Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "Geometria Analítica Laboratorio #1 Sistemas de Coordenadas"

Transcripción

1 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles. 1) A(2, 5), B( 8, 1), C(10, 7) 2) A( 3, 4), B( 8, 5), C( 6, 2) 3. Demostrar que los puntos dados forman un triángulo rectángulo y hallar su área. 1) (0, 9), ( 4, 1), (3, 2) 2) (3, 2), ( 2, 3), (0, 4) 4. Demostrar que los puntos dados son colineales 1) (0, 6), (2, 7), ( 2, 3) 2) (3, 7), ( 3, 5), (0, 1) 5. Hallar las coordenadas del punto que equidista de los tres puntos dados. 1) A(1, 2), B(5, 0), C(3, 6) 2) A(2, 1), B(3, 1), C(6, 1) 6. Hallar. 1) Encontrar k para que los puntos (1, 1),( 1, 1) y (0, k) tengan la misma distancia. 2) Encuentre k tal que el punto (1, k) sea colineal con (7, 1) y (4, 1).

2 Laboratorio #2 Pendientes y Razones de Cambio 1. Hallar la pendiente de inclinación de la recta que pasa por los puntos dados. 1) (2, 3), (1, 0) 2) (1, 1), ( 4, 3) 2. Hallar los ángulos interiores del triángulo cuyos vértices son los puntos dados. 1) (3, 5), (1, 4), (1, 1) 2) (6, 1), (2, 0), (4, 5) 3. Resuelve los siguientes problemas. 1) Las coordenadas de los puntos medios de los lados de un triángulo son (3, 2), ( 1, 2) y (5, 4). Hallar las coordenadas de sus vertices. 2) Hallar la pendiente de la recta forma un ángulo de 45 con la recta que pasa por los puntos (2, 1) y (5, 3). 3) La pendiente de una recta que pasa por el punto A(3,2) es igual a 3 4. Situar dos puntos sobre la recta que disten 5 unidades del punto A. 4) La recta l 1 pasa por los puntos(3, 2) y ( 2, 1) y otra recta l 2 que pasa por el punto ( 8, 10) y A cuya abscisa es 1. Encontrar la ordenada del punto A sabiendo que l 1 y l 2 son perpendiculares 5) Tres de los vertices de un paralelogramo son ( 1, 4), (1, 1) y (6, 1). Si la ordenada del cuarto vertice es de 6. Cual es la abscisa? 6) Demostrar que los cuatro puntos (2, 2), (5, 6), (9, 9), (6, 5) son los vertices de un rombo y que sus diagonales son prependiculares. 4. Hallar las coordenadas del punto P (x, y) que divide al segmento determinado por P 1 y P 2 en la razón r = P1P P 2P. 1) P 1 ( 5, 2)P 2 (1, 4); r = 3 5

3 Laboratorio #3 Gráficas de Ecuaciones 1. Estudiando las intersecciones con los ejes coordenados, simetrias, extensiones y asíntotas, trazar la gráfica de la ecuación dada. 1) x 2 2x + y 3 = 0 2) 4x 2 9y = 0 3) x 2 + y 2 + 2x 3y + 1 = 0 4) 3xy 6 + x 2 3xy + y = 0 5) y(x + 2)(x 4) 8 = 0 6) xy 3y x = 0 2. En el mismo sistema de coordenadas trazar la gráfica de las ecuaciones dadas. Resolver el sistema algebraicamente. 1) 2x 2 + y 2 = 6; x 2 y 2 4 = 0 2) x 2 4y = 0; x 2 y + 4y 8 = 0

