Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 13 de diciembre de Tercer Selectivo (NIVEL PRIMARIA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 13 de diciembre de Tercer Selectivo (NIVEL PRIMARIA)"

Transcripción

1 Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato Instrucciones. 13 de diciembre de 2014 Tercer Selectivo (NIVEL PRIMARIA) 1. Tienes 4 horas y media para hacer el examen. Lee las instrucciones con calma y asegúrate que las entiendes del todo. Te puedes quedar esta hoja. Recuerda checar los resultados en la página onmapsguanajuato.wordpress.com durante la siguiente semana. 2. Los problemas están numerados del 1 al 5. Para cada problema, explica detalladamente todo tu procedimiento en las hojas blancas. La respuesta numérica a los problemas tiene poco valor; se dará puntaje más alto a aquellos cuyo procedimiento sea correcto y esté bien explicado y desarrollado. 3. Recuerda que para resolver los problemas puedes escribir todo lo que necesites pero no está permitido el uso de CALCULADORAS, APUNTES, CELULARES o TABLAS, sólo puedes usar lápiz o pluma, sacapuntas, borrador, y si quieres juego de geometría. 4. Tienes sólo la primera hora para hacer preguntas sobre la redacción del examen. 1.- Un punto P está en el interior de un triángulo rectángulo ABC, de tal manera que AB = 7, BC = 24 y CA = 25. D, E y F son puntos sobre los lados BC, CA y AB, respectivamente, de tal forma que los segmentos PD, PE y PF son perpendiculares a los lados BC, CA y AB, respectivamente. Si PD = PE = 2, Cuánto vale PF? 2.- Determinar todos los posibles valores para a, b y c tales que a, b y c son dígitos distintos y que cumplen que (Nota: 6ca y 2ba son números de 3 dígitos) 6ca 2ba = En casa de Christian, un grupo de ratones roba pedazos de queso de la cocina. Picho, la gata, observa que ningún ratón ha robado más de 10 pedazos y ninguno robó la misma cantidad o exactamente la mitad que algún otro. Cuál es el máximo número de ratones ladrones en la casa de Christian? 4.- Encuentra todas las posibles parejas de dígitos (a, b) tales que el número 24ab32 es divisible entre La maestra de Chema dibuja en el pizarrón tres polígonos, los cuales llama A, B y C. Al terminar, Chema nota que: Los polígonos A y B tienen 30cm de perímetro. El polígono A tiene 4 lados más que B. El perímetro de C es el doble de B. Cada lado de los polígonos B y C miden 5 cm. Cuántos lados en total dibujó la maestra de Chema?

2 Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato Instrucciones. 13 de diciembre de 2014 Tercer Selectivo (NIVEL 1 SECUNDARIA) 1. Tienes 4 horas y media para hacer el examen. Lee las instrucciones con calma y asegúrate que las entiendes del todo. Te puedes quedar esta hoja. Recuerda checar los resultados en la página onmapsguanajuato.wordpress.com durante la siguiente semana. 2. Los problemas están numerados del 1 al 5. Para cada problema, explica detalladamente todo tu procedimiento en las hojas blancas. La respuesta numérica a los problemas tiene poco valor; se dará puntaje más alto a aquellos cuyo procedimiento sea correcto y esté bien explicado y desarrollado. 3. Recuerda que para resolver los problemas puedes escribir todo lo que necesites pero no está permitido el uso de CALCULADORAS, APUNTES, CELULARES o TABLAS, sólo puedes usar lápiz o pluma, sacapuntas, borrador, y si quieres juego de geometría. 4. Tienes sólo la primera hora para hacer preguntas sobre la redacción del examen. 1.- En la lista de 6 números a, b, c, d, e, f, cada uno (a partir del segundo, de izquierda a derecha) es la suma de los números anteriores a él. Si f = 7392, cuánto vale a? 2.- En la siguiente figura (derecha) el triángulo ABC es equilátero, tiene lado 2cm y la semicircunferencia tiene diámetro BC. Cuánto vale el área sombreada? (Puedes usar que el área de un triángulo equilátero de lado 2 es 3, lo cual aproximadamente es ) 3.- Mane debe estacionar un auto en cada uno de los 12 lugares de estacionamiento como el de la figura (izquierda). En cada lugar puede estacionar un auto blanco, uno negro o uno rojo (y hay al menos 12 de cada color). Debe hacer esto sin que queden dos autos del mismo color en lugares vecinos de manera vertical y horizontal (diagonal sí se puede). De cuántas maneras puede Mane hacer esto? 4.- Cuántos números entre 100 y hay que sean divisibles por 3 y que todos sus dígitos sean iguales? 5.- Dos triángulos equiláteros ABC y DEF de perímetros 36cm y 27cm respectivamente, están sobrepuestos, formando un ángulo de 120 como se muestra en la figura. Cuál es el perímetro del hexágono sombreado?

