FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS"

Transcripción

1 FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID ( ) DOMINGO A. GARCÍA FERNÁNDEZ DEPARTAMENTO DE FÍSICA Y QUÍMICA I.E.S. EMILIO CASTELAR MADRID Inscrito en el Registro de la Propiedad Intelectual de la Comunidad de Madrid. Referencia: 16/2009/204

2 Este volumen comprende 104 ejercicios -59 cuestiones, 7 preguntas y 38 problemas- resueltos de VIBRACIONES Y ONDAS que han sido propuestos en 51 exámenes de FÍSICA de las Pruebas de acceso a estudios universitarios en la Comunidad de Madrid entre los años 1996 y 2013, en las siguientes convocatorias: E X A M E N AÑO Modelo JUNIO SEPTIEMBRE Cuestiones Problemas Cuestiones Problemas Cuestiones Problemas Fase General Fase Específica Coincidencia 2 Fase General Fase Específica Coincidencia Para poder acceder directamente a la resolución de un ejercicio hay que colocarse en la fecha que aparece después de su enunciado y, una vez allí, pulsar: CTRL + CLIC con el ratón. Página 2

3 ENUNCIADOS Cuestiones 1 La aceleración del movimiento de una partícula viene expresada por la relación: a = ky, siendo y el desplazamiento respecto a la posición de equilibrio y k una constante. De qué movimiento se trata?. Qué representa k?. Cuál es la ecuación del citado movimiento?. Junio Una partícula de masa 3 g oscila con movimiento armónico simple de elongación en función del tiempo: x = 0,5 cos(0,4t + 0,1), en unidades SI. Determine: a) la amplitud, la frecuencia, la fase inicial y la posición de la partícula en t = 20 s; b) las energías cinéticas máxima y mínima de la partícula que oscila, indicando en qué posiciones se alcanzan. Modelo Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante t = 0 su velocidad era nula y la elongación positiva, determine: a) la expresión matemática que representa la elongación en función del tiempo; b) la velocidad y la aceleración de oscilación en el instante t = 0,25 s. Septiembre 2008, Septiembre 2009 y Septiembre 2010 (Fase General) 4 Una partícula efectúa un movimiento armónico simple cuyo período es igual a 1 s. Sabiendo que en el instante t = 0 su elongación es 0,70 cm y su velocidad 4,39 cm/s, calcule: a) la amplitud y la fase inicial; b) la máxima aceleración de la partícula. Septiembre Una partícula realiza un movimiento armónico simple con una amplitud de 8 cm y un período de 4 s. Sabiendo que en el instante inicial la partícula se encuentra en la posición de elongación máxima: a) Determine la posición de la partícula en función del tiempo. b) Cuáles son los valores de la velocidad y de la aceleración 5 s después de que la partícula pase por un extremo de la trayectoria?. Septiembre Una partícula que describe un movimiento armónico simple recorre una distancia de 16 cm en cada ciclo de su movimiento y su aceleración máxima es de 48 m/s 2. Calcule: a) la frecuencia y el período del movimiento; b) la velocidad máxima de la partícula. Septiembre 2006 Página 3

4 7 Una partícula que realiza un movimiento armónico simple recorre una distancia total de 20 cm en cada vibración completa y su máxima aceleración es de 50 cm/s 2. a) Cuáles son los valores de su amplitud, período y velocidad máxima?. b) En qué posiciones de la trayectoria consigue los valores máximos de la velocidad y de la aceleración?. Modelo a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento y la aceleración de la gravedad?. b) Calcule el período de oscilación del sistema muelle-masa anterior si se deja oscilar en posición horizontal (sin rozamiento). Dato: Aceleración de la gravedad: g = 9,81 m s 2. Junio Se tienen dos muelles de constantes elásticas k 1 y k 2, en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, y tal que m 1 < m 2. Al oscilar, las fuerzas que actúan sobre cada una de estas masas en función de la elongación aparecen representadas en la figura. a) Cuál es el muelle de mayor constante elástica?. b) Cuál de estas masas tendrá mayor período de oscilación?. 1 2 F 2 x 1 Septiembre Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza a oscilar. Determine: a) el valor del período de las oscilaciones T y su frecuencia angular ω; b) las expresiones de las energías cinética, potencial y total en función de la amplitud y de la elongación del movimiento del sistema oscilante. Junio Un cuerpo de masa m está suspendido de un muelle de constante elástica k. Se tira verticalmente del cuerpo desplazando éste una distancia X respecto de su posición de equilibrio, y se le deja oscilar libremente. Si en las mismas condiciones del caso anterior el desplazamiento hubiese sido 2X, deduzca la relación que existe, en ambos casos, entre: a) las velocidades máximas del cuerpo; b) las energías mecánicas del sistema oscilante. Junio 2008 Página 4

