO: SEXTO FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez LOGRO N 1: Interpreta Información estadística, proveniente de diversas fuentes y representaciones. TALLER 1. Para ir de excursión, Clara, María, Luis, Diego, Marcela y Pedro, ahorraron cada uno cierta cantidad de dinero. Esta información aparece representada en el siguiente gráfico: a) Cuál fue el estudiante que ahorró menos dinero? b) Qué estudiantes ahorraron igual cantidad de dinero? c) Qué estudiantes ahorraron entre $ y $ ? d) Cuál es la variable? 2. Se desea saber cuál es el medio de transporte que usan los estudiantes del Colegio Cooperativo para llegar a la institución. Se hizo una encuesta con 90 de los estudiantes y se obtuvo la siguiente información: Medio de transporte Cantidad de estudiantes A pie 29 En bicicleta 7 En bus 35 En carro particular 9 Ruta 10 Total 90 a) Cuál es la población? b) Cuál es la variable? c) Represento la información en un diagrama circular d) Realizo una tabla de frecuencias. 3. En el año 1999, en el río Bogotá se instaló un medidor del nivel del agua del río. Los datos obtenidos durante los primeros seis meses se han graficado en el siguiente diagrama de barras:

2 De acuerdo con la información presentada en el gráfico, es válido afirmar que: (responde F si es falso y V si es verdadera la afirmación). * De marzo a abril el nivel del río subió 40 cm * En el mes de junio el río alcanzó los 280cm * En ninguno de los meses el río alcanzó los 280 cm * El nivel del río fue igual en los meses de febrero y abril * Realiza una tabla de frecuencias con la información de la gráfica 4. En el diagrama se han presentado los resultados de una encuesta realizada a los estudiantes del grado sexto, sobre sus preferencias por tipos de helado. a) Cuál es la población? b) Cuál es la variable? c) Cuál es el tipo de helado menos preferido por los estudiantes del grado sexto? 5. Se pregunta a los estudiantes del grado sexto por sus deportes favoritos. Sus respuestas quedaron consignadas en el siguiente gráfico

3 DEPORTES NOTA: Cada uno de las imágenes equivale a uno. a) Realiza una tabla con la información del pictograma. b) Cuál es el deporte preferido los estudiantes? c) A qué tipo de variable corresponde. d) Cuál es la moda. OBSERVACIONES GENERALES: El taller se debe solucionar en el cuaderno de estadística. Se debe traer regla, lapicero, lápiz, borrador.

4 AREA ASIGNATURA: Estadística FECHA: DOCENTE: Susana Betancur Peláez GRADO: Sexto PERÍODO: Segundo LOGRO Utiliza las medidas de tendencia central para la interpretación de datos no agrupados, provenientes de diversas fuentes. TALLER 1. Realiza un estudio estadístico sobre la cantidad de celulares que hay en las casas de los estudiantes de Sexto grado. Para ello toma una muestra de 30 estudiantes y escribe los resultados obtenidos. La siguiente tabla puede servirte como guía: Cantidad de celulares Frecuencia absoluta (Cantidad de veces que se repite el dato) Identifica los siguientes elementos: Población, Muestra, Tipo de variable. 3. Con la información obtenida construye la Tabla de Frecuencias. Cantidad de celulares Total datos Frecuencia absoluta Frecuencia Acumulada Frecuencia Relativa Frecuencia Relativa Acumulada 4. Calcula las Medidas de Tendencia Central (Media, Mediana, Moda). 5. Representa la información obtenida en alguno los siguientes gráficos: Diagrama Circular, Polígono de Frecuencias, Histograma o Diagrama de Barras. OBSERVACIONES GENERALES: Para la presentación de la prueba cada estudiante podrá ingresar al salón únicamente los siguientes elementos: lápiz, borrador, sacapuntas y calculadora. Cada estudiante debe tener sus propios implementos; no se permite el préstamo de ningún utensilio. No se permite el ingreso de hojas para realizar cálculos, debido a que junto con la evaluación se entregará una hoja para procedimientos. El día de la presentación de la prueba cada estudiante debe llevar $150 para cubrir el costo de su examen y de las hojas de procedimientos.

5 AREA ASIGNATURA: Estadística FECHA: DOCENTE: Susana Betancur Peláez GRADO: Sexto PERÍODO: Tercero NOTA: El plan de mejoramiento del tercer periodo está dado por grupo GRADO 6 A LOGRO Realiza conjeturas acerca de un experimento aleatorio usando las nociones básicas de probabilidad. 1. Relaciona con una línea cada término y su definición: 1. Experimento aleatorio. 2. Espacio muestral. 3. Suceso aleatorio. A. Uno de los posibles resultados de un fenómeno. B. Conjunto de todos los posibles resultados de un fenómeno. C. Actividad en la que no se puede tener certeza del resultado que se va a obtener porque dependen del azar. 2. Describe el espacio muestral asociado a cada uno de los siguientes experimentos aleatorios: a) Lanzar una moneda. b) Lanzar un dado. c) Lanzar una moneda y un dado simultáneamente. 3. De las siguientes opciones cuál no puede catalogarse como experimento aleatorio? Justifica tu respuesta a) Adivinar el número ganador de una lotería. b) Ganar la lotería. c) Lanzar un dado. d) Lanzar una moneda.