3 Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato Instrucciones. 13 de diciembre de 2014 Tercer Selectivo (NIVEL 2 SECUNDARIA) 1. Tienes 4 horas y media para hacer el examen. Lee las instrucciones con calma y asegúrate que las entiendes del todo. Te puedes quedar esta hoja. Recuerda checar los resultados en la página onmapsguanajuato.wordpress.com durante la siguiente semana. 2. Los problemas están numerados del 1 al 5. Para cada problema, explica detalladamente todo tu procedimiento en las hojas blancas. La respuesta numérica a los problemas tiene poco valor; se dará puntaje más alto a aquellos cuyo procedimiento sea correcto y esté bien explicado y desarrollado. 3. Recuerda que para resolver los problemas puedes escribir todo lo que necesites pero no está permitido el uso de CALCULADORAS, APUNTES, CELULARES o TABLAS, sólo puedes usar lápiz o pluma, sacapuntas, borrador, y si quieres juego de geometría. 4. Tienes sólo la primera hora para hacer preguntas sobre la redacción del examen. 1.- Ayer por la tarde, Mario perdió su tarjeta de crédito, pero recuerda que: Su número de cuenta es un número de 7 cifras distintas. La suma de los 7 dígitos es 32. El número formado por las primeras cuatro cifras menos el número formado por las últimas tres es 95. Cuál es el número de cuenta de Mario? 2.- Se parte a la mitad un círculo de alambre de 2m de diámetro. Una de las mitades del círculo se colocan sobre una mesa rectangular y la otra mitad se desdobla y se coloca estirada a lo largo del centro de la mesa, como se muestra en la figura (derecha). Cuál es el área de la región sombreada? 3.- Mane debe estacionar un auto en cada uno de los 12 lugares de estacionamiento como el de la figura (izquierda). En cada lugar puede estacionar un auto blanco, uno negro o uno rojo (y hay al menos 12 de cada color). Debe hacer esto sin que queden dos autos del mismo color en lugares vecinos de manera vertical y horizontal (diagonal si se puede). De cuántas maneras se puede hacer esto? 4.- Se coloca una ficha en la esquina de un tablero de ajedrez que puede moverse de forma horizontal y vertical por las casillas del tablero. Es posible llevar la ficha hasta la esquina opuesta del tablero pasando por todas las casillas exactamente una vez? 5.- A partir del sexto elemento de la sucesión 1,-1, -1, 1, -1,, cada número se obtiene de multiplicar los dos números anteriores. Cuál es la suma de los primeros 2014 elementos de la sucesión?

4 Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato Instrucciones. 13 de diciembre de 2014 Tercer Selectivo (NIVEL 3 SECUNDARIA) 1. Tienes 4 horas y media para hacer el examen. Lee las instrucciones con calma y asegúrate que las entiendes del todo. Te puedes quedar esta hoja. Recuerda checar los resultados en la página onmapsguanajuato.wordpress.com durante la siguiente semana. 2. Los problemas están numerados del 1 al 5. Para cada problema, explica detalladamente todo tu procedimiento en las hojas blancas. La respuesta numérica a los problemas tiene poco valor; se dará puntaje más alto a aquellos cuyo procedimiento sea correcto y esté bien explicado y desarrollado. 3. Recuerda que para resolver los problemas puedes escribir todo lo que necesites pero no está permitido el uso de CALCULADORAS, APUNTES, CELULARES o TABLAS, sólo puedes usar lápiz o pluma, sacapuntas, borrador, y si quieres juego de geometría. 4. Tienes sólo la primera hora para hacer preguntas sobre la redacción del examen. 1.- En una recta se marcan 2014 puntos y se colorean de rojo y de azul. A continuación se pintan los segmentos entre dos puntos consecutivos como sigue, Si los dos extremos son rojos, el segmento se pinta de rojo. Si los dos extremos son azules, el segmento se pinta de azul. Si los extremos son de colores distintos, el segmento se pinta de gris. Si se sabe que el primer punto es de color rojo y al final se colorean 122 segmentos grises, Cuál es el color del último punto? 2.- Wicho piensa un número de cinco dígitos abcde. Luego elige uno de los dígitos y lo elimina formando un nuevo número de cuatro dígitos. Si al sumar estos dos números Wicho obtiene 52713, cuál es la suma de los dígitos del número que pensó? 3.- En el lado BC del triángulo ABC, H es un punto tal que AH es perpendicular a BC. Además, AH = 8, AB = 10 y el área del triángulo ABC es 84. Determina el perímetro de ABC. 4.- Hay 2014 salones en fila en un corredor muy largo. Inicialmente hay 2014 personas en el primer salón. Cada que pasa un minuto ocurre lo siguiente: en cada uno de los salones en los que hay más de una persona, una y sólo una de ellas decide que el cuarto está muy lleno y se va al siguiente. Todos estos movimientos son simultáneos (nadie cambia de cuarto más de una vez por minuto). Después de 197 minutos, cuántos salones tienen gente dentro de él? 5.- Mane debe estacionar un auto en cada uno de los 12 lugares de estacionamiento como el de la figura (izquierda). En cada lugar puede estacionar un auto blanco, uno negro o uno rojo (y hay al menos 12 de cada color). Debe hacer esto sin que queden dos autos del mismo color en lugares vecinos de manera vertical y horizontal (diagonal si se puede). De cuántas maneras se puede hacer esto?