4 Laboratorio #4 Lugares Geométricos 1. Hallar la ecuación del lugar geometrico de los puntos, P(x,y) tales que: 1) Su distancia al punto (3, 2) es igual a la mitad de su distancia al punto ( 1, 3.) 2) La diferencia de sus distancias a los puntos fijos (3, 2) y ( 5, 2) es igual a 6. 3) Encontrar la ecuacion del lugar geometrico de los puntos P (x, y) que equidistan de ( 7, 1) y (0, 2). 4) Equidiste de Y = 4 y de (1, 1). 2. Resuelve las siguiente problemas 1) Dados los puntos A( 2, 3) y B(3, 1). Hallar la ecuación del lugar geométrico de los puntos P (x, y) de modo que la pendiente PA sea el recíproco de signo contrario de la pendiente P B. 2) Hallar el lugar geométrico tal que la suma de los cuadrados de la suma de las distancias entre el punto P (x, y) al punto (3, 5) y de P a ( 4, 2) es igual a 30. 3) Hallar P (x, y) tal que la diferencia de distancias de P a (2, 2) y ( 2, 2) es siempre igual a 5. 4) Hallar P (x, y) tal que la distancia de P a ( 4, 3) es siempre igual al doble de distancia de P (x, y) al eje X. 5) Hallar P (x, y) tal que el producto de la distancia a los ejes coordenados es siempre igual a 10.

5 1. Resuelve los siguientes problemas. Laboratorio #5 La Linea Recta 1) Hallar el valor k en la ecuación 2x + 3y + k = 0 de la forma que dicha recta determine con los ejes coordenados un triángulo rectángulo de área 27 unidades cuadradas. 2) Encuentre la ecuación de la recta que pasa por (1, 4) y su paralela a la recta 3x 2y = 40. 3) Halla el valor de k tal que kx + (2k 3)y = k 3 sea perpendicular a 4x 3y = 8. 4) Hallar el ángulo formado por las rectas 4x 9y + 11 = 0 y 3x + 2y 7 = 0. 5) Encuentre la ecuación de la recta l 1 que es perpendicular a la recta que pasa por (1, 1) y ( 3, 5), mientras que la recta l 1 pasa por ( 2, 3). 2. Para el triángulo cuyos vertices son los puntos A(2, 4), B(5, 7), C(6, 2). 1) Las ecuaciones de sus alturas. 2) Las ecuaciones de sus medianas. 3) Su área. 4) Demostrar que los puntos de intersección de las alturas, medianas y mediatrices son colineales. 3. Para el siguientre triángulo realizar las instrucciones anteriores (Ecuaciones de sus alturas y medianas. Área y demostrar que los puntos de intersección de las alturas medianas y mediatrices son colineales) 1) ( 6, 6) (1, 5) ( 1, 3).

6 Laboratorio #6 Familia de Rectas 1. Escribir la ecuacion de la familia de rectas que cumples la condicion dada. 1) La suma de las coordenadas al origen es 8 2) La suma de las coordenadas al origen sea 6 3) Tienen pendiente de π 4 4) De abscisa el origen es 7 5) El cocient de su ordenada sobre su abscisa es 4 2. Sin obtener el punto de interseccion de las rectas, resuelva los siguientes ejercicios. 1) Hallar la ecuacion de la perpendicular a la recta 4x+y = 1 que pase por el punto de interseccion a las rectas 2x 5y + 3 = 0 y x 3y = 7. 2) Hallar la ecuacion de la recta que pasa por el punto de interseccion de las rectas x 3y + 1 = 0 y 2x + 5y 9 = 0 cuya distancia al origen es 2. 3) Hallar la ecuacion de la familia de rectas que pasa por la interseccion de x = 0 y 4x + 2y 5 = 0 y con pendiente igual a Resuelva los siguientes ejercicios. 1) Halle las longitudes de los lados del triangulos cuyos vertices son los puntos (-3,-4), (5,1) y (-2,6). 2) Encuentre la distancia de la recta 5x = 12y + 26 a los puntos (3,5), (-4,1) y (9,0). 3) Hallar la ecuacion del lugar geometrico de los puntos que equidistan de la recta 3x 4y 2 = 0 y el punto (-1,2).