5 12 Un sistema elástico, constituido por un cuerpo de masa 200 g unido a un muelle, realiza un movimiento armónico simple con un período de 0,25 s. Si la energía total del sistema es 8 J: a) cuál es la constante elástica del muelle?; b) cuál es la amplitud del movimiento?. Modelo Un cuerpo de masa: 250 g unido a un muelle realiza un movimiento armónico simple con una frecuencia de 5 Hz. Si la energía total de este sistema elástico es 10 J: a) cuál es la constante elástica del muelle?; b) cuál es la amplitud del movimiento?. Modelo Un objeto de 2,5 kg está unido a un muelle horizontal y realiza un movimiento armónico simple sobre una superficie horizontal sin rozamiento con una amplitud de 5 cm y una frecuencia de 3,3 Hz. Determine: a) el período del movimiento y la constante elástica del muelle; b) la velocidad máxima y la aceleración máxima del objeto. Junio La gráfica muestra el desplazamiento horizontal: x = x(t) respecto del equilibrio de una masa de 0,5 kg unida a un muelle. a) Obtenga la constante elástica del muelle. b) Determine las energías cinética y potencial del sistema en el instante: t = 0,25 s. Junio 2010 (Materias coincidentes) 16 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5 Hz. Determine: a) el valor de la masa m y de la constante recuperadora del resorte; b) el valor de la amplitud de oscilación en el segundo caso si la energía mecánica del sistema es la misma en ambos casos. Septiembre Una partícula realiza un movimiento armónico simple. Si la frecuencia de oscilación se reduce a la mitad manteniendo constante la amplitud de oscilación, explique qué ocurre con: a) el período; b) la velocidad máxima; c) la aceleración máxima; d) la energía mecánica de la partícula. Junio 2010 (Fase Específica) Página 5

6 18 Si se duplica la energía mecánica de un oscilador armónico, explique qué efecto tiene: a) en la amplitud y la frecuencia de las oscilaciones; b) en la velocidad y el período de oscilación. Junio Se dispone de un oscilador armónico formado por una masa m sujeta a un muelle de constante elástica k. Si en ausencia de rozamientos se duplica la energía mecánica del oscilador, explique qué ocurre con: a) la amplitud y la frecuencia de las oscilaciones; b) la velocidad máxima y el período de oscilación. Septiembre Se tiene una onda armónica transversal que se propaga en una cuerda tensa. Si se reduce a la mitad su frecuencia, razone qué ocurre con: a) el período; b) la velocidad de propagación; c) la longitud de onda, y d) la amplitud. Septiembre a) Si el oído humano puede percibir sonidos de frecuencias comprendidas en el intervalo de 20 Hz a Hz aproximadamente, cuáles son las longitudes de onda en el aire que corresponden a estas frecuencias?. b) Si el oído humano es capaz de distinguir aproximadamente dos sonidos que se emiten con un intervalo de 0,1 s, cuál es la distancia mínima a la que debe estar de una pared una persona para que perciba el eco?. Dato: Velocidad del sonido en el aire: v = 340 m s 1. Junio El período de una onda transversal que se propaga en una cuerda tensa es de s. Sabiendo, además, que dos puntos consecutivos cuya diferencia de fase vale π/2 rad están separados una distancia de 10 cm, calcule: a) la longitud de onda, y b) la velocidad de propagación. Junio Uno de los extremos de una cuerda tensa, de 6 m de longitud, oscila transversalmente con un movimiento armónico simple de frecuencia: 60 Hz. Las ondas generadas alcanzan el otro extremo de la cuerda en 0,5 s. Determine: a) la longitud de onda y el número de onda de las ondas en la cuerda; b) la diferencia de fase de oscilación existente entre dos puntos de la cuerda separados 10 cm. Septiembre 2000 Página 6

7 24 Una onda armónica que se propaga por un medio unidimensional tiene una frecuencia de 500 Hz y una velocidad de propagación de 350 m/s. a) Qué distancia mínima hay, en un cierto instante, entre dos puntos del medio que oscilan con una diferencia de fase de 60º?. b) Cuál es la diferencia de fase de oscilación, en un cierto punto, para un intervalo de tiempo de 10 3 s?. Junio a) Escriba la expresión matemática de una onda armónica transversal unidimensional: y = y(x,t), que se propaga en el sentido positivo del eje X. b) Defina los conceptos de las siguientes magnitudes: amplitud, período, longitud de onda y fase inicial. Junio 2010 (Fase General) 26 Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes indicadas en cada uno de los siguientes apartados: a) frecuencia angular ω y velocidad de propagación v; b) período T y longitud de onda λ; c) frecuencia angular ω y número de onda k. d) Explique por qué es una función doblemente periódica. Junio Una onda armónica transversal de longitud de onda: λ = 1 m se desplaza en el sentido positivo del eje X. En la gráfica se muestra la elongación (y) del punto de coordenada x = 0 en función del tiempo. Determine: a) La velocidad de propagación de la onda. b) La expresión matemática que describe esta onda. Septiembre 2010 (Fase General) 28 Una partícula oscila con movimiento armónico simple según el eje Y en torno al origen de coordenadas, originando una onda transversal que se propaga en el sentido positivo del eje X con una velocidad de 20 m s 1, una amplitud de 0,02 m y una frecuencia de 10 Hz. Determine: a) el período y la longitud de onda; b) la expresión matemática de la onda, si en t = 0 la partícula situada en el origen de coordenadas está en la posición de máxima elongación positiva. Septiembre 2004 Página 7