5 **************************************************************************************** PRIMARIA (23,4,11,30,6) 2.- (Primaria) Se va construyendo una escalera como sigue: el primer escalón se construye de altura 1cm y largo 2 cm, el segundo escalón de altura 3cm y largo 4 cm, el tercer escalón de altura 5cm y largo 6 cm y así sucesivamente hasta acabar la escalera como se muestra en la figura. Si al terminar la escalera esta tiene una altura de 400 cm, Cuál es el largo de la escalera? 11.-(Primaria) En casa de Christian un grupo de ratones roba pedazos de queso de la cocina. Picho, la gata observa que ningún ratón ha robado más de 10 pedazos y ninguno robó la misma cantidad o exactamente la mitad que algún otro. Cuál es el máximo número de ratones ladrones en la casa de Christian? 29.- (Primaria) En un examen de 100 puntos que se le aplicó a un grupo, el promedio de las niñas fue de 91 y el de los niños fue 85. Si el promedio del grupo fue 89, qué fracción del total de alumnos son niñas? 23.- (Primaria) Un punto P está en el interior de un triángulo rectángulo ABC, de tal manera que AB = 7, BC = 24 y CA = 25. D, E y F son puntos sobre los lados BC, CA y AB, respectivamente, de tal forma que los segmentos PD, PE y PF son perpendiculares a los lados BC, CA y AB, respectivamente. Si PD = PE = 2, Cuánto vale PF? 6.- (Primaria) La maestra de Chema dibuja en el pizarrón tres polígonos A, B y C, al terminar, Chema nota que: Los polígonos A y B tienen 30cm de perímetro. El polígono A tiene 4 lados más que B. El perímetro de C es el doble de B. Cada lado de los polígonos B y C miden 5 cm. Cuántos lados dibujó la maestra de Chema? 30.- (Primaria y 1) Encuentra todas las posibles parejas de dígitos (a,b) tales que el número 24ab32 es divisible entre (Primaria y 1) Determinar a, b, c dígitos distintos tales que, 6ca 2ba = (Primaria y 1) Inés tiene dos bolsitas de gomitas, la bolsita A con 7 gomitas rojas y la bolsita B con 10 gomitas amarillas. Cada día Inés puede tomar 3 gomitas de la bolsa A, 2 gomitas de la bolsa B o una gomita de cada una. Cuál es el mínimo número de días que Inés necesita para poder vaciar ambas bolsas? 19.- (Primaria y 1) En la lista de 6 números, a,b,c,d,e,f, cada uno es la suma de los números anteriores a él. Si f=7392. Cuánto vale a?

