Matemáticas. Sesión #2. Polinomios y expresiones racionales.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas. Sesión #2. Polinomios y expresiones racionales."

Transcripción

1 Matemáticas Sesión #2. Polinomios y expresiones racionales.

2 Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las matemáticas, tal es el caso del cálculo diferencial e integral. En esta sesión aprenderemos a identificar y clasificar los polinomios y sus tipos de factorizaciones, también trabajaremos con las expresiones racionales las cuales representan a dos polinomios que se están dividiendo para aprender a simplificarlas. Una de las características principales de los polinomios y de toda expresión algebraica es su grado exponencial, es por esta razón que aprenderemos a identificar y trabajar expresiones algebraicas con Exponentes enteros y calcularemos sus raíces reales. Extraído de: solo para fines educativos

3 Introducción En matemáticas existen muchas expresiones algebraicas pero las mayormente utilizadas son los polinomios. Los polinomios se forman de n términos, donde cada termino se compone de un coeficiente (número), una variable (letra) y un exponente. Con estas expresiones algebraicas podemos realizar cualquier operación aritmética que necesitemos, así como también podemos factorizar o simplificar con la ayuda de las leyes de los exponentes. Extraído de: F0wyVZrArRE/TZjBYo8LQmI/AAAAAAAAAAg/gXT5zQUUJZ8/s1600/POLINOMIOS%25286% operaciones.jpg solo para fines educativos.

4 Polinomios y factorización Un polinomio es una expresión que se forma con constantes, variables y exponentes, que están combinados a través de las operaciones aritméticas de sumas, restas y multiplicaciones, pero no divisiones. Los exponentes solo pueden ser números enteros positivos incluido el 0. No puede tener un número infinito de términos. Extraído de: solo para fines educativos.

5 Las operaciones que se pueden realizar con los polinomios son las mismas operaciones aritméticas que conocemos tales como las suma, resta, multiplicación y división y cada una de ellas se resuelven bajo ciertas características. Suma y resta de polinomios. Realiza la suma de 3x 3 2x 2 + x -5 y 4x 3 +5x 2 +8x-12 Primeramente acomodamos nuestros polinomios en suma: (3x 3 2x 2 + x -5) + (4x 3 +5x 2 +8x-12)

6 Eliminando los paréntesis las expresiones nos quedan: 3x 3 2x 2 + x -5+4x 3 + 5x 2 + 8x - 12 Y ahora juntamos términos semejantes para realizar la operación que entre ellos existe: (3+4)x 3 +(-2+5)x 2 + (1+8)x +(-5-12) 7x 3 + 3x 2 + 9x -17 éste es el resultado de la suma de polinomios Ahora sí utilizamos estos mismos polinomios para restar la solución será: (3x 3 2x 2 + x -5) (4x 3 +5x 2 +8x-12)

7 El signo menos si afecta a todos los términos que están después de él, así que se deberá de afectar este polinomio cambiando cada uno de sus signos en cada término: 3x 3 2x 2 + x -5-4x 3-5x 2-8x+12 Y ahora al juntar términos semejantes nos quedará: (3-4)x 3 +( 2-5)x 2 + (1-8)x +(-5+12) -x 3-7x 2-8x+7 éste será nuestro resultado.

8 Multiplicación de polinomios: Realizaremos la multiplicación de los siguientes polinomios: (x+4)(x 2 +4x+4) para resolver la multiplicación se deberá multiplicar el primer término del primer polinomio por cada uno de los términos del segundo polinomio: x(x 2 ) = x 3 cuando tenemos términos semejantes multiplicándose se suman los exponentes. x(4x)= 4x 2 x(4)= 4x

9 Y ahora el segundo término por cada termino del segundo polinomio 4(x 2 )= 4x 2 4(4x)=16x 4(4)= 16 Ahora juntamos términos semejantes: 4x 2 + 4x 2 = 8x 2 4x + 16x = 20x Solamente acomodamos los términos con el mayor grado iniciando la expresión: 8x x +16