7 Laboratorio #7 Circunferencia 1. Reducir la ecuacion dada a la forma ordinaria, determinar las coordenadas y el valor del radio de la circunferencia descrita por esta. 1) 2x 2 + 2y 2 + 6x 4y 8 = 0 2) 4x 2 + 4y 2 16x + 48y 40 = 0 3) 25x y x 20y 62 = 0 4) x 2 + y 2 + 6x + 4y = 0 2. Hallar la ecuacion de la circunferencia descrita por las ondiciones dadas. 1) Tiene su centro en (5,-2) y pasa por el punto (-1,5) 2) Pasa por el punto (5,9) y es tangente a la recta x + 2y 3 = 0 en el punto (1,1) 3) Pasa por los puntos (5,3), (6,2), (3,-1) 3. Resuelve los siguientes problemas: 1) Hallar la ecuacion de la circunferencia que tiene su centro en (-2,2) y pasa por las intersecciones de las circunferencias x 2 + y 2 + 3x 2y = 0 y x 2 + y 2 2x y 6 = 0 2) Hallar la longitud de la tangente trazada desde el punto (6,4) a la circunferencia x 2 + y 2 + 4x + 6y 19 = 0 3) Una circunferencia de radio 13 es tangente a la circunferencia x 2 + y 2 4x + 2y 47 = 0 en el punto (6,5). Hallar su ecuacion. 4) Hallar la ecuacion de la tangente ala circunferencia x 2 + y 2 2x 6y 3 = 0 en el punto (-1,6)

8 Laboratorio #8 Transformacion de Coordenadas 1. Determinar las coordenadas del punto p cuando los ejes coordenados son transladados al nuevo origen O. 1) P(5,2) O (-3,-4) 2) P(π, 2π) O (0, π) 3) P(3 2, 2) O ( , 1 + 2) 2. Hallar la transformada de la ecuacion dada cuando los ejes coordenados son transladados al nuevo origen O indicado. 1) y 2 + 8x 6y + 25 = 0 ; O (-2,3) 2) x 2 + 2x + 3y + 7 = 0 ; O (-1,-2) 3) 4x 2 y 2 8x 10y = 25 ; O (1,-5) 4) 2y 2 + 3x 2 + 8y + 8 = 0 ; O (-2,1) 3. Encontrar el punto al cual debe transladarse el origen de modo que la ecuacion transformada no contenga terminos de primer grado. Traza la grafica correspondiente. 1) x 2 + 4y 2 8x 8y + 5 = 0 2) 2x 2 3xy y 2 + x 5y 3 = 0 3) 3x 2 + 2y 2 12x + 4y 100 = 0

9 Laboratorio #9 La Parábola 1. Reducir la ecuacion dada a la forma ordinaria de la ecuacion de la parabola. Hallar sus elementos y trazar el lugar geometrico correspondiente. 1) 4y 2 x 48y = 0 2) 4x 2 48y 20x = 71 3) x x 20y + 25 = 0 2. Hallar la ecuacion de la parabola que satisface las condiciones dadas. 1) Tiene su verticeen el origen, eje paralelo al eje Y y logitud del lado recto igual a 12. 2) Pasa por los puntos (-2,30), (0,14), (1,9) y su eje paraleloal eje Y. 3) V(3,2) P(3,4). 4) V(3,-4), el eje paralelo al eje x y pasa por (2,-5) 3. Resuelve los siguientes problemas: 1) Determinar los puntos de interseccion de la recta 6x y 2 = 0 y la parabola x 2 +4x y 5 = 0 2) Hallar la ecuacion de la recta tangente a la parabola, y 2 2x + 2y + 3 = 0 que es perpendicular a la recta 2x + y + 7 = 0 3) Con referencia a la parabola x 2 + 2x 2 y = 0 encuentra los valores de K, para los cuales las rectas de la familia 3x + y = k cumplen con las condiciones requeridas: a) Cortan a la parabola en dos puntos diferentes b) Son tangentes a la parabola

10 Laboratorio #10 La Elipse 1. Reducir la ecuacion dada a la forma ordinarade la ecuacion de la elipse, hallar sus elementos y trazar la grafica correspondiente. 1) 27x 2 + y x 10y + 52 = 0 2) 9x 2 + 4y 2 8y = 32 3) 9x 2 + y 2 18x + 1 = 2y 2. Hallar la ecuacion de la elipse que satisface las condiciones dadas. 1) e = 1 6 5, V (3, 2 ), C(3, 1) 2) F (2 6, 6)C(0, 6) y pasa por (4, 33 5 ) 3) F 1 (0, 7), F 2 (0, 7), longitud del eje menor 3 4) Pasa por los puntos (2,1), (-1,3), (2,5), (5,3) y sus ejes son paralelos a los ejes coordenados. 3. Resuelve los siguientes problemas. 1) Halle la ecuacion de la parabola con vertice en el centro de la elipse 3x 2 +2y 2 +24x 32y+17 = 0, se abre hacia abajo y pasa por el punto (-2,0) 2) Halle la ecuacion de la recta tangente a la elipse 4x 2 +5y 2 = 8 que es paralela a la recta 2x y = 2. 3) Hallar los puntos de interseccion de la elipse x 2 + 4y 2 = 20 y la recta x + 2y = 6.