8 29 Una onda transversal de amplitud: A = 5 cm que se propaga por un medio material tarda 2 s en recorrer una distancia de 50 cm, y sus puntos más próximos de igual fase distan entre sí 25 cm. Determine: a) La expresión matemática de la función de onda, si en el instante t = 0 la elongación en el origen: x = 0 es nula. b) La aceleración de un punto de la onda situado en: x = 25 cm, en el instante: t = 1 s. Junio La expresión matemática de una onda armónica es: y(x,t) = 3 sen(200πt 5x + π), estando todas las magnitudes en unidades SI. Determine: a) la frecuencia y la longitud de onda; b) la amplitud y la velocidad de propagación de la onda. Septiembre Una onda armónica unidimensional está dada, en el Sistema Internacional de unidades, por la expresión: y(x,t) = 4 sen(50t 4x). Determine: a) la amplitud; b) el período; c) la longitud de onda, y d) la velocidad de propagación. Modelo La expresión matemática de una onda armónica transversal que se propaga por una cuerda tensa coincidente con el eje X es: y = 0,2 sen(100πt 200πx), en unidades SI. Determine: a) los valores del período, la amplitud, la longitud de onda y la velocidad de propagación de la onda; b) la expresión matemática de la onda en términos de la función coseno. Modelo Una onda transversal que se propaga en una cuerda, coincidente con el eje X, tiene por expresión matemática: y(x,t) = 2 sen(7t 4x), en unidades SI. Determine: a) la velocidad de propagación de la onda y la velocidad máxima de vibración de cualquier punto de la cuerda; b) el tiempo que tarda la onda en recorrer una distancia igual a la longitud de onda. Junio 2000 Página 8

9 34 La expresión matemática que representa una onda armónica en unidades SI es: π y(x,t) = 0,04 sen 2 πt x. 4 Determine: a) la frecuencia de la onda y su velocidad de propagación; b) la distancia mínima entre dos puntos que vibran con una diferencia de fase de 120º. Modelo Una onda sinusoidal transversal en una cuerda tiene un período de 0,2 s y se propaga en el sentido negativo del eje X a una velocidad de 30 m/s. En el instante t = 0, la partícula de la cuerda en x = 0 tiene un desplazamiento positivo de 0,02 m y una velocidad de oscilación negativa de 2 m/s. a) Cuál es la amplitud de la onda?. b) Cuál es la fase inicial?. c) Cuál es la máxima velocidad de oscilación de los puntos de la cuerda?. d) Escriba la función de onda correspondiente. Septiembre Una onda sonora que se propaga en el aire tiene una frecuencia de 260 Hz. a) Describa la naturaleza de la onda sonora e indique cuál es la dirección en la que tiene lugar la perturbación, respecto a la dirección de propagación. b) Calcule el período de esta onda y su longitud de onda. Dato: Velocidad del sonido en el aire: v = 340 m s 1. Junio Qué cualidades distinguen entre sí los diferentes sonidos?. Cómo dependen dichas cualidades de las magnitudes que caracterizan la onda sonora?. Razona la respuesta. Septiembre a) Qué es la intensidad y el tono de un sonido?. b) De qué parámetros de la onda dependen?. Junio Una bolita de 0,1 g de masa cae desde una altura de 1 m, con velocidad inicial nula. Al llegar al suelo el 0,05 por ciento de su energía cinética se convierte en un sonido de duración 0,1 s. a) Halle la potencia sonora generada. b) Admitiendo que la onda sonora generada puede aproximarse a una onda esférica, estime la distancia máxima a la que puede oírse la caída de la bolita si el ruido de fondo solo permite oír intensidades mayores de 10 8 W/m 2. Dato: Aceleración de la gravedad: g = 9,8 m s 2. Septiembre 2002 Página 9