6 Justificación: 4. En el experimento aleatorio de lanzar un sólo dado, la única opción que no corresponde a alguno de los posibles sucesos aleatorios asociados al fenómeno, es (justifica tu respuesta): a) Sacar un número mayor o igual que 6. b) Sacar un número menor o igual que 6. c) Sacar un divisor de 6. d) Sacar un número menor que 6. Justificación: 5. De las siguientes opciones la que corresponde al espacio muestral del fenómeno sacar dos bolas simultáneamente de una caja donde hay una bola amarilla (A), una azul (Z) y una roja (R), es: a) S=(AZ, AR, ZR) b) S=( AZ, AR, ZR, AA, ZZ, RR) c) S=(AZ, AR, ZR, ZA, RA, RZ) d) S=(A, Z, R) 6. Selecciona el espacio muestral del fenómeno lanzar una moneda y un dado simultáneamente, tener en cuenta que cara se representa con C y sello con S. a) S=(C1, C2, C3, C4, C5, C6, S1, S2, S3, S4, S5, S6) b) S=(1, 2, 3, 4, 5, 6, C, S) c) S=( C1, C2, C3, C4, C5, C6) d) S=( S1, S2, S3, S4, S5, S6) 7. Selecciona la opción correcta. Justifica tu respuesta: a) El espacio muestral es un subconjunto del suceso aleatorio. b) El suceso aleatorio es un subconjunto del espacio muestral. c) El espacio muestral es un subconjunto del fenómeno aleatorio. d) El suceso aleatorio es un subconjunto del fenómeno aleatorio.

7 Justificación: 8. No es posible calcular el espacio muestral de un partido de fútbol porque (justifica tu respuesta): a) No es un fenómeno aleatorio. b) Es un fenómeno aleatorio. c) No es un suceso aleatorio. d) Es un suceso aleatorio. Justificación: 9. La diferencia entre los términos simultáneamente y sucesivamente es (justifica tu respuesta): a) Simultáneamente indica que dos o más acciones se realizan al mismo tiempo, mientras que sucesivamente señala que hay un orden en la realización de las acciones. b) Sucesivamente indica que dos o más acciones se realizan al mismo tiempo, mientras que Simultáneamente señala que hay un orden en la realización de las acciones. c) No existe diferencia alguna entre ambos términos. d) Simultáneamente se emplea en la Teoría de las probabilidades, y sucesivamente no. Justificación: OBSERVACIONES GENERALES: Para la presentación de la prueba cada estudiante podrá ingresar al salón únicamente los siguientes elementos: lápiz, borrador, sacapuntas y calculadora. Cada estudiante debe tener sus propios implementos; no se permite el préstamo de ningún utensilio. No se permite el ingreso de hojas para realizar cálculos, debido a que junto con la evaluación se entregará una hoja para procedimientos.

8 El día de la presentación de la prueba cada estudiante debe llevar $200 para cubrir el costo de su examen y de las hojas de procedimi GRADO 6 B LOGRO Realiza conjeturas acerca de un experimento aleatorio usando las nociones básicas de probabilidad. 1. Relaciona con una línea cada término y su definición: 1. Experimento aleatorio. 2. Espacio muestral. 3. Suceso aleatorio. A. Uno de los posibles resultados de un fenómeno. B. Conjunto de todos los posibles resultados de un fenómeno. C. Actividad en la que no se puede tener certeza del resultado que se va a obtener porque dependen del azar. 2. Describe el espacio muestral asociado a cada uno de los siguientes experimentos aleatorios: d) Lanzar una moneda. e) Lanzar un dado. f) Lanzar una moneda y un dado simultáneamente. 3. Explica en tus propios términos qué es una probabilidad. 4. Escribe un ejemplo de probabilidad. 5. Escribe el algoritmo (fórmula) para calcular una probabilidad.