10 Para factorizar polinomios hay varios métodos: 1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice: Ejemplo: factoriza 3x 2 +x, se tiene de factor común x por lo tanto: x(3x+1) es la factorización. 2. Si se trata de una diferencia de cuadrados: Es igual a suma por diferencia. Se basa en la siguiente fórmula:

11 Ejemplo: factoriza 4x 2 25, esta expresión nos muestra que sus dos términos son cuadráticos y entre ellos hay una resta (diferencia), lo cual caracteriza a este tipo de factorización por lo tanto: (2x + 5)(2x 5) son los factores de nuestra expresión. 3. Si se trata de un trinomio cuadrado perfecto: Es igual al cuadrado de un binomio. Se basa en las siguientes fórmulas: y

12 Ejemplo: factorice x 2 6x +9, para solucionar este trinomio primero debemos de comprobar que su primer y tercer término tengas raíces cuadradas. y por lo tanto si es un trinomio cuadrado perfecto ahora sólo se acomodan los términos como nos muestra la fórmula: (x 3) 2

13 Expresiones racionales. Las expresiones racionales nos representan la división de dos polinomios: Con las expresiones racionales podemos simplificar a través de factores los polinomios hasta reducir la expresión a su más mínima forma. Por ejemplo: Simplifica Aquí como tenemos dos términos iguales al de abajo se elimina uno con el de abajo así que ésta es la expresión que nos queda de la simplificación.

14 Exponentes enteros y raíces reales Los exponentes enteros positivos representan la abreviatura del producto de n factores (xn) a la letra n se le llama exponente y a la x se le llama base. Si rn = x donde n es un entero positivo, entonces r es una raíz n-ésima de x. Por ejemplo 3 2 = 9 y así 3 es la raíz segunda (por lo general llamada raíz cuadrada) de 9. Algunos números no tienen una raíz n-ésima que sea un número real, por ejemplo los números negativos (-4,-9-16) no tienen raíces reales.

15 . La raíz n-ésima principal de x la denotamos como: Tabla de algunas leyes de los exponentes: Existen algunas leyes de los exponentes que nos ayudan a dar solución a las operaciones con polinomios.

16 . Ejemplos del uso de las leyes de los exponentes: Simplifique: 1. x 6 x 9 = x 6+9 = x w 4 w 8 = w 4+8 =w

17 Conclusión Los polinomios son las expresiones algebraicas mayormente utilizadas, se manejan como ecuaciones y como funciones para el cálculo diferencial e integral, con estas expresiones podemos realizar cualquier operación aritmética que necesitemos y también podemos factorizarlas para reducir una forma de expresión de tipo polinomial. Las leyes de los exponentes se trabajan siempre que se esté realizando algún proceso u operación con un polinomio. En la siguiente sesión estudiaremos las Ecuaciones cuadráticas otra forma de manejar los polinomios. Extraido de: ci%c3%b3n_cuadr%c3%a1tica.svg/250px- Ecuaci%C3%B3n_cuadr%C3%A1tica.svg.png solo para fines educativos.

18 Para aprender más En este apartado encontrarás más información acerca del tema para enriquecer tu aprendizaje. Puedes ampliar tu conocimiento visitando los siguientes sitios de Internet. Videos que ayudan a entender más claramente los polinomios y su factorización: Math2me. Conceptos importantes de los polinomios. Recuperado el día 07 de abril del 2014: Tareas plus. Suma y resta de polinomios. Recuperado el día 07 de abril del 2014: Video de simplificación de expresiones racionales y uso de la factorización: Academia Vázquez. Simplificación de fracciones algebraicas (expresiones racionales). Recuperado el día 07 de abril del 2014: Video de las leyes de los exponentes: Math2me. Leyes de los exponentes. Recuperado el día 07 de abril del 2014: Y Es de gran utilidad visitar el apoyo correspondiente al tema, pues te permitirá desarrollar los ejercicios con más éxito.