11 Laboratorio #11 La Hipérbola 1. Reducir la ecuacion a la segunda forma ordinaria de la ecuacion de la hiperbola, hallar sus elementos y trazar su grafica. 1) x 2 2y 2 4x 4y 14 = 0 2) 3x 2 2y x + 2y 14 = 0 3) 4x 2 9y 2 + 8x 54y 77 = 0 4) 16x 2 9y 2 64x 18y = 0 5) 4y 2 9x 2 + 8y 54y 81 = 0 2. Encuentre la ecuacion dela hiperbola que satisface las siguientes condiciones: 1) Vertices (1,7), (1,-3) y focos (1,9), (1,-5) 2) Vertices en (0,-3), (0,-3), distanciafocal igual a 7 3) Eje focal 8 y distancia focal 10 4) Eje no focal de una hiperbola mide 8 y las ecuaciones de las asintotas son y = ± 2 3 x 5) Determina la ecuacion reducida de una hiperbola sabiendo que un foco dista de los vertices de la hiperbola 50 y 2

12 Laboratorio #12 Ecuacion General de Segundo Grado 1. Hallar la transformada de la ecuacion dada cuando los ejescoordenado giran el angulo indicado. 1) x 2 + xy + y 2 = 1; θ = 45 2) 2x 2 + y 2 + 3xy + 2x + 2y = 2; θ = π 6 3) x y = 3; θ = π 3 4) 2x 2 24y + 9y 2 + 5x = 3; θ = sin 1 ( 3 5 ) 2. Mediante una rotacion de ejes coordenados transforme la ecuacion en otra que no contenga xy. 1) 2x 2 + 2y 2 + 2xy = 3 2) 3x 2 + y xy + 4y = 2 3) 2x 2 4xy + 5y 2 + 2x + 3y = 18 4) 3x 2 2xy + 3y x 6 2y + 2 = 0 3. Identificar el tipo de conica representado por la ecuacion dada. Reducir la ecuacion a su forma canonica y trazar la grafica correspondiente. 1) 4x 2 + 8y 2 3xy 9 = 0 2) 2x 2 + 2y 2 + x y x 16 2y + 12 = 0 3) 9x 2 + 6xy + y 2 + 3x y = 0 4) 8x 2 24xy + 15y 2 + 4y 4 = 0

Geometría Analítica Enero 2015

Geometría Analítica Enero 2015 Laboratorio #1 Distancia entre dos puntos I.- Hallar el perímetro del triángulo, cuyos vértices son los puntos dados. A( 2,, B( 8,, C( 5, 10) R( 6, 5) S( 2, - T(3,- U( -1, - V( 2, - W( 9, 4) II.- Demuestre

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

Geometría Analítica Agosto 2015

Geometría Analítica Agosto 2015 Laboratorio #1 Distancia entre dos puntos I.- Hallar el perímetro del triángulo, cuyos vértices son los puntos dados. 1) A(3, 3), B( 3, 1), C(0, 3) 2) O( 2, 3), P(2, 3), Q(0, 2) 3) R(4, 4), S(7, 4), T(6,

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V) UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS.. 2 2 TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS 5 3.1 CIRCUNFERENCIAS FOCALES 6 3.2

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de ádiz Departamento de Matemáticas MATEMÁTIAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 5 La circunferencia Elaborado por la Profesora Doctora María Teresa González

Más detalles

GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR:

GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR: GEOMETRIA ANALITICA PROBLEMARIO ELABORADO POR: SEMESTRE AGOSTO 13 - ENERO 1 GEOMETRIA ANALITICA CBTis No. 1 SISTEMA UNIDIMENSIONAL 1.- Localizaremos en un eje de coordenadas los puntos que tienen por coordenadas

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA AÑO 2014 I. FUNDAMENTACIÓN En esta disciplina se estudian las operaciones

Más detalles

EJERCICIOS RESUELTOS DE CÓNICAS

EJERCICIOS RESUELTOS DE CÓNICAS EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La

Más detalles

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0.