6 9.-(Primaria y 1) Alejandra construye un tetraedro ABCD formado con palitos de madera y bolitas de plastilina como se muestra en la figura, luego etiqueta cada uno de los palillos y bolitas con un número del 1 al 11 sin contar el número 10 (y sin repetir números), de tal manera que el número en cada palillo es la suma de los números en las dos bolitas de sus extremos. Si el palillo AB lo ha etiquetado con el número 9, Con que número ha etiquetado al palillo CD? PRIMERO (19,18,27,25,14) 3. (1) Se tiene la sucesión de números 1, 11, 111, 1111, 11111, Cuál es el dígito de las centenas de la suma de los primeros 2014 números de la sucesión? 22.- (1) Una circunferencia con centro en el punto X se divide en 20 arcos de la misma longitud y se marcan en el sentido de las manecillas del reloj con las letras de la A la S (incluyendo la Ñ). Cuál es la medida del ángulo <AHX? 25.- (1) Cuántos números entre 100 y hay que sean divisibles por 3 y que todos sus dígitos sean iguales? 18.- (1) En la siguiente figura el triángulo ABC es equilátero, tiene lado 2cm y la semicircunferencia tiene diámetro BC. Cuánto vale el área sombreada? (Puedes usar que el área de un triángulo equilátero de lado 2 es ) 8.-(1 y 2) A partir del sexto elemento de la sucesión 1,-1, -1, 1, -1,, cada número es el producto de los dos números anteriores. Cuál es la suma de los primeros 2013 elementos de la sucesión? 12.-(1 y 2) Un jardinero va a plantar una línea de 20 pinos y manzanos. Si no puede plantar exactamente tres árboles en medio de dos manzanos Cuál es la mayor cantidad de manzanos que puede plantar? 14.- (1 y 2) Dos triángulos equiláteros ABC y DEF de perímetros 36 cm y 27cm respectivamente, están sobrepuestos, formando un ángulo de 120º como se muestra en la figura. Cuál es el perímetro del hexágono sombreado? 27.- (1 y 2) Mane debe estacionar un auto en cada uno de los 12 lugares de estacionamiento como el de la figura. En cada lugar puede estacionar un auto blanco, uno negro o uno rojo (y hay al menos 12 de cada color). Debe hacer esto sin que queden dos autos del mismo color en lugares vecinos de manera vertical y horizontal (diagonal si se puede). De cuántas maneras se puede hacer esto? 15.- (1 y 2) Ayer por la tarde, Mario perdió su tarjeta de crédito, pero recuerda que: Su número de cuenta es un número de 7 cifras distintas. La suma de los 7 dígitos es 32.

7 El número formado por las primeras cuatro cifras menos el número formado por las últimas tres es 95. Cuál es el número de cuenta de Mario? SEGUNDO (15,5,27,13,8) 5.-(2) Se parte a la mitad un círculo de alambre de 2m de diámetro. Una de las mitades del círculo se colocan sobre una mesa rectangular y la otra mitad se desdobla y se coloca estirada a lo largo del centro de la mesa, como se muestra en la figura. Cuál es el área de la región sombreada? 1.- (2 y 3) Demuestra que al colocar 6 fichas en las casillas de un tablero de 4x4 (a lo más una ficha por casilla) siempre se pueden eliminar todas las fichas colocadas, eliminando dos filas y dos columnas del tablero. 13.-(2 y 3) Se coloca una ficha en la esquina de un tablero de ajedrez que puede moverse de forma horizontal y vertical por las casillas del tablero. Es posible llevar la ficha hasta la esquina opuesta del tablero pasando por todas las casillas exactamente una vez? 26.- (2 y 3) Para saber el número secreto de Chus se tienen las siguientes pistas: Es un número de 6 dígitos que se lee igual de derecha a izquierda que de izquierda a derecha. Es un múltiplo de 9. Cuál es el número de Chus? Si se tachara el primer y el último dígito, el único divisor primo del número que queda es (2 y 3) En una recta se marcan 2014 puntos y se colorean de rojo y de azul. A continuación se pintan los segmentos entre dos puntos consecutivos como sigue, Si los dos extremos son rojos, el segmento se pinta de rojo. Si los dos extremos son azules, el segmento se pinta de azul. Si los extremos son de colores distintos, el segmento se pinta de gris. Si se sabe que el primer punto es de color rojo y al final se colorean 122 segmentos grises, Cuál es el color del último punto? TERCERO (16,7,24,28, (3) Wicho piensa un número de cinco dígitos abcde. Luego elige uno de los dígitos y lo elimina formando un nuevo número de cuatro dígitos. Si al sumar estos dos números Wicho obtiene Cuál es la suma de los dígitos del número que pensó?

8 20.-(3) En la figura, ABCD es un cuadrado de lado 1 y los cuartos de círculo tienen centros en A, B, C y D. Cuál es la longitud de PQ? (Falta figura) 21.-(3)En cada una de las caras de un cubo se escribió un número entero positivo y a cada uno de los vértices del cubo se le asignó el producto de los números que aparecían en las caras adyacentes al vértice. Si la suma de los números en los vértices es 70. Cuál es la suma de todos los números que aparecen en las caras? 24.- (3) En el lado BC del triángulo ABC, H es un punto tal que AH es perpendicular a BC. Además, AH=8, AB=10 y el área del triángulo ABC es 84. Determina el perímetro de ABC (3) Hay 2014 salones en fila en un corredor muy largo. Inicialmente hay 2014 personas en el primer salón. Cada que pasa un minuto ocurre lo siguiente: en cada uno de los salones en los que hay más de una persona, una y sólo una de ellas decide que el cuarto está muy lleno y se va al siguiente. Todos estos movimientos son simultáneos (nadie cambia de cuarto más de una vez por minuto). Después de hora y media, cuántos salones tienen gente dentro de él?

Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 25 de octubre de Primer Selectivo (NIVEL PRIMARIA)

Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 25 de octubre de Primer Selectivo (NIVEL PRIMARIA) Instrucciones. 25 de octubre de 2014 Primer Selectivo (NIVEL PRIMARIA) 1. Tienes 4 horas y media para hacer el examen. Lee las instrucciones con calma y asegúrate que las entiendes del todo. Te puedes

Más detalles

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:... XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................

Más detalles

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010.

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Instrucciones: En la hoja de las respuestas marca la respuesta que creas correcta. Si marcas más de una respuesta en alguna pregunta

Más detalles

XXI OLIMPIADA NACIONAL DE MATEMÁTICA

XXI OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 22 DE AGOSTO DE 2009 - NIVEL 1 Nombre y Apellido:................................. Puntaje:.................... Colegio:................................... Grado:........... Sección:..........

Más detalles

Olimpiada Estatal de Matemáticas 2014

Olimpiada Estatal de Matemáticas 2014 Olimpiada Estatal de Matemáticas 2014 Primer problemario A continuación, presentamos una serie de 60 problemas de opción múltiple, que son parte de los temas que se presentan en los exámenes de la 1ra,

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

ÁNGULOS. 2. En el triángulo ABC, el ángulo B se obtiene aumentando en 50% el ángulo A o también reduciendo en 25% el ángulo C. Cuál es la medida de B?

ÁNGULOS. 2. En el triángulo ABC, el ángulo B se obtiene aumentando en 50% el ángulo A o también reduciendo en 25% el ángulo C. Cuál es la medida de B? ENTRENAMIENTO COMPETENCIA COTORRA 2015 GEOMETRÍA (PROBLEMAS INTRODUCTORIOS) IIS AMIR MADRID GARZÓN Enero / 2015 ÁNGULOS 1. Cuántos ángulos hay en la siguiente figura? a) 13 b) 14 c) 21 d) 18 2. En el triángulo

Más detalles

Taller especial de capacitación de los profesores del 4º Ciclo

Taller especial de capacitación de los profesores del 4º Ciclo Taller especial de capacitación de los profesores del 4º Ciclo Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional

Más detalles

CANGURO MATEMÁTICO Nivel Estudiante (6to. Curso)

CANGURO MATEMÁTICO Nivel Estudiante (6to. Curso) CANGURO MATEMÁTICO 2003 Nivel Estudiante (6to. Curso) Día 22 de marzo de 2003. Tiempo: hora y 5 minutos No se permite el uso de calculadoras. Hay una única respuesta correcta para cada pregunta. Cada pregunta

Más detalles

Problema 3 Sea ABC un triángulo acutángulo con circuncentro O. La recta AO corta al lado BC en D. Se sabe que OD = BD = 1 y CD = 1+

Problema 3 Sea ABC un triángulo acutángulo con circuncentro O. La recta AO corta al lado BC en D. Se sabe que OD = BD = 1 y CD = 1+ PRIMER NIVEL PRIMER DÍA Problema 1 a) Es posible dividir un cuadrado de lado 1 en 30 rectángulos de perímetro? b) Supongamos que un cuadrado de lado 1 está dividido en 5 rectángulos de perímetro p. Hallar

Más detalles

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014 CUARTA RONDA DEPARTAMENTAL NIVEL 1 Nombre y Apellido:............................................... Colegio:............................. Grado:...... Sección:..... Ciudad:................................

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando

Más detalles

Olimpiada Mexicana de Matemáticas Guanajuato

Olimpiada Mexicana de Matemáticas Guanajuato Olimpiada Mexicana de Matemáticas Guanajuato 22 de Mayo de 2010 1.- Sobre una mesa se tienen 1999 fichas que son rojas de un lado y negras del otro (no se especifica cuántas con el lado rojo hacia arriba

Más detalles

Olimpiada Kanguro 2007

Olimpiada Kanguro 2007 Escribe tus respuestas en la HOJA DE RESPUESTAS Olimpiada Kanguro 007 Nivel Cadete (9no y 0mo año básico) Tiempo: hora y 5 minutos No se permite el uso de calculadoras. Hay una única respuesta correcta

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

Teorema de Pitágoras Distancia y Puntos Medios

Teorema de Pitágoras Distancia y Puntos Medios Slide 1 / 78 Teorema de Pitágoras Distancia y Puntos Medios Tabla de Contenidos Slide 2 / 78 Teorema de Pitágoras Haga clic en un tema para ir a esa sección Fórmula de la Distancia Puntos Medios Slide