19 Bibliografía Haussler, E. (1997). Matemáticas para admón., economía, ciencias sociales y de la vida. Edo. México, México. Prentice Hall hispanoamericana, S.A.

20

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS.

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS. Matemáticas 1 Sesión No. 2 Nombre: Polinomios y expresiones racionales Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 1 Nombre: Introducción al algebra Objetivo de la asignatura: El estudiante aplicará los conceptos fundamentales del álgebra como números reales, exponentes, radicales

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 3 Nombre: Ecuaciones Lineales Objetivo de la asignatura: En esta sesión el estudiante aplicará las principales propiedades de ecuaciones lineales con la finalidad

Más detalles

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS Matemáticas 1 Sesión No. 1 Nombre: Fundamentos del Álgebra Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para

Más detalles

Por qué expresar de manera algebraica?

Por qué expresar de manera algebraica? Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar

Más detalles

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término: Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 8 Nombre: Concepto de función, función lineal y su gráfica. Objetivo de la asignatura: En esta sesión el estudiante aplicará los métodos para la obtención de la

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de

Más detalles

Contenido: 1. Definición y clasificación. Polinomios.

Contenido: 1. Definición y clasificación. Polinomios. Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2011 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

Guía para la Evaluación Diagnóstica en Matemáticas. Programa

Guía para la Evaluación Diagnóstica en Matemáticas. Programa UNIVERSIDAD DE GUADALAJARA Centro Universitario de Ciencias Económico Administrativas División de Economía y Sociedad Departamento de Métodos Cuantitativos Academia de Matemáticas Generales Guía para la

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

24 = = = = = 12. 2

24 = = = = = 12. 2 UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

Prólogo... xi Al estudiante... xv Prólogo a la edición en español... xvii

Prólogo... xi Al estudiante... xv Prólogo a la edición en español... xvii ÍNDICE Prólogo... xi Al estudiante... xv Prólogo a la edición en español... xvii 1 Los números reales... 1 1.1 QUÉ ES EL ÁLGEBRA?... 1 1.2 LOS NÚMEROS REALES POSITIVOS... 10 Números reales y sus propiedades...

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez Polinomios Definición: Un

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

Las operaciones con números irracionales

Las operaciones con números irracionales Las operaciones con números irracionales Antes de empezar a sumar, restar, multiplicar, y realizar cualquier tipo de las operaciones con números irracionales, debemos comprender como extraer, e introducir

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 11 Nombre: Funciones exponenciales y logarítmicas. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos relacionados con las funciones

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Prof. Glorymill Santiago Labrador Editado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez

Más detalles

ÍNDICE. Prefacio... xi

ÍNDICE. Prefacio... xi ÍNDICE Prefacio... xi 1 EL SISTEMA DE LOS NÚMEROS REALES... 1 1.1 Conjuntos... 1 Ejercicio 1.1, 20 problemas... 7 1.2 Constantes y variables... 8 1.3 El conjunto de los números reales... 9 Ejercicio 1.2,

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS.

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)

Más detalles

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es... Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir

Más detalles

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto.

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto. FACTORIZACIÓN. Factorizar consiste como su nombre lo indica, en obtener factores y como factores los elementos de una multiplicación, entonces factorizar es convertir una suma en una multiplicación indicada

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA INGENIERÍA DE SOFTWARE PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA INGENIERÍA DE SOFTWARE PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA INGENIERÍA DE SOFTWARE PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA CLAVE: MAT 111; PRE REQ.: BR.; No. CRED.: 4 I. PRESENTACIÓN: Este curso tiene como propósito,

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN PSICOLOGÍA CLÍNICA PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN PSICOLOGÍA CLÍNICA PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN PSICOLOGÍA CLÍNICA PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA CLAVE: MAT 111 ; PRE REQ.: BR. ; No. CRED.: 4 I. PRESENTACIÓN: Este curso tiene

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.