10 40 Una fuente sonora puntual emite con una potencia de 80 W. Calcule: a) la intensidad sonora en los puntos distantes 10 m de la fuente. b) A qué distancia de la fuente el nivel de intensidad sonora es de 130 db?. Dato: Intensidad umbral de audición: I 0 = W m 2. Modelo Un altavoz emite con una potencia de 80 W. Suponiendo que el altavoz es una fuente puntual y sabiendo que las ondas emitidas son esféricas, determine: a) La intensidad de la onda sonora a 10 m del altavoz. b) A qué distancia de la fuente el nivel de intensidad sonora es de 60 db?. Dato: Intensidad umbral: I 0 = W m 2. Junio Una fuente sonora puntual emite con una potencia de 10 6 W. a) Determine el nivel de intensidad expresado en decibelios a 1 m de la fuente sonora. b) A qué distancia de la fuente sonora el nivel de intensidad se ha reducido a la mitad del valor anterior?. Dato: La intensidad umbral de audición es: I 0 = W m 2. Modelo La potencia de la bocina de un automóvil, que se supone foco emisor puntual, es de 0,1 W. a) Determine la intensidad de la onda sonora y el nivel de intensidad sonora a una distancia de 8 m del automóvil. b) A qué distancias desde el automóvil el nivel de intensidad sonora es menor de 60 db?. Dato: Intensidad umbral de audición: I 0 = W m 2. Modelo Un búho que se encuentra en un árbol a una altura de 20 m emite un sondo cuya potencia sonora es de W. Si un ratón se acerca a las proximidades del árbol: a) Determine a qué distancia del pie del árbol el ratón comenzará a oír al búho. b) Halle el nivel de intensidad sonora percibido por el ratón cuando esté junto al árbol. Suponga que la intensidad umbral de audición del ratón es: I 0 = W m 2. Junio 2010 (Materia coincidentes) 45 Razone si son verdaderas o falsas las afirmaciones siguientes: a) La intensidad de una onda sonora emitida por una fuente puntual es directamente proporcional a la distancia a la fuente. b) Un incremento de 30 decibelios corresponde a un aumento de la intensidad del sonido en un factor Modelo Una fuente puntual emite un sonido que se percibe con nivel de intensidad sonora de 50 db a una distancia de 10 m. a) Determine la potencia sonora de la fuente. b) A qué distancia dejaría de ser audible el sonido?. Dato: Intensidad umbral de audición: I 0 = W m 2. Junio 2009 Página 10

11 47 El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) el nivel de intensidad sonora a 1 km de distancia; b) la distancia a la que la sirena deja de ser audible. Dato: Intensidad umbral de audición: I 0 = W m 2. Junio El sonido producido por la sirena de un barco alcanza un nivel de intensidad sonora de 80 db a 10 m de distancia. Considerando la sirena como un foco sonoro puntual, determine: a) la intensidad de la onda sonora a esa distancia y la potencia de la sirena. b) El nivel de intensidad sonora a 500 m de distancia. Dato: Intensidad umbral de audición: I 0 = W m 2. Junio 2010 (Fase General) 49 Una persona situada entre dos montañas dispara una escopeta y oye el eco procedente de cada montaña al cabo de 2 s y 3,5 s. a) Cuál es la distancia entre las dos montañas?. b) Si la potencia sonora inicial producida en el disparo es de 75 W, y suponiendo que el sonido se transmite como una onda esférica sin fenómenos de atenuación o interferencia, calcule el nivel de intensidad sonora con el que la persona escuchará el eco del disparo procedente de la montaña más próxima. Datos: Velocidad del sonido: v = 343 m s 1 Intensidad umbral: I 0 = W m 2. Septiembre 2011 (Materias coincidentes) 50 Dos sonidos tienen niveles de intensidad sonora de 50 db y 70 db respectivamente. Calcule cuál será la relación entre sus intensidades. Junio Si la velocidad del sonido en el aire es 340 m/s, cuáles son los valores de la frecuencia fundamental y de los otros armónicos en el caso de las ondas estacionarias en un tubo de 1 m de longitud cerrado por ambos extremos?. Cuáles son los valores de las longitudes de onda correspondientes a dichas frecuencias?. Justifica las respuestas. Septiembre Enuncia el Principio de Huygens y utiliza dicho principio para construir el frente de onda refractado en el fenómeno de la refracción de ondas planas. Deduce, asimismo, la Ley fundamental de la refracción en este caso. Junio Un rayo de luz monocromática que se propaga en el aire penetra en el agua de un estanque. a) Qué fenómeno luminoso se origina al pasar la luz del aire al agua?. Enuncie las leyes que se verifican en este fenómeno. b) Explique si la velocidad, la frecuencia y la longitud de onda cambian al pasar la luz de un medio a otro. Modelo 2003 Página 11