9 COLEGIO COOPERATIVO SAN ANTONIO DE PRADO PLAN DE MEJORAMIENTO 6. En un salón hay varios estudiantes. De los chicos, dos tienen 11 años, cuatro tienen 12 años, seis 9 años, y uno 10 años. De las chicas, una tiene 11 años, 2 tiene 10 años, 3 tienen 9 años, cuatro 13 años y una 12 años. Para realizar cierta actividad, el rector saca al azar un estudiante. Determina las siguientes probabilidades: a) Que la persona tenga diez años o menos. b) Que la persona tenga 10 años o más. c) Que sea un hombre. d) Que sea una mujer. 7. En un salón hay 10 alumnas de cabello rubio, 20 alumnas de cabello negro, 10 alumnos de cabello rubio y 5 alumnos de cabello negro. El rector escoge un estudiante al azar para realizar una actividad fuera del aula. Calcula la probabilidad de que la persona seleccionada tenga el cabello rubio. 8. En una ancheta se encuentran las siguientes frutas: 2 manzanas rojas, 5 manzanas verdes, 7 naranjas, 20 fresas, una piña, 3 cerezas, un durazno y 10 peras verdes. La persona a la que le obsequian la ancheta saca una fruta al azar. Calcula la probabilidad de que dicha fruta no sea una fresa. 9. El enunciado La probabilidad de ganar la Lotería de Medellín es 1,25 es falso porque (señala la opción correcta): a) Una probabilidad tiene valores entre 0 y 1. b) Es imposible ganar la Lotería de Medellín. c) La probabilidad de ganar la Lotería de Medellín es mayor que 1,25. d) Una probabilidad tiene valores menores a 1,25. OBSERVACIONES GENERALES: Para la presentación de la prueba cada estudiante podrá ingresar al salón únicamente los siguientes elementos: lápiz, borrador, sacapuntas y calculadora. Cada estudiante debe tener sus propios implementos; no se permite el préstamo de ningún utensilio. No se permite el ingreso de hojas para realizar cálculos, debido a que junto con la evaluación se entregará una hoja para procedimientos. El día de la presentación de la prueba cada estudiante debe llevar $200 para cubrir el costo de su examen y de las hojas de procedimientos.

12 ESTADÍSTICA Y PROBABILIDAD

12 ESTADÍSTICA Y PROBABILIDAD 12 ESTADÍSTICA Y PROBABILIDAD 12.1.- TABLAS DE FRECUENCIA ABSOLUTA Y RELATIVA. PARÁMETROS ESTADÍSTICOS. 12.2.- GRÁFICOS ESTADÍSTICOS 12.3.- CÁLCULO DE PROBABILIDADES. REGLA DE LAPLACE. 12.1.- TABLAS DE

Más detalles

EJERCICIOS DE ESTADÍSTICA Y PROBABILIDAD (2ºeso)

EJERCICIOS DE ESTADÍSTICA Y PROBABILIDAD (2ºeso) EJERCICIOS DE ESTADÍSTICA Y PROBABILIDAD (2ºeso) 1.- Completa las siguientes tablas de frecuencias con las frecuencias relativas, los porcentajes, y, cuando sea posible, con las frecuencias y porcentajes

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

Espacio muestral. Operaciones con sucesos

Espacio muestral. Operaciones con sucesos Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado

Más detalles

COLEGIO NUESTRA SEÑORA DE LA SALETTE AÑO LECTIVO 2014 ÁREA DE ESTADÍSTICA GRADO SEXTO

COLEGIO NUESTRA SEÑORA DE LA SALETTE AÑO LECTIVO 2014 ÁREA DE ESTADÍSTICA GRADO SEXTO ÁREA DE ESTADÍSTICA GRADO SEXTO 1. Recolecta información representa de manera organizada los datos. 2. Describe la forma como parecen distribuirse los datos organizados. Invente un estudio estadístico

Más detalles

Introducción. 1. De acuerdo con lo visto en la animación de la introducción La probabilidad del súper clásico, contesta las siguientes preguntas.

Introducción. 1. De acuerdo con lo visto en la animación de la introducción La probabilidad del súper clásico, contesta las siguientes preguntas. RECOLECTO, ANALIZO MI DATOS Y OBTENGO MIS PROPIAS CONCLUSIONES Resolución de situaciones aleatorias mediante la regla de Laplace Introducción 1. De acuerdo con lo visto en la animación de la introducción

Más detalles

Probabilidad. Experimento aleatorio

Probabilidad. Experimento aleatorio Probabilidad Pierre Simón Laplace 1749-1827 Astrónomo, físico y matemático francés. Creó una curiosa fórmula para expresar la probabilidad de que el sol saliera por el horizonte. Así: d 1 P d 2 Donde d

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una

Más detalles

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales

2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales 2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos

Más detalles

MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades

MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades MATEMÁTICA MÓDULO 2 Eje temático: Estadística y probabilidades 1. REGLA DE LAPLACE Cuando un suceso va a ocurrir, en ciertos casos es posible que se pueda predecir su resultado. Si se puede predecir diremos

Más detalles

UANL UNIVERSIDAD AUTONOMA DE NUEVO LEON PREPARATORIA 23

UANL UNIVERSIDAD AUTONOMA DE NUEVO LEON PREPARATORIA 23 PORTAFOLIO DE PROBABILIDAD Y ESTADÍSTICA CUARTA OPORTUNIDAD FECHA DE EXAMEN: HORA: Nombre del alumno: Grupo: RÚBRICA: Ten en cuenta que el hecho de entregar el trabajo no te otorga automáticamente 40 puntos.

Más detalles

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades.

Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. Guía N 16 Nombre: Fecha: Contenidos: Probabilidad Clásica Objetivos: Calcular probabilidad clásica mediante regla de Laplace. Reconocer elementos básicos en las probabilidades. NOCIONES ELEMENTALES Experimento:

Más detalles

Materia: Matemática de Octavo Tema: Sucesos. Marco teórico

Materia: Matemática de Octavo Tema: Sucesos. Marco teórico Materia: Matemática de Octavo Tema: Sucesos En esta lección aprenderás términos básicos de la estadística y algunas reglas de la probabilidad. También aprenderás cómo enumerar eventos simples y muestras

Más detalles

Nombre: Fecha: Curso:

Nombre: Fecha: Curso: Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? camiseta blanca

Más detalles

2. Las calificaciones de 50 alumnos en Matemáticas han sido las siguientes:

2. Las calificaciones de 50 alumnos en Matemáticas han sido las siguientes: NOMBRE Y APELLIDOS: INSTRUCCIONES: 1. Realizar las actividades en el orden indicado. 2. Entregarlas en hojas numeradas y en funda de plástico. 3. Cada actividad deberá contener tanto el enunciado como

Más detalles

Nombre: Fecha: Curso:

Nombre: Fecha: Curso: REPASO 1 Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? frecuencia

Más detalles

Matemática. Desafío GUÍA DE EJERCITACIÓN AVANZADA. Cálculo de medidas de tendencia central y posición GUICEN040MT22-A16V1

Matemática. Desafío GUÍA DE EJERCITACIÓN AVANZADA. Cálculo de medidas de tendencia central y posición GUICEN040MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Programa Entrenamiento Matemática Cálculo de medidas de tendencia central y posición Desafío La siguiente tabla representa la distribución de frecuencias al lanzar un dado

Más detalles

MATEMÁTICAS 4º ESO. TEMA 3: PROBABILIDAD

MATEMÁTICAS 4º ESO. TEMA 3: PROBABILIDAD MTEMÁTICS 4º ESO. TEM 3: PROBBILIDD 3.1 Sucesos 3.2 Definición de probabilidad 3.3 Probabilidad condicionada 3.4 Probabilidad de la intersección de sucesos 3.5 Probabilidad de la unión de sucesos 3.6 Probabilidad

Más detalles

, -4, 5'123, 5. Representa en la recta racional y por el procedimiento visto en clase, los siguientes números: Usa regla, compás, escuadra, cartabón

, -4, 5'123, 5. Representa en la recta racional y por el procedimiento visto en clase, los siguientes números: Usa regla, compás, escuadra, cartabón Matemáticas. 4º ESO (Opción A) Curso 009/0 Centro Concertado Privado Colegio Sta. María del Carmen Calle Madre Elisea Oliver, 0005 Alicante Ejercicios de repaso Tema : Números. Efectúa las siguientes operaciones

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

EJERCICIOS RESUELTOS TEMA

EJERCICIOS RESUELTOS TEMA EJERCICIOS RESUELTOS TEMA 5. 5.. Una característica de un experimento aleatorio es que: A) conocemos todos los posibles resultados antes de realizarse; B) sabemos con certeza el resultado que se va a obtener

Más detalles

TEMA 1: PROBABILIDAD

TEMA 1: PROBABILIDAD TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja

Más detalles

FICHA 20: Conociendo el uso de las probabilidades

FICHA 20: Conociendo el uso de las probabilidades FICHA 20: Conociendo el uso de las probabilidades A fines del año 2014, Osiptel publicó un informe sobre el estado actual de participación de las operadores móviles en el Perú, a causa de la aparición

Más detalles

Apuntes de Probabilidad

Apuntes de Probabilidad Apuntes de Probabilidad Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si una moneda cae al suelo, no es posible conocer

Más detalles

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i ESTADÍSTICA 1.- Un equipo ciclista quiere estudiar el estado de las bicicletas a lo largo de cuatro años. Toma una muestra de 20 bicicletas y mira los Kilómetros que han recorrido: Kilómetros recorridos:

Más detalles

Ejemplos de actividades

Ejemplos de actividades Matemática Unidad 4 133 Ejemplos de actividades OA 24 Leer e interpretar gráficos de barra doble y circulares y comunicar sus conclusiones. Actividades 1 y 2 Usar representaciones para comprender mejor

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA : PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva, Ejercicio

Más detalles

También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc.

También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc. 3º ESO E UNIDAD 16.- SUCESOS ALEATORIOS. PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------

Más detalles

BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD.

BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD. BLOQUE DE EJERCICIOS. ESTADÍSTICA Y PROBABILIDAD. Estadística Unidimensional 1. Se quieren realizar los siguientes estudios: Eficacia de un medicamento en 120 pacientes. Resistencia que presentan a la

Más detalles

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10 1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:

Más detalles

EJERCICIOS DE PROBABILIDAD.

EJERCICIOS DE PROBABILIDAD. EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad

Más detalles

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD

el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo

Más detalles

Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección?

Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección? . Un juego de azar consiste en escoger números distintos del al 7. De cuántas formas se puede realizar esta selección?. 7 0 4 840 De cuántas maneras distintas se pueden ordenar personas en un círculo?.