Más detalles

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO 7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado

Más detalles

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces

Más detalles

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS : ½ CREDITO : 1 SEMESTRE

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS : ½ CREDITO : 1 SEMESTRE ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS CURSO VALOR DURACIÓN MAESTRA :MATEMATICA ACTUALIZADA 1 : ½ CREDITO : 1 SEMESTRE : Everis Aixa Sánchez Introducción El Programa de Matemáticas del Departamento

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Factorización - Álgebra

Factorización - Álgebra Factorización - Álgebra Ana María Beltrán Docente Matemáticas Febrero 4 de 2013 1 Qué es factorizar? Definición 1. Factorizar un polinomio es representarlo mediante el producto de otros polinomios de menor

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO

Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Profesor : Nombre del Estudiante : Oficina : Sección : Horas de Oficina : Página Internet : http://math.uprag.edu I. Título

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA II PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 8º ASIGNATURA: Matemática PERIODO: 2 PROFESORA: Selene Carballo UNIDAD Nº 2 NOMBRE DE LA UNIDAD: Operemos con

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado. d) 8xy 3... = 3 b) 5 x y... = h) 3 c) 7 x y y...

1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado. d) 8xy 3... = 3 b) 5 x y... = h) 3 c) 7 x y y... Tema 5 ALGEBRA º E.S.O. EXPRESIONES ALGEBRAICAS Página nº 1 Los monomios 1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado.... = 8y... =...= y 5 y... =... =...= 7

Más detalles

1 of 16 10/25/2011 6:38 AM

1 of 16 10/25/2011 6:38 AM http://tutorias.upra.edu/mod/book/print.php?id42119 Prof. Anneliesse Sánchez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo Objetivos: Hallar raíces cuadradas exactas de: enteros fracciones

Más detalles

PROGRAMA ANALÍTICO MATEMÁTICAS I

PROGRAMA ANALÍTICO MATEMÁTICAS I UNIVERSIDAD AGRO-ALIMENTARIA DE MAO IEES-UAAM ESTATUTO DE LA NUEVA UNIVERSIDAD VIRTUAL DOMINICANA Asamblea Universitaria Rectoría (Rector) Oficina Aseg. Calidad Colegio de Egresados Consejo Social Promoción

Más detalles

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Carrera: Ingeniería Química. Asignatura: Algebra. Área del Conocimiento: Ciencias Básicas. Algebra Licenciatura Ingeniero Químico

Carrera: Ingeniería Química. Asignatura: Algebra. Área del Conocimiento: Ciencias Básicas. Algebra Licenciatura Ingeniero Químico Carrera: Ingeniería Química Asignatura: Algebra Área del Conocimiento: Ciencias Básicas Generales de la Asignatura: Nombre de la Asignatura: Clave Asignatura: Nivel: Carrera: Frecuencia (h/semana) Teoría:

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

RESUMEN DEL MÓDULO. Aprendizajes Esperados

RESUMEN DEL MÓDULO. Aprendizajes Esperados RESUMEN DEL MÓDULO MÓDULO: INTRODUCCIÓN A LA MATEMÁTICA UNIDAD DE COMPETENCIA: Resolver problemas matemáticos relacionados con el mundo de la economía, los negocios, la tecnología y otros fenómenos socioeconómicos,

Más detalles

+ 5x. Objetivos Simplificar expresiones algebraicas racionales. Sumar, restar, multiplicar y dividir expresiones algebraicas racionales.