12 54 Explica por qué cuando se observa desde el aire un remo sumergido parcialmente en el agua parece estar doblado. Ayúdate de construcciones geométricas en la explicación. Junio a) Indique las diferencias que a su juicio existen entre los fenómenos de refracción y de dispersión de la luz. Puede un rayo de luz monocromática sufrir ambos fenómenos?. b) Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras plano-paralelas?. Junio Una fuente luminosa emite luz monocromática de longitud de onda en el vacío: λ 0 = m (luz roja), que se propaga en el agua, de índice de refracción: n = 1,34. Determine: a) la velocidad de propagación de la luz en el agua; b) la frecuencia y la longitud de onda de la luz en el agua. Dato: Velocidad de la luz en el vacío: c = m s 1. Septiembre Considérese un haz de luz monocromática, cuya longitud de onda en el vacío es: λ 0 = 600 nm. Este haz incide, desde el aire, sobre la pared plana de vidrio de acuerdo con un ángulo de incidencia de 30º. Determine: a) El ángulo de refracción en el vidrio, sabiendo que su índice de refracción es: n 1 = 1,5. b) La longitud de onda de dicho haz en el agua, sabiendo que su índice de refracción es: n 2 = 1,33. Junio Un haz luminoso está constituido por dos rayos de luz superpuestos: uno azul, de longitud de onda 450 nm, y otro rojo, de longitud de onda 650 nm. Si este haz incide desde el aire sobre la superficie plana de un vidrio con un ángulo de incidencia de 30º, calcule: a) el ángulo que forman entre sí los rayos azul y rojo reflejados; b) el ángulo que forman entre sí los rayos azul y rojo refractados. Datos: Índice de refracción del vidrio para el rayo azul: n AZUL = 1,55 Índice de refracción del vidrio para el rayo rojo: n ROJO = 1,40. Junio Qué analogías y diferencias esenciales se pueden establecer entre los rayos X y los rayos γ?. Explica brevemente el origen de ambas radiaciones. Septiembre 1997 Página 12

13 Ejercicios de acceso a la Universidad Preguntas de Vibraciones y Ondas Preguntas 60 Un objeto está unido a un muelle horizontal de constante elástica: N m 1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una frecuencia de 50 Hz?. Depende el período de las oscilaciones de la energía inicial con que se estire el muelle?. Razone la respuesta. b) Cuál es la máxima fuerza que actúa sobre el objeto, si la amplitud de las oscilaciones es de 5 cm?. Modelo Un objeto de 2 kg de masa unido al extremo de un muelle oscila a lo largo del eje X con una amplitud de 20 cm sobre una superficie horizontal sin rozamiento. El objeto tarda 9 s en completar 30 oscilaciones, y en el instante de tiempo: t = 0 su posición era: x 0 = +10 cm y su velocidad positiva. Determine: a) La velocidad del objeto en el instante: t = 1,2 s. b) Le energía cinética máxima del objeto. Modelo Una onda sinusoidal con una amplitud de 1,5 m y una frecuencia de 100 Hz viaja a una velocidad de 200 m/s en la dirección positiva del eje X y oscila en la dirección del eje Y. En el instante: t = 0 la elongación es máxima y positiva en el punto: x = +3 m. a) Calcule la longitud de onda: λ y el número de onda: k de la onda. b) Determine la expresión matemática que representa la onda. Modelo En una cuerda se genera una onda armónica transversal de 20 cm de amplitud, velocidad de propagación: 5 m s 1 y frecuencia: 30 Hz. La onda se desplaza en el sentido positivo del eje X, siendo en el instante inicial la elongación nula en la posición: x = 0. a) Escriba la expresión matemática que describe dicha onda si en t = 0 y x = 0 la velocidad de oscilación es positiva. b) Calcule la velocidad y aceleración máximas de un punto de la cuerda. Junio La función matemática que representa una onda transversal que avanza por una cuerda es: y(x,t) = 0,3 sen(100πt 0,4πx + φ 0 ), donde todas las magnitudes están expresadas en unidades del SI. Calcule: a) La separación entre dos puntos cuya diferencia de fase, en un determinado instante, es de π/5 radianes. b) La diferencia de fase entre dos vibraciones de un mismo punto del espacio separadas por un intervalo de tiempo de 5 ms. Modelo 2013 Página 13

14 Ejercicios de acceso a la Universidad Preguntas y Problemas de Vibraciones y Ondas 65 La potencia sonora del ladrido de un perro es aproximadamente 1 mw y dicha potencia se distribuye uniformemente en todas las direcciones. Calcule: a) La intensidad y el nivel de intensidad sonora a una distancia de 10 m del lugar donde se produce el ladrido. b) El nivel de intensidad sonora generada por el ladrido de cinco perros a 20 m de distancia de los mismos. Suponga que todos los perros emiten sus ladridos en el mismo punto del espacio. Dato: Intensidad umbral: I 0 = W m 2. Junio a) Describa brevemente los fenómenos de refracción y dispersión de la luz. Con un rayo de luz monocromática se pueden poner de manifiesto ambos fenómenos?. b) Por qué no se observa dispersión cuando un haz de rayos paralelos de luz blanca atraviesa una lámina de caras planas y paralelas?. Modelo 2013 Problemas 67 Un bloque de 50 g, conectado a un muelle de constante elástica 35 N/m, oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra a 1 cm de su posición de equilibrio, calcule: a) la fuerza ejercida sobre el bloque; b) la aceleración del bloque; c) la energía potencial elástica del sistema, y d) la velocidad del bloque. Junio Un oscilador armónico constituido por un muelle de masa despreciable y una masa en el extremo de valor: 40 g tiene un período de oscilación de 2 s. a) Cuál debe ser la masa de un segundo oscilador, constituido por un muelle idéntico al primero, para que la frecuencia de oscilación se duplique?. b) Si la amplitud de las oscilaciones en ambos osciladores es 10 cm, cuánto vale, en cada caso, la máxima energía potencial del oscilador y la máxima velocidad alcanzada por su masa?. Septiembre Un sistema masa-muelle está formado por un bloque de 0,75 kg de masa, que se apoya sobre una superficie horizontal sin rozamiento, unido a un muelle de constante recuperadora k. Si el bloque se separa 20 cm de la posición de equilibrio, y se le deja libre desde el reposo, éste empieza a oscilar de tal modo que se producen 10 oscilaciones en 60 s. Determine: a) La constante recuperadora k del muelle. b) La expresión matemática que representa el movimiento del bloque en función del tiempo. c) La velocidad y la posición del bloque a los 30 s de empezar a oscilar. d) Los valores máximos de la energía potencial y de la energía cinética alcanzados en este sistema oscilante. Junio 2010 (Fase General) Página 14