Más detalles

Examen Canguro Matemático Mexicano Nivel Cadete Olímpico

Examen Canguro Matemático Mexicano Nivel Cadete Olímpico Examen Canguro Matemático Mexicano Nivel Cadete Olímpico Instrucciones: En la hoja de respuestas, llena el círculo que corresponda a la respuesta correcta para cada pregunta. Si en una misma pregunta aparecen

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

(a) 115 (b) 116 (c) 117 (d) 118 (e) 114 (f) Ninguna. (a) (b) (c) (d) (e)

(a) 115 (b) 116 (c) 117 (d) 118 (e) 114 (f) Ninguna. (a) (b) (c) (d) (e) da OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA da Etapa (Examen Simultáneo) 1ro. de secundaria Recomendaciones: Escriba los datos anteriores usando letra imprenta, una letra en cada rectángulo

Más detalles

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala.

Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala. Conceptos de geometría Las figuras que acompañan a los ejercicios en la prueba tienen el propósito de proveerle información útil para resolver los problemas. Las figuras están dibujadas con la mayor precisión

Más detalles

XXIII Olimpiada Mexicana de Matemáticas Examen Zonal de Secundarias, Nivel Cadete Yucatán 2008.

XXIII Olimpiada Mexicana de Matemáticas Examen Zonal de Secundarias, Nivel Cadete Yucatán 2008. XXIII OLIMPIADA MEXICANA DE MATEMÁTICAS Examen Zonal de Secundarias Nivel Cadete XXIII Olimpiada Mexicana de Matemáticas Examen Zonal de Secundarias, Nivel Cadete Yucatán 2008. Instrucciones: En la hoja

Más detalles

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:...

XIX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1. Nombre y Apellido:... C.I.:... TERCERA RONDA REGIONAL - 1 DE SETIEMBRE DE 2007 - NIVEL 1 Nombre y Apellido:..................................... C.I.:.................. Grado:......... Sección:........ Puntaje:........... Los dibujos

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Nombre del alumno: Profesora Noelia Freita Colegio Pablo Neruda

Nombre del alumno: Profesora Noelia Freita Colegio Pablo Neruda Nombre del alumno: Profesora Noelia Freita Colegio Pablo Neruda Pasos para la resolución de un problema 1 Instancia Final de la Olimpíada Nacional de Matemática 2013 Nivel I A (4to. Año Escolar) PROBLEMA

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

CANGURO MATEMÁTICO 2013 TERCERO DE SECUNDARIA

CANGURO MATEMÁTICO 2013 TERCERO DE SECUNDARIA CNGURO MTEMÁTICO 2013 TERCERO DE SECUNDRI INDICCIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras de

Más detalles

(Nivel Bachillerato)

(Nivel Bachillerato) CONCURSO DE MATEMÁTICAS EJERCICIOS PROPUESTOS (Nivel Bachillerato) 1. El dueño de una galería tiene 19 fotografías a color y 12 en blanco y negro. Si quiere colgar todas las que ya tiene y va a comprar

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

1. Para cuántos números, del 2 al 26, se tiene que es múltiplo de 84?

1. Para cuántos números, del 2 al 26, se tiene que es múltiplo de 84? NÚMEROS 1. Para cuántos números, del 2 al 26, se tiene que es múltiplo de 84? 2. El promedio de 17 enteros positivos es 15. Cuál es el mayor valor posible para el número más grande de esos 17 enteros?

Más detalles

Problema 1 En la Figura 2 de la gráfica hay 3 ángulos. Cuántos ángulos hay en la Figura 3? A) 3 D) 6 B) 4 E) 7 C) 5 F) n. d. l. a.

Problema 1 En la Figura 2 de la gráfica hay 3 ángulos. Cuántos ángulos hay en la Figura 3? A) 3 D) 6 B) 4 E) 7 C) 5 F) n. d. l. a. PRIMERA RONDA COLEGIAL NIVEL 1 Nombre y Apellido:............................................ Puntaje: Grado/Curso....... Sección:...... Los dibujos correspondientes a los problemas de Geometría, no están

Más detalles

2.- Escribe la lectura o escritura de las siguientes fracciones:

2.- Escribe la lectura o escritura de las siguientes fracciones: EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

Construcciones. Proporciones. Áreas

Construcciones. Proporciones. Áreas Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y

Más detalles

Soluciones Segundo Nivel Infantil

Soluciones Segundo Nivel Infantil SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA FINAL "VIII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones Segundo Nivel Infantil 21 de mayo de 2011 1. El resultado de la siguiente

Más detalles

OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO

OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Cuál de los siguientes números es par? A 2009 B 2 + 0 + 0 + 9

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado.