+ 5x. Objetivos Simplificar expresiones algebraicas racionales. Sumar, restar, multiplicar y dividir expresiones algebraicas racionales. COLEGIO SECUNDARIO LA PLATA Colegio Secundario La Plata Educar para un mundo mejor Epresiones algebraicas racionales Objetivos Simplificar epresiones algebraicas racionales Sumar, restar, multiplicar y

Más detalles

= RESP = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo

= RESP = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo SUMA Y RESTA DE NUMEROS ENTEROS y ALGEBRAICOS A) SUMA Y RESTA 3 + 2 + 5 3 = RESP + 1 2 + 5 = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo + 7 6 = + 1 se restan signos contrarios

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

UNIDAD 2. Lenguaje algebraico

UNIDAD 2. Lenguaje algebraico Matemática UNIDAD 2. Lenguaje algebraico 1 Medio GUÍA N 1 Evaluación de Expresiones Algebraicas Conceptos básicos El lenguaje algebraico es una de las principales formas del lenguaje matemático y es mucho

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

FACTORIZACIÓN GUÍA CIU NRO:

FACTORIZACIÓN GUÍA CIU NRO: República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático

Más detalles

CONTENIDOS: ALGEBRA. 1. SISTEMA DE LOS NÚMEROS REALES

CONTENIDOS: ALGEBRA. 1. SISTEMA DE LOS NÚMEROS REALES UNIVERSIDAD TÉCNICA DE MANABÍ FACULTAD DE CIENCIAS INFORMÁTICAS CARRERA DE INGENIERÍA EN SISTEMAS INFORMÁTICOS CONTENIDOS DE MATEMÁTICAS PARA LA PRUEBA DE CONOCIMIENTOS OBJETIVO: Diagnosticar los conocimientos

Más detalles

Versión en formato pdf. No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno.

Versión en formato pdf. No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno. Versión en formato pdf Nombre de la Materia: Clave: No. de horas/ semana: 10 Duración semanas: 16 Total de horas: 160 No. De créditos: 0 Prerrequisitos: Ninguno Objetivo: MATEMÁTICAS BÁSICAS PR000-T Es

Más detalles

MATEMÁTICAS II CC III PARCIAL

MATEMÁTICAS II CC III PARCIAL UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una

Más detalles

CASO I: FACTORIZACION DE BINOMIOS

CASO I: FACTORIZACION DE BINOMIOS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

Dr. Víctor Castellanos Vargas MC. Cristina Campos Jiménez Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010

Dr. Víctor Castellanos Vargas MC. Cristina Campos Jiménez Fecha de elaboración: Agosto 2004 Fecha de última actualización: Julio 2010 PROGRAMA DE ESTUDIO ALGEBRA ELEMENTAL Programa Educativo: Área de Formación : Licenciatura en Física General Horas teóricas: 2 Horas prácticas: 2 Total de Horas: 4 Total de créditos: 6 Clave: F1010 Tipo

Más detalles

Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO

Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO Fuente: Universidad Católica de Chile Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO 1. Las letras en Matemática Así como para expresarnos utilizamos el Español, en Matemática se utiliza

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

LA ECUACIÓN CUADRÁTICA

LA ECUACIÓN CUADRÁTICA INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3

Más detalles

FACTORIZACIÓN DE POLINOMIOS en Q (racionales)

FACTORIZACIÓN DE POLINOMIOS en Q (racionales) FACTORIZACIÓN DE OLINOMIOS en Q racionales FAQ Qué es factorizar un polinomio? Es expresarlo como un producto por eso lo de "factorizar" de otros polinomios de grado igual o menor a él ara qué factorizar

Más detalles

En este caso, el coeficiente de es 4, el coeficiente de es 2, el coeficiente de es -3 y la constante es 1.

En este caso, el coeficiente de es 4, el coeficiente de es 2, el coeficiente de es -3 y la constante es 1. Materia: Matemática de Octavo Tema: Elementos de un polinomio Qué pasa si se te da una expresión algebraica como? Cómo puedes simplificarla y encontrar su grado u orden? Después de completar esta lección,

Más detalles

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio?

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? Factorizar o Factorear significa "transformar en multiplicación" (o "producto", como también se le llama a la multiplicación).

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

Mó duló 04: Á lgebra Elemental I

Mó duló 04: Á lgebra Elemental I INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 04: Á lgebra Elemental I Objetivo: Identificar y utilizar conceptos matemáticos asociados al estudio del álgebra elemental. Problema 1 La edad de

Más detalles