Más detalles

ESCUELA PREPARATORIA OFICIAL No. 1 ANEXA A LA ENSEM

ESCUELA PREPARATORIA OFICIAL No. 1 ANEXA A LA ENSEM 2017. AÑO DEL CENTENARIO DE LAS CONSTITUCIONES MEXICANA Y MEXIQUENSE DE 1917 ESCUELA PREPARATORIA OFICIAL No. 1 ANEXA A LA ENSEM GUIA: FINAL TURNO: MATUTINO MATERIA: PROBABILIDAD Y ESTADÍSTICA DINÁMICA

Más detalles

UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces.

UNIDAD: GEOMETRÍA PROBABILIDADES I. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. C u r s o : Matemática º Medio Material Nº MT - UNIDAD: GEOMETRÍA PROBABILIDADES I NOCIONES ELEMENTALES Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido

Más detalles

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.

Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el

Más detalles

Ejemplos de actividades

Ejemplos de actividades 44 Programa de Estudio / º básico Ejemplos de actividades OA 26 Leer, interpretar y completar tablas, gráficos de barra simple y gráficos de línea, y comunicar sus conclusiones. Actividad REPRESENTAR Usar

Más detalles

BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD

BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD BLOQUE 5: EJERCICIOS DE ESTADÍSTICA PROBABILIDAD EJERCICIO 1 Considera el siguiente conjunto de datos bidimensionales: X 1 1 2 3 4 4 5 6 6 y 2.1 2.5 3.1 3.0 3.8 3.2 4.3 3.9 4.4 a)sin efectuar cálculos

Más detalles

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.

Más detalles

2.- Teoría de probabilidades

2.- Teoría de probabilidades 2.- Teoría de probabilidades La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir en un experimento aleatorio, con el fin de cuantificar dichos resultados

Más detalles

Teoría de conjuntos y probabilidad

Teoría de conjuntos y probabilidad Teoría de conjuntos y probabilidad M.Sc. Cindy Calderón Arce Lic. Rebeca Soĺıs Ortega Jornada de capacitación CIEMAC Alajuela 2016 Junio, 2016 Jornada de capacitación 1 / 21 Contenidos 1 2 3 2 / 21 Colección

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

Apuntes de Probabilidad para 2º E.S.O

Apuntes de Probabilidad para 2º E.S.O Apuntes de Probabilidad para 2º E.S.O 1. Experimentos aleatorios Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si

Más detalles

Guía del docente. Guía para el docente Estadística y Probabilidad Probabilidad de eventos compuestos y condicionada

Guía del docente. Guía para el docente Estadística y Probabilidad Probabilidad de eventos compuestos y condicionada Guía del docente Descripción curricular: Nivel: 3. Medio Subsector: Matemática Unidad temática: Estadística y probabilidad Palabras claves: probabilidad, sucesos compuestos, eventos condicionados. Contenidos

Más detalles

A) Solo I B) Solo II C) Solo III D) Solo I y III E) Solo II y III

A) Solo I B) Solo II C) Solo III D) Solo I y III E) Solo II y III GUIA DOS P.S.U. PROBABILIDADES ) La probabilidad de extraer una bola roja de una caja es. Cuál es la probabilidad de sacar una bola que no sea roja? Falta Información ) Se lanzan dos dados de distinto

Más detalles

EVALUACIÓN Módulo 4 Matemática. Quinto año básico

EVALUACIÓN Módulo 4 Matemática. Quinto año básico EVALUACIÓN Módulo 4 Matemática Quinto año básico Mi nombre Mi curso Nombre de mi escuela Fecha 2013 Instrucciones: Lee con atención el enunciado de las preguntas y haz un círculo a la letra con la respuesta

Más detalles

Ejercicios elementales de Probabilidad

Ejercicios elementales de Probabilidad Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.

Más detalles

EJERCICIOS DE MATEMÁTICAS B

EJERCICIOS DE MATEMÁTICAS B EJERCICIOS DE MATEMÁTICAS B 4º ESO 1. Un avión vuela entre dos ciudades que distan 80 km. Las visuales desde el avión a A a B forman ángulos de 29 43 con la horizontal, respectivamente. A qué altura está

Más detalles

a. ambas bolas sean punteadas b. la primera bola sea negra y la segunda punteada c. una bola sea negra y una rayada

a. ambas bolas sean punteadas b. la primera bola sea negra y la segunda punteada c. una bola sea negra y una rayada Ejercicios 1. (a) Cual es la probabilidad de obtener una suma de 9 o más, al arrojar un par de dados? (b) Cuál es la probabilidad de obtener un total de 7 al arrojar un par de dados? 2. Una caja contiene

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es:

La amplitud del intervalo ( ) se determina considerando un número dado de intervalos ( ) y el rango obtenido, esto es: La estadística es una materia dedicada a la recopilación, organización, estudio y análisis de datos de un hecho en particular. La estadística descriptiva tabula, representa y describe una serie de datos

Más detalles

Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas

Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: PROBABILIDAD Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

10 ESTADÍSTICA Y PROBABILIDAD

10 ESTADÍSTICA Y PROBABILIDAD ESTADÍSTICA Y PROBABILIDAD EJERCICIOS PARA ENTRENARSE Datos estadísticos. s. Se ha preguntado a lectores cuál fue el género del último libro que leyeron y se ha elaborado la siguiente tabla con los resultados.