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0. Tipos de rectas. Vector director. Pendiente. Paralelas y perpendiculares. 1.- Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3);

Más detalles

Geometría Analítica Enero 2016

Geometría Analítica Enero 2016 Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Guía de Ejercicios º Elementos Elementos de Geometría Analítica Plana ELEME TOS DE GEOMETRÍA A ALÍTICA Distancia

Más detalles

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

GUIA ADICIONAL CÁLCULO 1 GEOMETRÍA ANALÍTICA. 1.- Grafique los siguientes puntos y encuentre la distancia entre ellos:

GUIA ADICIONAL CÁLCULO 1 GEOMETRÍA ANALÍTICA. 1.- Grafique los siguientes puntos y encuentre la distancia entre ellos: GUIA ADICIONAL CÁLCULO GEOMETRÍA ANALÍTICA ELEMENTOS DE GEOMETRÍA ANALÍTICA.- Grafique los siguientes puntos y encuentre la distancia entre ellos: a ) A(, 3) B( 5,3) b ) A( 4, 5) B(5, 3) c ) A(4, ) B(6,

Más detalles

Caracterización geométrica

Caracterización geométrica Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1,0, la recta x 1 y z GEOMETRÍA Junio 94. 1. Sin resolver el sistema, determina si la recta x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1. Razónalo. [1,5 puntos]. Dadas las ecuaciones de los

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta. Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que

Más detalles

VECTORES. son base y. 11) Comprueba si los vectores u

VECTORES. son base y. 11) Comprueba si los vectores u VECTORES 1. Cálculo de un vector conocidos sus extremos. Módulo de un vector 2. Operaciones con vectores 3. Base: combinación lineal, linealmente independientes.coordenadas de un vector en función de una

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

PREPARATORIA CENTRO CALMECAC educando con perspectiva de futuro

PREPARATORIA CENTRO CALMECAC educando con perspectiva de futuro PREPARATORIA CENTRO CALMECAC educando con perspectiva de futuro Guía para Exámenes Final y Extemporáneo del Curso de Matemáticas IV GEOMETRIA ANALITICA Esta guía tiene como propósito proporcionarte información

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Cónicas. Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas

Cónicas. Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas Cónicas Situación vinculada a la vida cotidiana: Construcción higiénica de letrinas Eres un arquitecto y tu trabajo es construir una letrina según las normas higiénicas, para ayudar a mejorar la salud

Más detalles

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012 UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 0 de 0 PARTE I: Ejercicios cortos de selección Múltiple. En cada uno de los siguientes

Más detalles

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Relación. Geometría en el espacio (II) 1. Estudiar la posición relativa de los siguientes conjuntos de planos: (a)

Más detalles

Modelo1_2009_Enunciados. Opción A

Modelo1_2009_Enunciados. Opción A a) Duración: hora y 30 minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la o realizar únicamente los cuatro ejercicios de la. e) Se permitirá el uso de calculadoras que

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

XIII Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XIII Concurso Intercentros de Matemáticas de la Comunidad de Madrid PRU POR QUIPOS 1º y 2º de.s.o. (45 minutos) 1. n el triángulo dibujamos tres paralelas a la base que dividen a la altura sobre dicho lado en cuatro partes iguales. Si el área del trapecio rayado es 35

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Ejercicios de Álgebra y Geometría Analítica

Ejercicios de Álgebra y Geometría Analítica Ejercicios de Álgebra y Geometría Analítica Profr. Fausto Cervantes Ortiz Recta Dibujar las rectas indicadas 1. y = x + 1 2. y = 2x + 5 2 3. y = x + 2 4. y = x + 2 5. y = 2x 3 2 6. y = 3 2 x + 1 2 7. y

Más detalles

CUESTIONARIO DE GEOMETRÍA ANALÍTICA.