15 Ejercicios de acceso a la Universidad Problemas de Vibraciones y Ondas 70 a) Determine la constante elástica k de un muelle, sabiendo que si se le aplica una fuerza de 0,75 N éste se alarga 2,5 cm con respecto a su posición de equilibrio. Uniendo al muelle anterior un cuerpo de masa 1,5 kg se constituye un sistema elástico que se deja oscilar libremente sobre una superficie horizontal sin rozamiento. Sabiendo que en t = 0 el cuerpo se encuentra en la posición de máximo desplazamiento: x = 30 cm, respecto a su posición de equilibrio, determine: b) la expresión matemática del desplazamiento del cuerpo en función del tiempo; c) la velocidad y la aceleración máximas del cuerpo; d) las energías cinética y potencial cuando el cuerpo se encuentra a 15 cm de la posición de equilibrio. Modelo Una pequeña esfera homogénea de masa 1,2 kg, que cuelga de un resorte vertical, de masa despreciable y constante recuperadora k = 300 N/m, oscila libremente con una velocidad máxima de 30 cm/s. Determinar: a) el período del movimiento; b) el desplazamiento máximo de la esfera respecto de la posición de equilibrio; c) las energías cinética, potencial y total de la esfera cuando se encuentra en la posición de desplazamiento máximo. Septiembre Un punto material está animado de un movimiento armónico simple a lo largo del eje X, alrededor de su posición de equilibrio en x = 0. En el instante t = 0 el punto material está situado en x = 0 y se desplaza en el sentido negativo del eje X con una velocidad de 40 cm s 1. La frecuencia del movimiento es de 5 Hz. a) Determine la posición en función del tiempo. b) Calcule al posición y la velocidad en el instante t = 5 s. Junio Un cuerpo de 200 g unido a un resorte horizontal oscila, sin rozamiento, sobre una mesa, a lo largo del eje de las X, con una frecuencia angular ω = 8,0 rad/s. En el instante t = 0 el alargamiento del resorte es de 4 cm respecto de la posición de equilibrio y el cuerpo lleva en ese instante una velocidad de 20 cm/s. Determine: a) la amplitud y la fase inicial del movimiento armónico simple realizado por el cuerpo; b) la constante elástica del resorte y la energía mecánica del sistema. Modelo 2002 Página 15

16 Ejercicios de acceso a la Universidad Problemas de Vibraciones y Ondas 74 Una masa de 2 kg está unida a un muelle horizontal cuya constante recuperadora es: k = 10 N/m. El muelle se comprime 5 cm desde la posición de equilibrio (x = 0) y se deja en libertad. Determine: a) la expresión de la posición de la masa en función del tiempo: x = x(t); b) los módulos de la velocidad y de la aceleración de la masa en un punto situado a 2 cm de la posición de equilibrio; c) la fuerza recuperadora cuando al masa se encuentra en los extremos de la trayectoria; d) la energía mecánica del sistema oscilante. Nota: Considere que los desplazamientos respecto a la posición de equilibrio son positivos cuando el muelle está estirado. Junio Se tiene una masa: m = 1 kg situada sobre un plano horizontal sin rozamiento unida a un muelle, de masa despreciable, fijo por su otro extremo a la pared. Para mantener estirado el muelle una longitud: x = 3 cm, respecto de su posición de equilibrio, se requiere una fuerza: F = 6 N. Si se deja el sistema masa-muelle en libertad: a) Cuál es el período de oscilación de la masa?. b) Determine el trabajo realizado por el muelle desde la posición inicial: x = 3 cm, hasta su posición de equilibrio: x = 0. c) Cuál será el módulo de la velocidad de la masa cuando se encuentre a 1 cm de su posición de equilibrio?. d) Si el muelle se hubiese estirado inicialmente 5 cm, cuál sería su frecuencia de oscilación?. Junio Una partícula de 0,1 kg de masa se mueve en el eje X describiendo un movimiento armónico simple. La partícula tiene velocidad cero en los puntos de coordenadas x = 10 cm y x = 10 cm y en el instante t = 0 se encuentra en el punto de x = 10 cm. Si el período de las oscilaciones es de 1,5 s, determine: a) la fuerza que actúa sobre la partícula en el instante inicial; b) la energía mecánica de la partícula; c) la velocidad máxima de la partícula; d) la expresión matemática de la posición de la partícula en función del tiempo. Junio Una partícula de 5 g de masa se mueve con movimiento armónico simple de 6 cm de amplitud a lo largo del eje X. En el instante inicial (t = 0) su elongación es de 3 cm y el sentido del desplazamiento hacia el extremo positivo. Un segundo más tarde su elongación es de 6 cm por primera vez. Determine: a) la fase inicial y la frecuencia del movimiento; b) la función matemática que representa la elongación en función del tiempo: x = x(t); c) los valores máximos de la velocidad y de la aceleración de la partícula, así como las posiciones donde los alcanza; d) la fuerza que actúa sobre la partícula en t = 1 s y su energía mecánica. Modelo 2004 Página 16