Más detalles

La feria Plan de clase (1/2) Escuela: Fecha: Profesor (a):

La feria Plan de clase (1/2) Escuela: Fecha: Profesor (a): La feria Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 2 Secundaria Eje temático: MI Contenido: 8.1.8 Comparación de dos o más eventos a partir de sus resultados posibles, usando

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Ejemplo: Los miembros del Colegio de Ingenieros del Estado Cojedes.

Ejemplo: Los miembros del Colegio de Ingenieros del Estado Cojedes. Qué es la Estadística? En el lenguaje común, la palabra se emplea para denotar un conjunto de calificaciones o de números, por ejemplo: una persona puede preguntar has visto las últimas estadísticas acerca

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Capítulo 13 Probabilidad y Estadística H istóricamente el hombre ha querido saber que es lo que le prepara el destino, conocer el futuro para poder prepararse, y hasta el día de hoy no hemos logrado tener

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS. ASIGNATURA: MATEMATICAS. NOTA DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION

Más detalles

Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA

Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA INSTRUCCIONES: Escribe el enunciado del problema con su procedimiento correspondiente. ENCIERRA TUS RESPUESTAS. PROBLEMA

Más detalles

Guía Nº 5 Síntesis Unidad 5: Sistemas de Ecuaciones Lineales

Guía Nº 5 Síntesis Unidad 5: Sistemas de Ecuaciones Lineales Guía Nº 5 Síntesis Unidad 5: Sistemas de Ecuaciones Lineales Departamento de Matemática Miss Romina Heredia Nombre: Curso: II medio Rut: Nº de lista: Fecha: OBJETIVOS 1. Ubicar rectas en el plano cartesiano

Más detalles

ESTADÍSTICA CICLO 6 CAPACITACIÓN 2000

ESTADÍSTICA CICLO 6 CAPACITACIÓN 2000 INTRODUCCIÓN La estadística día a día esta ocupando un lugar importante en nuestra sociedad colaborando así al progreso humano y su bienestar. Aunque en sus comienzos era aplicada únicamente a asuntos

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO % MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO & 2 Leyendo, interpretando y organizando datos CLASE CUADERNO DE TRABAJO Cuaderno de

Más detalles

Qué se obtiene? Plan de clase (1/2) Escuela: Fecha: Profesor (a):

Qué se obtiene? Plan de clase (1/2) Escuela: Fecha: Profesor (a): Qué se obtiene? Plan de clase (1/2) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 ecundaria Eje temático: MI Contenido: 9.1.6 Conocimiento de la escala de la probabilidad. nálisis de las características

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos

Más detalles

Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.

Más detalles

ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE

ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE ESTADÍSTICA DE LA PROBABILIDAD GUIA 2: CÁLCULO BÁSICO DE PROBABILIDADES Y REGLAS DE PROBABILIDAD DOCENTE: SERGIO ANDRÉS NIETO DUARTE En la anterior sesión vimos los conceptos básicos de probabilidad y

Más detalles

1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD

1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1 1.- FRECUENCIAS Para organizar y analizar una serie de datos estadísticos se utiliza una tabla de frecuencias Tabla de frecuencias Valores (xi) 0 1 2 Frecuencia

Más detalles

TALLERES 9 PRIMER PERÍODO COLEGIO LUIS CARLOS GALÁN SARMIENTO

TALLERES 9 PRIMER PERÍODO COLEGIO LUIS CARLOS GALÁN SARMIENTO TALLER No. REPASO TALLERES 9 PRIMER PERÍODO COLEGIO LUIS CARLOS GALÁN SARMIENTO Referencias: Matemáticas 9 Vol 1 Vol2 Santillana - Hipertexto 9 - Glifos 9 2017 TALLER No. 1 Área de Matemáticas, FECHA DE

Más detalles

Matemáticas Propedéutico para Bachillerato. Introducción

Matemáticas Propedéutico para Bachillerato. Introducción Actividad 5. Nociones básicas de Probabilidad y Estadística. Introducción Alguna vez te has preguntado qué es la estadística? Y más aún eso a mi para qué me sirve? La estadística no es sino un sistema

Más detalles

Apuntes de Probabilidad 4ESO

Apuntes de Probabilidad 4ESO Apuntes de Probabilidad 4ESO Existen fenómenos donde la concurrencia de unas circunstancias fijas no permite anticipar cuál será el efecto producido. Por ejemplo, si una moneda cae al suelo, no es posible

Más detalles

Curs MAT CFGS-17

Curs MAT CFGS-17 Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir

Más detalles

PLAN DE MEJORAMIENTO POR PERIODO

PLAN DE MEJORAMIENTO POR PERIODO Secretaria de Educación Bogotá D.C. COLEGIO INSTITUTO TECNICO JUAN DEL CORRAL "La formación humana, científica y tecnológica en el desarrollo del ciudadano del siglo XXI" MODALIDAD TÉCNICA CON ESPECIALIZACIÓN