CUESTIONARIO DE GEOMETRÍA ANALÍTICA. CUESTIONARIO DE GEOMETRÍA ANALÍTICA. 1. Escribe el concepto de: a) Geometría Analítica. b) Razón matemática. c) Ángulo de Inclinación. d) Pendiente de una recta. e) Ángulo entre dos rectas. f) Paralelismo

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS

UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS UNIDAD 2: : SSI ISSTEEMASS DEE COORDEENADASS Y LLUGAREESS GEEOMEETRI ICOSS UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS Propósitos: Mostrar una visión global del método de la Geometría Analítica

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16.

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. Problemas de circunferencias 4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. 10. 5. Calcula la potencia del punto P(-1,2) a la circunferencia: x 2 +y

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula:

Autoevaluación. Bloque III. Geometría. BACHILLERATO Matemáticas I * 8 D = (3, 3) Página Dados los vectores u c1, 1m y v (0, 2), calcula: Autoevaluación Página Dados los vectores u c, m y v (0, ), calcula: a) u b) u+ v c) u : ( v) u c, m v (0, ) a) u c m + ( ) b) u+ v c, m + (0, ) (, ) + (0, 6) (, ) c) u :( v) () (u v ) c 0 + ( ) ( ) m 8

Más detalles

IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA

IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S GEOMETRÍA ANALÍTICA IPN CECYT 7 CUAUHTEMOC ACADEMIA DE MATEMÁTICAS GUÍA PARA EL E.T.S DE GEOMETRÍA ANALÍTICA CONCEPTOS BÁSICOS 1.- Hallar la distancia entre los pares de puntos cuyas coordenadas son: a) A (4, 1), B (3, 2)

Más detalles

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,

Más detalles

CRITERIOS DE VALORACIÓN

CRITERIOS DE VALORACIÓN PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...

Más detalles

TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS

TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS TÉCNICAS GRÁFICAS FUNDAMENTALES.- EJERCICIOS PROPUESTOS Los siguientes ejercicios tienen el propósito de hacer que el estudiante use las construcciones geométricas fundamentales y además adquiera práctica

Más detalles

Transformaciones geométricas

Transformaciones geométricas Transformaciones geométricas Autores FERNANDEZ PEREZ-RENDON, ANTONIO LUIS NECULA, IOANA GABRIELA MARIN SANCHEZ, JUAN MANUEL GARRIDO VIZUETE, MARIA DE LOS ANGELES NAVARRO DOMINGUEZ, MARIA DE LOS ANGELES

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones

KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones KIG: LA GEOMETRÍA A GOLPE DE RATÓN Asesor de Tecnologías de la Información y de las Comunicaciones GNU/LINEX Mariano Real Pérez KIG KDE Interactive geometry (Geometría interactiva de KDE) es una aplicación

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

GEOMETRIA ANALITICA CUADERNO DE EJERCICIOS EL MATERIAL QUE SE PRESENTA EN ESTE CUADERNO DE EJERCICIOS CORRESPONDE AL PROGRAMA VIGENTE DEL CURRICULUM

GEOMETRIA ANALITICA CUADERNO DE EJERCICIOS EL MATERIAL QUE SE PRESENTA EN ESTE CUADERNO DE EJERCICIOS CORRESPONDE AL PROGRAMA VIGENTE DEL CURRICULUM GEOMETRIA ANALITICA CUADERNO DE EJERCICIOS EL MATERIAL QUE SE PRESENTA EN ESTE CUADERNO DE EJERCICIOS CORRESPONDE AL PROGRAMA VIGENTE DEL CURRICULUM DEL BACHILLERATO DE LA U.A.E.M. PRESENTA EJERCICIOS

Más detalles

Geometría Analítica. Efraín Soto Apolinar

Geometría Analítica. Efraín Soto Apolinar Geometría Analítica Efraín Soto Apolinar TÉRMINOS DE USO Derechos Reservados c 010. Todos los derechos reservados a favor de Efraín Soto Apolinar. Soto Apolinar, Efraín. Geometría Analítica 010 edición.