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado. REPARTIDO Nº 6 1) Calcular la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 8 cm respectivamente. 2) Si la hipotenusa de un triángulo rectángulo mide 13 cm y uno de sus catetos

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

ENTRETENIMIENTOS MATEMÁTICOS. Nacho Diego

ENTRETENIMIENTOS MATEMÁTICOS. Nacho Diego ENTRETENIMIENTOS MATEMÁTICOS Nacho Diego El Gordo de la Lotería ha correspondido al número que cumple todas estas condiciones Averigua cuál ha sido: Es mayor que 50.000 y menor que 60.000. La cifra de

Más detalles

PROBLEMAS ÚLTIMO SELECTIVO

PROBLEMAS ÚLTIMO SELECTIVO PROBLEMAS ÚLTIMO SELECTIVO 1.- Sea ΔABC un triángulo rectángulo con ángulo recto en A y ACB = 30. Sea M el punto medio de BC y sea P la circunferencia que pasa por A y es tangente a BC en M y Q la circunferencia

Más detalles

15 Figuras y cuerpos

15 Figuras y cuerpos 15 Figuras y cuerpos 1 Longitudes 1 Determinar la altura de un triángulo equilatero de lado 4. Calcula su radio y su apotema 4 m 2 Un puente levadizo de entrada a un castillo tiene 6 metros de longitud.

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011

XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011 XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011 1. Un maestro de matemáticas avisa a sus alumnos que preguntará la demostración de tres de los ocho teoremas vistos

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

Profesor: Miguel Ángel Valverde. 1.- Teniendo en cuenta la jerarquía de las operaciones, calcula: (tema 1 libro texto)

Profesor: Miguel Ángel Valverde. 1.- Teniendo en cuenta la jerarquía de las operaciones, calcula: (tema 1 libro texto) EJERCICIOS DE MATEMÁTICAS PARA 1º DE LA ESO. REPASO PARA EL VERANO 008 (Incluye ejercicios de ángulos, gráficas y funciones y geometría del plano y polígonos y cuerpos geométricos, que no se han dado en

Más detalles

Segundo Nivel 209. Siempre moviéndonos en el sentido de las flechas, de cuántas maneras podemos ir de A hasta P? F

Segundo Nivel 209. Siempre moviéndonos en el sentido de las flechas, de cuántas maneras podemos ir de A hasta P? F Problemas de Graciela errarini y Julia Seveso 4 de mayo 109. La figura está formada por dos triángulos iguales y un rectángulo. l perímetro de es 70 cm. l perímetro del triángulo es 60 cm. = 4 y = 3. uál

Más detalles

OLIMPÍADA JUVENIL DE MATEMÁTICA 2013 CANGURO MATEMÁTICO PRIMER AÑO

OLIMPÍADA JUVENIL DE MATEMÁTICA 2013 CANGURO MATEMÁTICO PRIMER AÑO OLIMPÍADA JUVENIL DE MATEMÁTICA 2013 CANGURO MATEMÁTICO PRIMER AÑO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Se introducen los números 2, 0, 1, 3 en una máquina de sumar, como se muestra en la

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 228 EJERCICIOS Construcción de triángulos 1 Construye un triángulo equilátero cuyo lado mida l 5 cm. l l l = 5 cm l 2 Construye un triángulo isósceles cuyos ángulos iguales miden 30 y cuyo

Más detalles

CANGURO MATEMÁTICO 2015 CUARTO DE SECUNDARIA

CANGURO MATEMÁTICO 2015 CUARTO DE SECUNDARIA CNGURO MTEMÁTICO 2015 CURTO DE SECUNDRI INDICCIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras de imprenta

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA SEGUNDO GRADO 1. Tenemos tres balanzas equilibradas, como muestran las figuras. Cuántas tazas se necesitan para equilibrar la jarra? Se presentan dos formas de

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Aritmética para 6.º grado (con QuickTables)

Aritmética para 6.º grado (con QuickTables) Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO TEMARIO COMÚN

CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO TEMARIO COMÚN CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO 2005 2006 TEMARIO COMÚN NOMBRE: GRADO: ESCUELA: MUNICIPIO: TIEMPO: 4 HORAS. Una panadería vende panecillos a $0.30 cada uno, o 7 panecillos en $.00

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta.