Más detalles

Al preguntar a 30 parejas jóvenes sobre el número de hijos que desearían tener, hemos obtenido estas respuestas:

Al preguntar a 30 parejas jóvenes sobre el número de hijos que desearían tener, hemos obtenido estas respuestas: Ejercicio nº 1.- Al preguntar a 30 parejas jóvenes sobre el número de hijos que desearían tener, hemos obtenido estas respuestas: a) Elabora una tabla de frecuencias absolutas, relativas, acumuladas y

Más detalles

14 Probabilidad. Qué tienes que saber? Actividades finales. Sugerencias didácticas. Soluciones de las actividades

14 Probabilidad. Qué tienes que saber? Actividades finales. Sugerencias didácticas. Soluciones de las actividades 14 Probabilidad Qué tienes que saber? 14 QUÉ tienes que saber? ctividades Finales 14 Ten en cuenta Un experimento aleatorio es aquel que tiene un resultado que no se puede predecir. Los sucesos aleatorios

Más detalles

{ } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } Probabilidad PREGUNTAS MÁS FRECUENTES Repaso de 1º de Bachillerato 1. A qué se denomina Espacio Muestral? Dada una experiencia aleatoria, se denomina Espacio Muestral al conjunto de los resultados posibles

Más detalles

EVALUACIÓN Módulo 4 Matemática. Sexto año básico

EVALUACIÓN Módulo 4 Matemática. Sexto año básico EVALUACIÓN Módulo 4 Matemática Sexto año básico Mi nombre Mi curso Nombre de mi escuela Fecha 2013 Instrucciones: Lee con atención el enunciado de las preguntas y haz un círculo a la letra con la respuesta

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

PLANIFICACIÓN DE MATEMÁTICA SEGUNDO MEDIO

PLANIFICACIÓN DE MATEMÁTICA SEGUNDO MEDIO Liceo Pedro de Valdivia La Calera PLANIFICACIÓN DE MATEMÁTICA SEGUNDO MEDIO - 2015 Nombre del Profesor: Eduardo H. Guerra C. Título: Interpretando la Información numérica UNIDAD 4: DATOS Y AZAR O.F.T.:

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO % MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO & 2 Leyendo, interpretando y organizando datos CLASE 4 CUADERNO DE TRABAJO Cuaderno de

Más detalles

Probabilidad. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces.

Probabilidad. Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. Probabilidad Definiciones Experimento: Procedimiento que se puede llevar a cabo bajo las mismas condiciones un número indefinido de veces. Experimento aleatorio: Es aquel experimento cuyo resultado no

Más detalles

LA REPRESENTACIÓN DE DATOS

LA REPRESENTACIÓN DE DATOS LA REPRESENTACIÓN DE DATOS Qué es la Estadística? La Estadística es una ciencia que recoge datos, los clasifica y representa de un modo esquemático los resultados obtenidos del estudio de un gran número

Más detalles

Nombre del estudiante: Sección: á

Nombre del estudiante: Sección: á Nombre del estudiante: Sección: á A. En una caja hay 7 bolas azules enumeradas del 1 al 7, 9 bolas amarillas enumeradas del 3 al 11, y 10 bolas verdes enumeradas del 4 al 13. Si se saca una bola al azar,

Más detalles

TEMA 11. PROBABILIDAD

TEMA 11. PROBABILIDAD TEMA 11. PROBABILIDAD 11.1. Experimentos aleatorios. - Espacio muestral asociado a un experimento aleatorio. - Sucesos. Operaciones con sucesos. 11.2. Probabilidad. - Regla de Laplace 11.3. Experiencias

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

Las edades de los 24 participantes de un taller de arte se representan en la tabla adjunta. Según los datos, el valor numérico de z es

Las edades de los 24 participantes de un taller de arte se representan en la tabla adjunta. Según los datos, el valor numérico de z es PROGRAMA EGRESADOS Ejercicios PSU 1. Las edades de los 24 participantes de un taller de arte se representan en la tabla adjunta. Según los datos, el valor numérico de z es A) B) C) D) E) 2. 8 9 15 18 faltan

Más detalles

SILABO POR ASIGNATURA 1. INFORMACION GENERAL [ECONOMIA] ESTADISTICA I - GRUPO: 1 [PRESENCIAL] 2. DESCRIPCION DE LA ASIGNATURA

SILABO POR ASIGNATURA 1. INFORMACION GENERAL [ECONOMIA] ESTADISTICA I - GRUPO: 1 [PRESENCIAL] 2. DESCRIPCION DE LA ASIGNATURA SILABO POR ASIGNATURA 1. INFORMACION GENERAL Coordinador: SALGADO CORDOVA CATALINA ISABEL(catalina.salgadoc@ucuenca.edu.ec) Facultad(es): [FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS] Carrera(s):

Más detalles

EJERCICIOS PROBABILIDAD

EJERCICIOS PROBABILIDAD EJERCICIOS PROBABILIDAD 0. Razona y di si los siguientes experimentos son aleatorios o deterministas: Dejar caer una moneda desde una altura determinada y medir el tiempo que tarda en llegar al suelo.