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

TRANSFORMACIONES ISOMÉTRICAS

TRANSFORMACIONES ISOMÉTRICAS TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS

Más detalles

MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_ PROFESOR:

MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_ PROFESOR: MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_2014-2015 PROFESOR: Relaciones y funciones. Para las siguientes funciones encuentra el dominio por medio de su regla de correspondencia e intervalo correspondiente

Más detalles

Parcial 2 Precálculo

Parcial 2 Precálculo Parcial 2 Precálculo Marzo 4 de 2008. (.5 puntos) Encuentre la ecuación de la recta que pasa por los puntos (-2,-2) y (-9,-3) Encuentre los interceptos en x y en y. Encuentre la ecuación de la recta que

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 16. Geometría analítica Matemáticas I 1º Bachillerato 0,2

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 16. Geometría analítica Matemáticas I 1º Bachillerato 0,2 lasmatematicaseu Pedro astro Ortega 16 Geometría analítica Matemáticas I 1º achillerato 1 Escribe las ecuaciones vectorial paramétricas de la recta que pasa por tiene dirección paralela al vector u 7 u

Más detalles

( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto

( ) 2 +( 1) 2. BLOQUE III Geometría analítica plana. Resoluciones de la autoevaluación del libro de texto Pág. de Dados los vectores u, y v0,, calcula: a u b u + v c u v u, v0, 5 a u = = = + b u + v =, + 0, =, + 0, 6 =, c u v = u v = 0 + = Determina el valor de k para que los vectores a, y b6, k sean ortogonales.

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros.

CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS. Según los lados. Triángulos. Según los ángulos. Paralelogramo. Cuadriláteros. CLASIFICACIÓN DE LAS FIGURAS Y CUERPOS GEOMÉTRICOS Equilátero Polígonos Según los lados Isósceles Figuras geometrícas Nombre según los lados 3-Triángulo 4-Cuadrilátero 5-Pentágono 6-Hexágono 7-Heptágono

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN

GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - TEORÍA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS TEÓRICOS

Más detalles

GUÍA DE ESTUDIO Exámenes a Título de Suficiencia 2013/2

GUÍA DE ESTUDIO Exámenes a Título de Suficiencia 2013/2 Unidad de aprendizaje: SUBDIRECCIÓN ACADÉMICA GEOMETRIA ANALITICA Departamento: UNIDADES DE APRENDIZAJE DEL ÁREA BÁSICA Nivel: 3 Academia: MATEMÁTICAS Turno: MATUTINO ELABORADA POR: FECHA DE ELABORACIÓN

Más detalles

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA . NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos

Más detalles

Objetivos específicos de aprendizaje

Objetivos específicos de aprendizaje Introducir un cambio en la metodología de la enseñanza de las Matemáticas en general, y de la geometría en particular, con la ayuda de las NTIC, consiguiendo un mayor dinamismo en las clases, que repercuta

Más detalles

1.- Localizar en un plano cartesiano los siguientes puntos A (0,0), B (3,5), C (-2,7), D (-5,-6) E (6,-3). Hacer su gráfica correspondiente.

1.- Localizar en un plano cartesiano los siguientes puntos A (0,0), B (3,5), C (-2,7), D (-5,-6) E (6,-3). Hacer su gráfica correspondiente. Guía de matemáticas III La presente guía de matemáticas III tiene como objetivo que el alumno que tome los cursos de regularización o de título pueda tener una base, para preparase para dichos exámenes.

Más detalles

CENAFE MATEMÁTICAS POLÍGONOS

CENAFE MATEMÁTICAS POLÍGONOS POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur)

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur) VECTORES: OPERACIONES BÁSICAS Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B (0 m Este 30º Norte) y C (35 m Sur) Solución: I.T.I. 94, I.T.T. 05 A

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

Ejercicios N 3 (MAT 021)

Ejercicios N 3 (MAT 021) Ejercicios N 3 (MAT 021) Universidad Técnica Federico Santa María Departamento de Matemática Septiembre 2009 1 Rectas 1. En cada caso determine la ecuación de la recta L (a) L pasa por el punto P ( 1,

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

Resolución Guía de Trabajo. Geometría Analítica.

Resolución Guía de Trabajo. Geometría Analítica. Universidad de la Frontera Facultad de Ingeniería TEMUCO, Agosto 8 de 2013 Departamento de Matemática y Estadística Resolución Guía de Trabajo. Geometría Analítica. Fundamentos de Matemáticas. Profesores:

Más detalles