Resolución de exámenes. NOTA: La opción resaltada en naranja es la opción correcta. Resolución de exámenes NOTA: La opción resaltada en naranja es la opción correcta. Geometría Ejercicio 1: La suma de los ángulos internos de un cuadrilátero vale: A. Depende el cuadrilátero B. 90 C. 360

Más detalles

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso Matemáticas II Magisterio (rimaria) urso 2013-2014 1. alcula la medida del ángulo a de la figura. roblemas de repaso 116 105 a Sol: a = 49. 2. Sabiendo que los puntos, y R están sobre una circunferencia

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

CANGURO MATEMÁTICO 2012 PRIMERO DE SECUNDARIA

CANGURO MATEMÁTICO 2012 PRIMERO DE SECUNDARIA CNGURO MTEMÁTICO 0 PRIMERO E SECUNRI INICCIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras de imprenta

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Polígonos regulares, el triángulo de Sierpinski y teselados

Polígonos regulares, el triángulo de Sierpinski y teselados Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES

Más detalles

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

Estimados profesores:

Estimados profesores: XXIII OLIMPIADA MEXICANA DE MATEMÁTICAS Examen Departamental de Secundarias Nivel Cadete Estimados profesores: El presente examen es una sugerencia, un ejemplo, de lo que en el Comité de la Olimpiada Mexicana

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

Hoja de actividad sobre las propiedades de las figuras geométricas planas

Hoja de actividad sobre las propiedades de las figuras geométricas planas Nombre Unidad 4.6: Diseños en nuestro mundo Hoja de actividad sobre las propiedades de las figuras geométricas planas Fecha Instrucciones: Mira cada figura con detenimiento. Nombra cada una de las figuras

Más detalles

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número Tema - Hoja : Raíz de un número Expresa como producto de un número entero y un radical los siguientes radicales: a) a) = = = = = = Expresa en forma de raíz las siguientes potencias de exponente fraccionario:

Más detalles

PROBLEMARIO CATEGORÍA 3 SECUNDARIA

PROBLEMARIO CATEGORÍA 3 SECUNDARIA PROBLEMARIO CATEGORÍA 3 SECUNDARIA Estimados estudiantes, recuerden que los problemas se resuelven con habilidad, utilizando algunas veces la lógica o inferencias, esto a través de un enfoque analítico,

Más detalles

TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I

TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I TRABAJO DE RECUPERACIÓN TERCER BIMESTRE MATEMÁTICAS I PROFRA. EVA CASTILLO BAÑOS NOMBRE DEL ESTUDIANTE: GRUPO: INSTRUCCIONES: Imprimir en hojas blancas tamaño carta. Resolver con lápiz. Se debe incluir

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

19 a Competencia de MateClubes Primera Ronda Nivel Preolímpico

19 a Competencia de MateClubes Primera Ronda Nivel Preolímpico Primera Ronda Nivel Preolímpico La prueba dura 2 horas. Nombre del Club:.................................... Código del club: 19 0.............. 1. Rafa tiene $21 y Betty tiene $3. Cada semana, Rafa recibe

Más detalles

I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura:

I Eliminatoria Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 1. Determine el área sombreada en la figura adjunta 11 (a) 15 (b) 16 (c) 17 (d) 18 Separemos la figura así: Considere la figura: el área sonbreada en esta figura es 7,5. Ahora considere la figura: 6 Su

Más detalles

24ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA 4ª RONDA DEPARTAMENTAL 11 de agosto de 2012

24ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA 4ª RONDA DEPARTAMENTAL 11 de agosto de 2012 Problema 1 Calcular el valor de la expresión: (214 213) + (999 998) + 1 200 + 0 100. Problema 2 Entre 10 y 20 hay números que son divisibles sólo por 1 y por sí mismos. Cuál es la suma de esos números?

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

1. Progresiones aritméticas

1. Progresiones aritméticas 1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.

Más detalles

FIGURAS, ÁREAS Y PERÍMETROS

FIGURAS, ÁREAS Y PERÍMETROS FIGURAS, ÁREAS Y PERÍMETROS 05 Identifica propiedades de las figuras geométricas, de área y de perímetro y utiliza modelos con los que representa información matemática. Para hablar de áreas y perímetros,

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS Diseñada por: Esp. María Cristina Marín Valdés INSTITUCIÓN EDUCATIVA EDUARDO FERNÁNDEZ BOTERO Área de Matemáticas Amalfi 2011 ÁREA Y PERÍMETRO

Más detalles

f(x) = sen x f(x) = cos x

f(x) = sen x f(x) = cos x www.matemáticagauss.com Trigonometría f(x) = sen x f(x) = cos x Función tangente f(x) = tan x Dominio: Ámbito: Periodo: Siempre crece 1 Prof. Orlando Bucknor Masís tel.: 9 9990 1) Un intervalo en el que

Más detalles

Actividad Reconociendo lo invariante en figuras simétricas

Actividad Reconociendo lo invariante en figuras simétricas Actividad 37.1. Reconociendo lo invariante en figuras simétricas Construir figuras simétricas respecto de un eje y describir las propiedades que se conservan. Recuerda que la simetría axial o simetría

Más detalles