Más detalles

FICHA DE REPASO: ESTADÍSTICA

FICHA DE REPASO: ESTADÍSTICA FICHA DE REPASO: ESTADÍSTICA 1. Indica la población y la muestra de los siguientes estudios estadísticos: a) El número de móviles de los alumnos de 2º de la E.S.O de nuestro instituto. b) La altura de

Más detalles

Se llaman sucesos aleatorios a aquellos acontecimientos en cuya realización influye el azar.

Se llaman sucesos aleatorios a aquellos acontecimientos en cuya realización influye el azar. . SUCESOS ALEATORIOS. En nuestra vida diaria nos encontramos con muchos acontecimientos de los que no podríamos predecir si ocurrirán o no, como por ejemplo si me tocará la lotería, el número que saldrá

Más detalles

TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen.

TEMAS BIMESTRAL. Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Profesora: Mónica Marcela Parra Zapata A continuación se presentan los temas que serán evaluados en el Bimestral de estadística del grado octavo. El grado octavo 1 presentará el bimestral el miércoles

Más detalles

ESCUELA PREPARATORIA OFICIAL NÚM. 11 PROGRAMA DEL ESTUDIANTE POR MATERIA PRIMER PERIODO DE TRABAJO DEL SEGUNDO SEMESTRE DEL CICLO ESCOLAR

ESCUELA PREPARATORIA OFICIAL NÚM. 11 PROGRAMA DEL ESTUDIANTE POR MATERIA PRIMER PERIODO DE TRABAJO DEL SEGUNDO SEMESTRE DEL CICLO ESCOLAR EPO ECUELA PREPARATORIA OFICIAL NÚM. CUAUTITLAN IZCALLI, MEX. PROGRAMA DEL ETUDIANTE POR MATERIA PRIMER PERIODO DE TRABAJO DEL EGUNDO EMETRE DEL CICLO ECOLAR 204-205 Materia: Probabilidad y Estadística

Más detalles

Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta.

Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta. Resolución de exámenes NOTA: La opción resaltada en naranja es la opción correcta. Geometría Ejercicio 1: La suma de los ángulos internos de un cuadrilátero vale: A. Depende el cuadrilátero B. 90 C. 360

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

Remedial Unidad N 4 Matemática Segundo Medio 2017

Remedial Unidad N 4 Matemática Segundo Medio 2017 Remedial Unidad N 4 Matemática Segundo Medio 2017 GUÍA DE TRABAJO REMEDIAL N 1 UNIDAD N 4 Nombre Curso 2º Medio Fecha Objetivo Habilidad cognitiva Tiempo Determinan las medidas de tendencia central para

Más detalles

CONDICIONES DE DILIGENCIAMIENTO DE LA GUÍA DE ESTUDIO

CONDICIONES DE DILIGENCIAMIENTO DE LA GUÍA DE ESTUDIO GUÍA DE ESTUDIO PARA LA RECUPERACIÓN ÁREA: MATEMÁTICAS LOGROS DEL GRADO: 1. Apropiación del lenguaje matemático que le permita al estudiante construir, resolver, reflexionar, argumentar, medir, relacionar,

Más detalles

ESPAÑOL LOS CUADERNOS DEBERÁN SER FORRADOS DE PAPEL LUSTRE COLOR ROJO

ESPAÑOL LOS CUADERNOS DEBERÁN SER FORRADOS DE PAPEL LUSTRE COLOR ROJO 1 PAQUETE DE CUADERNOS Y CONTROLES DE TAREAS (MATERIAS EN ESPAÑOL, E ) $440 1 REGLA METÁLICA DE 30 CM. Y TIJERAS PUNTA REDONDA 1 RESISTOL EN BARRA Y LÍQUIDO 850, 250 ML. 50 HOJAS DE COLORES TAMAÑO CARTA

Más detalles

Cuadernillo Ejercitación Medidas de posición y dispersión ESTADÍSTICA DESCRIPTIVA. Nos permite estudiar las. Medidas de tendencia central.

Cuadernillo Ejercitación Medidas de posición y dispersión ESTADÍSTICA DESCRIPTIVA. Nos permite estudiar las. Medidas de tendencia central. PROGRAMA BASE Cuadernillo Ejercitación Medidas de posición y dispersión Mapa conceptual MATEMÁTICA ESTADÍSTICA DESCRIPTIVA Medidas de posición Nos permite estudiar las Medidas de dispersión Ejemplos de

Más detalles

GUIA DEL CURSO DE PROBABILIDAD Y ESTADÍSTICA (Junio 2012) Medidas de Tendencia central

GUIA DEL CURSO DE PROBABILIDAD Y ESTADÍSTICA (Junio 2012) Medidas de Tendencia central GUIA DEL CURSO DE PROBABILIDAD Y ESTADÍSTICA (Junio 2012) Medidas de Tendencia central Promedio: es la suma de los datos, sobre la cantidad de datos. 8, 8, 4, 6, 8, 1, 2, 64, 8, 3 X: 112/10 = 11.2 Moda:

Más detalles