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

VIBRACIONES Y ONDAS. Cuestiones

VIBRACIONES Y ONDAS. Cuestiones VIBRACIONES Y ONDAS Cuestiones 1 La aceleración del movimiento de una partícula viene expresada por la relación: a = ky, siendo y el desplazamiento respecto a la posición de equilibrio y k una constante.

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

VIBRACIONES Y ONDAS 1. 2.

VIBRACIONES Y ONDAS 1. 2. VIBRACIONES Y ONDAS 1. 2. 3. 4. Un objeto se encuentra sometido a un movimiento armónico simple en torno a un punto P. La magnitud del desplazamiento desde P es x. Cuál de las siguientes respuestas es

Más detalles

DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"

DEPARTAMENTO DE FÍSICA COLEGIO LA ASUNCIÓN COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Problemas Resueltos Primera Parte

Problemas Resueltos Primera Parte IES Rey Fernando VI San Fernando de Henares Departamento de Física y Química Problemas Resueltos Primera Parte Movimiento Armónico Simple Movimiento Ondulatorio El Sonido Profesor : Jesús Millán Crespo

Más detalles

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura. VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Ejercicios de FÍSICA DE 2º DE BACHILLERATO

Ejercicios de FÍSICA DE 2º DE BACHILLERATO Movimiento Armónico Simple, Ondas, Sonido Ejercicios de FÍSICA DE 2º DE BACHILLERATO INDICE 1 ONDAS... 2 1.1 MOVIMIENTO ARMÓNICO... 2 1.2 MOVIMIENTO ONDULATORIO... 5 1.3 EL SONIDO... 10 2 INTERACCIÓN GRAVITATORIA...

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, modelo 2011/2012 OPCIÓN A Pregunta 1.- Se ha descubierto un planeta esférico de 4100 km de radio y con una aceleración de la gravedad en su superficie de 7,2 m s -2. Calcule la masa del planeta.

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 EL MOVIMIENTO ONDULATORIO 1 Cuando a un muelle se le aplica una fuerza de 20 N, sufre una deformación de 5 cm. Cuál es el valor de la constante de recuperación? Cuáles serán sus unidades?

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE 1.- La ecuación del movimiento de un móvil viene expresada por: x = 4 sen(8t + 2) Halla la amplitud, el período, la frecuencia y la fase. Sol.: 4 ; π/4 seg; 4/ π s -1 ; n = 2

Más detalles

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS

PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS PROBLEMAS Física 2º Bachillerato VIBRACIONES Y ONDAS 1. Justifica si las siguientes cuestiones son verdaderas o falsas: a) La amplitud de un movimiento vibratorio es igual a la elongación de la partícula.

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor.

Ondas. A) la misma longitud de onda. B) una longitud de onda menor. C) una longitud de onda mayor. D) un período mayor. E) un período menor. Ondas 1. En ciertas ondas transversales la velocidad de propagación es inversamente proporcional a la densidad del medio elástico en que se propagan. Si en el fenómeno de refracción su frecuencia permanece

Más detalles

ANALOGIAS. (Págs. 70, 71, 72 y 73).

ANALOGIAS. (Págs. 70, 71, 72 y 73). 1 LICEO SALVADOREÑO CIENCIA, SALUD Y MEDIO, AMBIENTE HERMANOS MARISTAS PROFESORES: CLAUDIA POSADA / CARLOS ALEMAN GRADO Y SECCIONES: 9º: A, B, C, D Y E. UNIDAD N 5: ONDAS, LUZ Y SONIDO. GUIA N 1 ANALOGIAS.

Más detalles

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS 1.* Cuál es el periodo de la onda si la frecuencia es de 65,4 Hz? 2.** Relacionen los conceptos con sus definiciones correspondientes. a) Amplitud b) Longitud

Más detalles

BEAT RAMON LLULL CURS INCA

BEAT RAMON LLULL CURS INCA COL LEGI FÍSICA BEAT RAMON LLULL CURS 2007-2008 INCA 1. Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones. Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23 Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANTABRIA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las dos opciones de problemas CUESTIONES ( puntos cada una) A. Se considera

Más detalles

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996

Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996 1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras 0 3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras En los sonidos del habla no existen ondas sonoras simples. Las ondas sonoras simples son siempre periódicas. También reciben el

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID PRUEBAS DE ACCESO A LOS ESTUDIOS UNIVERSITARIOS DE LOS ALUMNOS DE BACHILLERATO LOGSE AÑO 1999

UNIVERSIDAD COMPLUTENSE DE MADRID PRUEBAS DE ACCESO A LOS ESTUDIOS UNIVERSITARIOS DE LOS ALUMNOS DE BACHILLERATO LOGSE AÑO 1999 La prueba consta de dos partes: INSTRUCCIONES GENERALES Y VALORACIÓN La primera parte consiste en un conjunto de cinco cuestiones de tipo teórico, conceptual o teórico-práctico, de las cuales el alumno

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Ondas : Características de las ondas

Ondas : Características de las ondas Ondas : Características de las ondas CONTENIDOS Características de las Ondas Qué tienen en común las imágenes que vemos en televisión, el sonido emitido por una orquesta y una llamada realizada desde un

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio?

Si se produce una perturbación en un punto: cómo se propaga hacia otros puntos del espacio? 2º Bachillerato: Ondas (generalidades) 1. Concepto de onda Cuando se produce una variación de una magnitud física en un punto del espacio, se produce una perturbación (del equilibrio). Por ejemplo, se

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, junio 2010. Fase general OPCION A Cuestión 1.- Enuncie la 2 a ley de Kepler. Explique en qué posiciones de la órbita elíptica la velocidad del planeta es máxima y dónde es mínima. Enuncie

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1

PAEG UCLM SEPTIEMBRE 2015 FÍSICA OPCIÓN A - PROBLEMA 1 OPCIÓN A - PROBLEMA 1 Tenemos tres partículas cargadas q 1 = - 20 C, q 2 = + 40 C y q 3 = - 15 C, situadas en los puntos de coordenadas A (2,0), B (4,0) y C (0,3), respectivamente. Calcula, sabiendo que

Más detalles

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANTABRIA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANABRIA / SEPIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLEO El alumno elegirá tres de las cinco cuestiones propuestas, así como sólo una de las des opciones de problemas CUESIONES ( puntos cada una) A. Para

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Descripción física y clasificación de los fenómenos ondulatorios. 2. Ondas monodimensionales armónicas. 3. Ecuación del movimiento ondulatorio. 4. Intensidad de una onda. 5. Fenómenos

Más detalles

TEMA 2. ONDAS. 1. Definición de onda.

TEMA 2. ONDAS. 1. Definición de onda. TEMA 2. ONDAS ÍNDICE 1. Definición de onda. 2. Tipos de ondas. 2.1. Según el medio de propagación. 2.2. Según la forma de propagación. 2.3. Número de dimensiones de propagación. 3. Ondas armónicas. 3.1.

Más detalles

Ejercicios de Vibraciones y Ondas. A) M.A.S y PÉNDULO

Ejercicios de Vibraciones y Ondas. A) M.A.S y PÉNDULO Ejercicios de Vibraciones y Ondas A) M.A.S y PÉNDULO 1. Si se duplica la energía mecánica de un oscilador armónico, explica qué efecto tiene: a) En la amplitud y la frecuencia de las oscilaciones. b) En

Más detalles

ÓPTICA FÍSICA MODELO 2016

ÓPTICA FÍSICA MODELO 2016 ÓPTICA FÍSICA MODELO 2016 1- Un foco luminoso puntual está situado en el fondo de un recipiente lleno de agua cubierta por una capa de aceite. Determine: a) El valor del ángulo límite entre los medios

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

PAAU (LOXSE) Xuño 2004

PAAU (LOXSE) Xuño 2004 PAAU (LOXSE) Xuño 004 Código: FÍSICA Elegir y desarrollar una de las dos opciones propuestas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado) Cuestiones 4 puntos (1 cada cuestión, teórica o práctica)

Más detalles

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA

FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA FÍSICA de 2º de BACHILLERATO INTERACCIÓN ELECTROMAGNÉTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996

Más detalles

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones:

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones: ONDAS ONDAS Las ondas son perturbaciones que se propagan a través del medio. Medio Isótropo: cuando sus propiedades físicas son las mismas en todas las direcciones. Medio físico homogéneo: cuando se considera

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

1.- Qué es una onda?

1.- Qué es una onda? Ondas y Sonido. 1.- Qué es una onda? Perturbación de un medio, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra

Más detalles

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA-

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles