Tema 6: Teoría Semántica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 6: Teoría Semántica"

Transcripción

1 Tema 6: Teoría Semántica

2 Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad Validez Validez Consecuencia Equivalencia Sistemas deductivos Resolución Deducción natural natural Tablas Tablas semánticas

3 Introducción a la T. Semántica Utiliza la simbolización vista hasta el momento La diferencia principal es que el sistema de fórmulas y estructuras deductivas válidas no se construye a partir de los axiomas y reglas sino mediante una simbolización del significado de las proposiciones

4 Introducción a la T. Semántica Para esto, se necesita Un conjunto de significados atribuibles a las proposiciones {V,F} o {,} Definición semántica de las conectivas (tablas de verdad) Una definición semántica de deducción correcta

5 Evaluación de Fórmulas Es posible construir la tabla de significado de cualquier fórmula a partir de las correspondientes fórmulas parciales que la integran Interpretación: asignación de significados a sus componentes básicas (una línea de la tabla de verdad) Modelo: interpretación que hace cierta una fórmula Contramodelo (contraejemplo): interpretación que hace falsa la fórmula

6 Tablas de verdad En cálculo de proposiciones Ejemplo TV para conectivas Como crear TV para 3 variables

7 Tablas de verdad Ejemplo: (A B) (B A) A B A B B A (A B) (B A) A B <=>B A? A B <=>~A v B? Modelos Contramodelos

8 Evaluación de Fórmulas De acuerdo con el resultado de las interpretaciones, las fórmulas pueden clasificarse en: Tautología: siempre es verdad ( ) Contradicción: siempre es falsa Contingencia: valores distintos (ninguna de las anteriores) Una fórmula que tiene al menos un modelo es satisfacible (al menos una línea en la que todas las fórmulas son válidas) Una fórmula sin contraejemplos es semánticamente válida

9 Evaluación de Fórmulas De tres fórmulas, una insatisfacible (contradicción) y dos satisfacibles El conjunto de fórmulas no es satisfacible (ninguna línea con todo s) Una fórmula insatisfacible es una tautología negada

10 Deducción Correcta Dada una estructura deductiva p,p 2,p 3,,p n q se define como correcta cuando no existe una interpretación que haga p,p 2,p 3,,p n verdadero y q falso Para demostrar que una estructura deductiva es incorrecta, basta con encontrar una interpretación que no cumpla la regla anterior

11 Tablas de verdad Ejemplo de deducción correcta: A B, B C => A C C A C B C A B B A

12 Teorema de la Deducción Es demostrable mediante la definición semántica de deducción Si p,p 2,p 3,,p n q Es una deducción correcta p,p 2,,p n- p n q También es una deducción correcta

13 Tautologías asociadas una Deducción C. Si p,p 2,p 3,,p n q es una deducción semánticamente correcta, entonces p (p 2 (p 3 (p n q) ) también lo es Si p,p 2,p 3,,p n q es una deducción semánticamente correcta, entonces p p 2 p 3 p n q también lo es Son equivalencias, por lo tanto, la fórmula recíproca también es cierta en ambos casos

14 Tautologías asociadas una Deducción C. Dos ideas importantes: Mediante la TS podemos comprobar si una deducción es correcta, pero no demostrar dicha corrección Si una deducción es correcta, la fórmula asociada es una tautología. Lo recíproco también es cierto

15 Comprobación de Deducciones Frente a los sistemas axiomáticos, TS permite definir un procedimiento sistemático para comprobar si una deducción es correcta Procedimiento Construir una fórmula asociada Generar interpretaciones y calcular significados para la fórmula Buscar algún significado falso

16 Ejemplo Comprobar si es una deducción correcta: buscar V F (~A ~B) ~(A B). (~A ~B) ~(A B) Falso 2. (~A ~B) ~(A B) Verdad O ambas verdaderas y negadas (ambas F) 3.(~A ~B) ~(A B) o (~A ~B) ~(A B) V F F V Pueden ser A verdadera y B verdadera en el consecuente?

17 Propiedades Formales de Cálculo Prop. Satisfacibilidad Consecuencia Equivalencia Validez

18 Propiedades Formales de Cálculo Prop. Ejemplo:. Si (<encendido> y <configurado> y <conectado>) entonces <accedo servidor> 2. Si <luce piloto> entonces <encendido> 3. Si <icono parpadea> entonces <conectado> 4. <luce piloto> e <icono parpadea> y no <accedo servidor> Satisfacibilidad: de todas las interpretaciones posibles, alguna hay que consigue que esas cuatro declaraciones compuestas resulten simultáneamente verdaderas. Consecuencia: en todas las interpretaciones en que las cuatro declaraciones sean verdaderas (en todas), resultará que la expresión no <configurado> se evaluaría como verdadera. Equivalencia: si se compara la declaración Si <luce piloto> entonces <encendido> con esta otra Si no <encendido> entonces no <luce piloto>, resultará que presentan una relación curiosa: toda interpretación que hace a una de ellas verdadera también lo hace a la otra, y lo mismo ocurre con las interpretaciones que las hacen falsas. Son dos formas distintas de expresar lo mismo. Validez: es posible construir expresiones que sean verdaderas en toda interpretación, análogamente a cómo, en el lenguaje de la aritmética, x+3+(-x) = 3 no importa cuál sea el valor de x. En nuestro ejemplo, sería posible construir una única expresión de este estilo con las cuatro declaraciones y una quinta: no <configurado>.

19 Propiedades Formales de Cálculo Prop. El sistema formal de cálculo proposicional desarrollado en TD y DN tiene como propiedades: Consistencia: no es demostrable una fórmula y su negación Completitud: toda fórmula válida según una interpretación prefijada es demostrable en el sistema Decidibilidad: existe un procedimiento efectivo de comprobar si una fórmula es válida en el sistema Teorema de Post: B es demostrable B

20 Sistema deductivo Procedimiento de deducción: tablas de verdad El método más directo (y costoso) para decidir la satisfacibilidad de una fórmula (o de un conjunto) consiste en recorrer todas las interpretaciones de la tabla de verdad, hasta encontrar:. Un resultado afirmativo: por lo tanto es satisfacible y basta con encontrar la primera interpretación satisfactoria. o 2. Un resultado negativo: no es satisfacible y es preciso recorrer todas las interpretaciones posibles. Problema: si en un conjunto de fórmulas aparecen n letras proposicionales, el número de interpretaciones distintas es 2 n. Es decir, si n = 3, sería preciso comprobar una tabla de verdad con más de mil millones de entradas.

21 Sistema deductivo En Lógica de proposiciones, donde el número de interpretaciones distintas es finito, la relación de consecuencia lógica se puede decidir mediante el siguiente procedimiento:. Construir la tabla de verdad común de todas las fórmulas (considerando todas las variables) 2. Señalar las líneas verdaderas de cada una de las hipótesis p, de la segunda p 2, de la enésima p n. 3. Determinar la intersección de estos conjuntos de líneas 4. Valorar la consecuencia q sólo en esas líneas comunes (el valor de la consecuencia en el resto es irrelevante):. si es verdadera en todas ellas, entonces q es consecuencia del conjunto p, p 2, p n. Es decir: p,p 2,p 3,,p n q

22 Sistema deductivo Estrategia deductiva por refutación: Proviene de la estrecha relación entre consecuencia y satisfacibilidad. Es decir, si q es consecuencia de un conjunto de fórmulas p,p 2,p 3,,p n se puede reducir a otro problema: ver si p,p 2,p 3,,p n y ~q pueden darse simultáneamente (verdaderos). Así que p,p 2,p 3,,p n q si y sólo si p,p 2,p 3,,p n,~q es insatisfacible Por lo tanto, si desea comprobar que una fórmula es consecuencia de otras, basta con negarla e incorporarla a las premisas. Si este nuevo conjunto resulta insatisfacible se puede afirmar que efectivamente existía aquella relación de consecuencia.

23 T.S. en Lógica de predicados En la semántica proposicional se utilizan las tablas de verdad para fijar los conceptos de consecuencia lógica, validez y equivalencia. Para aprovechar estas mismas intuiciones basta considerar que ahora, para una fórmula cualquiera, existen las tabla de verdad pero con infinitas líneas o interpretaciones distintas. Todos los esquemas utilizados en lógica de proposiciones siguen siendo válidos: así, una fórmula será consecuencia de otra si es verdadera en todas las líneas en que ésta lo es Y un conjunto de fórmulas será satisfacible si existe al menos una línea (una interpretación asignación) donde coincidan en ser verdaderas.

24 Teoría Semántica en Predicados

25 Introducción a la T. Semántica Se construye en base a la atribución de significado a las fórmulas Al ser más complejas que en proposiciones, la interpretación requiere un mayor número de elementos

26 Evaluación de Fórmulas Una interpretación requiere los siguientes elementos: Dominio de referencia, no vacío, para interpretar las letras de término (constantes, variables y funciones) Definición del conjunto de significados a asignar a las fórmulas (V o F) Definición semántica de conectivas ~,, y (iguales que en cálculo proposicional)

27 Evaluación de Fórmulas Interpretación de letras de término y función A las constantes se les asigna un elemento concreto del dominio A las variables se les puede asignar cualquier elemento del dominio A las funciones se les puede asignar una aplicación concreta f: D n n de entre todas las posibles x f(x) a a b a c b

28 Evaluación de Fórmulas Interpretación de letras de predicado A cada predicado se le asigna una relación concreta n-aria definida en el dominio de referencia Una interpretación de predicado se define mediante una correspondencia concreta D n {V,F} o {,}

29 Evaluación de Fórmulas Definición semántica de cuantificadores El significado de una fórmula cuantificada se obtiene de acuerdo con las siguientes consideraciones A una fórmula con respecto x se le asignará el valor V si para todos los elementos del dominio, la fórmula es V A una fórmula con respecto de x se le asignará el valor V si para algún elemento del dominio la fórmula es V. En caso contrario será F.

30 Evaluación de Fórmulas Ejemplo: D = {a,b,c} x y P(x,y) a a V a b V a c F b a F b b V b c F c a F c b V c c F x yp(x,y) es Verdadero x yp(x,y) es Verdadero x yp(x,y) es Falso x yp(x,y) es Falso

31 Evaluación de Fórmulas Definición semántica de deducción correcta Dada una estructura deductiva p,p 2,p 3,,p n q se define como correcta cuando no existe una interpretación que haga p,p 2,p 3,,p n verdadero y q falso

32 Evaluación de Fórmulas Ejemplo : x(p(x) R(x)) yq(y) Proponemos la siguiente interpretación: D = {a,b,c} Predicados básicos x P(x) R(x) Q(x) a x a P(x) Evaluamos por partes: si yq(y) es falso Podemos llegar a x(p(x) Q(x)) Verdadero??? R(x) P(x) Q(x) x(p(x) Q(x)) b c b c No se cumple Por lo tanto el significado de la fórmula es Verdadero para la interpretación propuesta

33 Evaluación de Fórmulas Ejemplo 2: P(x) x(r(x) P(y)) yq(x,y) Proponemos la siguiente interpretación: D = {a,b}, y las variables libres, x=a e y=b. Predicados básicos x y Q(x,y) P(x) R(x) a a a b b a b b

34 Ejemplo 2 (continuación): Evaluación de Fórmulas P(a) x(r(x) P(b)) yq(x,y) x R(x) R(x) P(b) x(r(x) P(b)) P(a) x(r(x) P(b)) a b y Q(a,y) yq(,y) a b Cierto

35 Evaluación de Fórmulas Ejemplo 3: dado el dominio {a} y la fórmula x y(p(x) P(y)) averiguar si es Satisfacible y válida en el dominio. x y P(a) P(x) P(y) y(p(x) P(y)) x y(p(x) P(y)) a a

36 Evaluación de Fórmulas Ejemplo 4: y(p(y) x(p(x) q)) y(p(y) x(p(x) q)) D = {a,b,c} Satisfacible? Válida en el dominio? Semánticamente válidos? x q P(x) P(x) q x(p(x) q) P(y) x(p(x) q) a b c a b c

37 Definiciones Relacionadas con TS Una fórmula es satisfacible si tiene al menos una interpretación que la verifique Las interpretaciones que satisfacen una fórmula se denominan modelos Las interpretaciones que no satisfacen una fórmula se denominan contraejemplos

38 Fórmulas Semánticamente Válidas Una fórmula es válida en un dominio si cualquier interpretación que pueda plantearse en ese dominio satisface la fórmula Una fórmula válida en un dominio D2 que incluye otro D, es válida en D Una fórmula no válida en D no lo puede ser en D2 Una fórmula es semánticamente válida cuando es válida en cualquier dominio La comprobación de la validez semántica en predicados no es trivial Consiste en buscar un dominio donde no sea válida

39 Deducción Semánticamente Correcta Dada una estructura deductiva p,p 2,p 3,,p n q se define como semánticamente correcta cuando todo modelo del conjunto de premisas p,p 2,p 3,,p n satisface q O lo que es lo mismo, p,p 2,p 3,,p n q es válida si y solo si la fórmula p p 2 p 3 p n q no es semánticamente válida Esto permite la comprobación a través de la búsqueda de contraejemplos

40 Contraejemplos Ejemplo 5: (A P(y)) (P(x) A) Válida?. (A P(y)) (A x(p(x))) Falso 2. (A P(y)) (A x(p(x))) Verdadero Falso 3. (A P(y)) (A x(p(x))) V V V F Tiene que haber algún predicado que no sea V en P(x) para todos los elementos del dominio D, se puede pensar en un predicado que sea V para algún valor de y pero no para todos? Salvo en dominios con un elemento, SI (contrejemplo a continuación)

41 Contraejemplos Ejemplo 5 (continuación): (A P(y)) (A x(p(x))) D = {a,b} A x P(x) x P(x) A P(y) A x P(x) a b

42 Contraejemplos Ejemplo 6: (P(y) A) ( xp(x) A) Válida?. (P(y) A) ( xp(x) A) Falso 2. (P(y) A) ( xp(x) A) Verdadero Falso 3. (P(y) A) ( xp(x) A) F F V F Se puede pensar en un predicado P(y) que sea falso para algún valor de y pero NO para todos?

43 Propiedades Formales de Cálculo Pred El sistema de cálculo de predicados desarrollado tiene las siguientes propiedades: Consistencia: toda fórmula demostrable en el sistema axiomático es válida en TS Basta con comprobar que los axiomas 9 y de Kleene y que las 4 reglas de inferencia relativas a cuantificadores son semánticamente válidas Completitud: toda fórmula semánticamente válida es demostrable en el sistema axiomático Decidibilidad: no existe un procedimiento finito que permita decidir si una fórmula o deducción es demostrable

Tema 9: Cálculo Deductivo

Tema 9: Cálculo Deductivo Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 9: Cálculo Deductivo Profesor: Javier Bajo jbajo@fi.upm.es Madrid, España 24/10/2012 Introducción a la

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza mcsuarez@fi.upm.es Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Lógica de Predicados de Primer Orden

Lógica de Predicados de Primer Orden Lógica de Predicados: Motivación Todo natural es entero y 2 es un natural. Luego 2 es entero. p q r p, q r es claramente un razonamiento válido pero no es posible demostrarlo desde la Lógica Proposicional

Más detalles

Lógica proposicional. Ivan Olmos Pineda

Lógica proposicional. Ivan Olmos Pineda Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre

Más detalles

Lógica de Predicados

Lógica de Predicados Lógica de Predicados En las últimas décadas, ha aumentado considerablemente el interés de la informática por la aplicación de la lógica a la programación. De hecho, ha aparecido un nuevo paradigma de programación,

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

Ejercicios de Lógica Proposicional *

Ejercicios de Lógica Proposicional * Ejercicios de Lógica Proposicional * FernandoRVelazquezQ@gmail.com Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos

Más detalles

INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN

INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN Referencias: Inteligencia Artificial Russell and Norvig Cap.6. Artificial Intellingence Nils Nilsson Ch.4

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

Escuela de Ingeniería - Universidad de Chile Escuela de Verano 2011 Matemáticas III. Guía de Problemas N 1 *

Escuela de Ingeniería - Universidad de Chile Escuela de Verano 2011 Matemáticas III. Guía de Problemas N 1 * Escuela de Ingeniería - Universidad de Chile Escuela de Verano 2011 Matemáticas III Profesor: Pablo Dartnell Auxiliares: Roberto Castillo y Andrés Zúñiga Guía de Problemas N 1 * P1.- Sean p, q y r proposiciones.

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

Métodos de Inteligencia Artificial

Métodos de Inteligencia Artificial Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) esucar@inaoep.mx ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica

Más detalles

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el

Más detalles

Bases Formales de la Computación

Bases Formales de la Computación Modal Bases Formales de la Computación Pontificia Universidad Javeriana 3 de abril de 2009 Modal LÓGICAS MODALES Contenido Modal 1 Modal 2 3 Qué es la lógica Modal? Modal Variedad de diferentes sistemas

Más detalles

Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar

Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar ClasesATodaHora.com.ar > Exámenes > UBA - UBA XXI > Introd. al Pensamiento Científico Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar Razonamientos: Conjunto de propiedades

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

LÓGICA DE PREDICADOS DE PRIMER ORDEN INTRODUCCIÓN A LOS SISTEMAS FORMALES

LÓGICA DE PREDICADOS DE PRIMER ORDEN INTRODUCCIÓN A LOS SISTEMAS FORMALES LÓGICA DE PREDICADOS DE PRIMER ORDEN INTRODUCCIÓN A LOS SISTEMAS FORMALES POR QUÉ INTRODUCIR UN NUEVO SISTEMA? Todos los hombres son mortales Sócrates es hombre Sócrates es mortal Se trata de un razonamiento

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional

Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional 1. Responda las siguientes preguntas: a) Qué es un lenguaje formal? b) Qué es lenguaje matemático? c)

Más detalles

EJERCICIOS RESUELTOS 6

EJERCICIOS RESUELTOS 6 LÓGICA I EJERCICIOS RESUELTOS 6 TEMA 6 SEMÁNTICA: TABLAS DE ERDAD Y RESOLUCIÓN ERITATIO-UNCIONAL EJERCICIO 6.01 Comprobar por tablas de verdad si la siguiente fbf es o no satisfacible: ( p q) p q ( p q)

Más detalles

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )] Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la

Más detalles

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román.

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román. Inteligencia en Redes de Comunicaciones Razonamiento lógico Julio Villena Román jvillena@it.uc3m.es Índice La programación lógica Lógica de predicados de primer orden Sistemas inferenciales IRC 2009 -

Más detalles

Tema 2: Equivalencias y formas normales

Tema 2: Equivalencias y formas normales Lógica informática Curso 2003 04 Tema 2: Equivalencias y formas normales José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica?

Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica? A que viene la lógica? Autor: Georffrey Acevedo G. Noviembre 16 de 2008. Los conceptos de proposiciones, conectivos e inferencias confluyen al analizar un razonamiento. Para tener claridad sobre los conceptos

Más detalles

Apuntes de Lógica Proposicional

Apuntes de Lógica Proposicional Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias

Más detalles

Los fundamentos de la matemática y los teoremas de Gödel

Los fundamentos de la matemática y los teoremas de Gödel Los fundamentos de la matemática y los teoremas de Gödel Mario A. Natiello Centre for Mathematical Sciences Lund University Sweden Los fundamentos de la matemática y los teoremas de Gödel p.1/23 Contenido

Más detalles

Examen final de Lógica y argumentación (Fecha: xxxxxxxx)

Examen final de Lógica y argumentación (Fecha: xxxxxxxx) 1 Examen final de Lógica y argumentación (Fecha: xxxxxxxx) Nombre: Código: Profesor y grupo: 1. 1 (6%) Construya un silogismo de forma: oao-3, con estas especificaciones: Término mayor: Rascacielos Término

Más detalles

Motivaciones históricas en la construcción de lógicas multivaluadas. Susan Haack, Filosofía de las lógicas (1978), capítulo 11

Motivaciones históricas en la construcción de lógicas multivaluadas. Susan Haack, Filosofía de las lógicas (1978), capítulo 11 Motivaciones históricas en la construcción de lógicas multivaluadas Susan Haack, Filosofía de las lógicas (1978), capítulo 11 Repaso Las lógicas multivaluadas son aquellas en donde hay más de dos valores

Más detalles

RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:

RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como: La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos

Más detalles

Índice general. I Introducción a la Lógica 3

Índice general. I Introducción a la Lógica 3 Índice general I Introducción a la Lógica 3 1 Demostraciones 5 1.1. Argumentos rodeados de agua....................... 5 1.1.1. Argumentando........................... 6 1.1.2. Formalizando el argumento....................

Más detalles

Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores

Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

Semántica de Primer Orden. Semántica de Primer Orden

Semántica de Primer Orden. Semántica de Primer Orden Para interpretar una fórmula de la lógica de predicados de primer orden: determinar qué objetos representan los términos (Dominio) definir las funciones y qué propiedades/relaciones representan los predicados

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. sandraperilla@usantotomas.edu.co Carrera 9 No 51-11 Bogotá Colombia

Más detalles

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS 23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue

Más detalles

Capítulo 1 Lógica Proposicional

Capítulo 1 Lógica Proposicional Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases

Más detalles

REGLAS Y LEYES LOGICAS

REGLAS Y LEYES LOGICAS LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.

Más detalles

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes

Más detalles

Benemérita Universidad Autónoma de Puebla

Benemérita Universidad Autónoma de Puebla Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones

Más detalles

RAZONAMIENTO MATEMÁTICO

RAZONAMIENTO MATEMÁTICO RAZONAMIENTO MATEMÁTICO I. LÓGICA PROPOSICIONAL A. Proposiciones B. Conectivos proposicionales B.. Negación B.2. Conjunción B.3. Disyunción B.4. Condicional B.5. Bicondicional B.6. Otros conectivos C.

Más detalles

Interpretación y Argumentación Jurídica

Interpretación y Argumentación Jurídica Interpretación y Argumentación Jurídica INTERPRETACIÓN Y ARGUMENTACIÓN JURÍDICA 1 Sesión No. 10 Nombre: La Argumentación Jurídica Contextualización Como ya se ha visto, un argumento es una afirmación que

Más detalles

Introducción: Proposiciones, argumentos e inferencias. Inferencias deductivas e inductivas. Deducción: Inferencias transitivas (Silogismos lineales)

Introducción: Proposiciones, argumentos e inferencias. Inferencias deductivas e inductivas. Deducción: Inferencias transitivas (Silogismos lineales) Tema 2.- Deducción. Psicología del Pensamiento, Guión del Tema 2 Prof.: Eduardo Madrid Bloque 1: Razonamiento y variedades del pensamiento. Introducción: Proposiciones, argumentos e inferencias. Inferencias

Más detalles

ÍNDICE PRIMERA PARTE METODOLOGÍA JURÍDICA

ÍNDICE PRIMERA PARTE METODOLOGÍA JURÍDICA ÍNDICE INTRODUCCIÓN... 15 PRIMERA PARTE METODOLOGÍA JURÍDICA INTRODUCCIÓN... 21 CAPÍTULO I. LA APLICACIÓN DEL DERECHO. CASOS FÁCILES, CASOS DIFÍCILES Y JUSTIFICACIÓN DE LA RESPUESTA... 25 1. INTRODUCCIÓN...

Más detalles

EJEMPLO DE PREGU,TAS

EJEMPLO DE PREGU,TAS EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Funciones y Cardinalidad

Funciones y Cardinalidad Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de

Más detalles

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

Lógica. Matemática discreta. Matemática discreta. Lógica

Lógica. Matemática discreta. Matemática discreta. Lógica Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo

Más detalles

Tema 6: Programación Lógica: semántica declarativa. Lenguajes y Paradigmas de Programación

Tema 6: Programación Lógica: semántica declarativa. Lenguajes y Paradigmas de Programación Tema 6: Programación Lógica: semántica declarativa Lenguajes y Paradigmas de Programación Teoría de Modelos Se basa en el concepto de INTERPRETACIÓN, que consiste en: elegir un dominio D (en el que tomarán

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA SEMESTRE: Segundo a cuarto CLAVE: 0271 HORAS A LA SEMANA/SEMESTRE TEÓRICAS PRÁCTICAS CRÉDITOS 5/80

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana

Más detalles

Capítulo 7: Lógica de predicados y cuantificadores

Capítulo 7: Lógica de predicados y cuantificadores Capítulo 7: Lógica de predicados y cuantificadores por G 3 Agosto 2014 Resumen A menudo interesa afirmar que todos, o que solo algunos individuos de cierto universo, o solo uno, cumplen alguna propiedad.

Más detalles

1 LIMITES Y DERIVADAS

1 LIMITES Y DERIVADAS 1 LIMITES Y DERIVADAS 2.1 LA TANGENTE Y PROBLEMAS DE LA VELOCIDAD Problema de la tangente Se dice que la pendiente de la recta tangente a una curva en el punto P es el ite de las rectas secantes PQ a medida

Más detalles

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios

MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra. Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas

Más detalles

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños

MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños MATEMÁTICA 1 JRC LÓGICA Es la ciencia formal que estudia los principios y procedimientos que permiten demostrar la validez o invalidez de una inferencia, es decir, reconocer entre un razonamiento correcto

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

MATEMÁTICAS II CC III PARCIAL

MATEMÁTICAS II CC III PARCIAL UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

Propiedades básicas de los tableaux para fórmulas proposicionales

Propiedades básicas de los tableaux para fórmulas proposicionales Propiedades básicas de los tableaux para fórmulas proposicionales Si desea comprobar que una fórmula es consecuencia de otras, niéguela e incorpórela a esas otras. Si este nuevo conjunto resulta insatisfacible,

Más detalles

RESPUESTAS REPARTIDO 3 PARA ESCRITO TEORICO Diego Danieli 2IA UTU BUCEO AXIOMAS - TEOREMAS CÓMO SE CONSTRUYE LA GEOMETRIA MODERNA?

RESPUESTAS REPARTIDO 3 PARA ESCRITO TEORICO Diego Danieli 2IA UTU BUCEO AXIOMAS - TEOREMAS CÓMO SE CONSTRUYE LA GEOMETRIA MODERNA? AXIOMAS - TEOREMAS CÓMO SE CONSTRUYE LA GEOMETRIA MODERNA? FUNDAMENTOS 1 Comenzó siendo un conjunto de reglas y conocimientos obtenidos por la experiencia, usados por los constructores y medidores de terrenos.

Más detalles

Escenas de episodios anteriores

Escenas de episodios anteriores Clase 16/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 014 1S PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

ELEMENTOS DE LA MATEMATICA

ELEMENTOS DE LA MATEMATICA ELEMENTOS DE LA MATEMATICA SEMESTRE: Primero CODIGO ANTERIOR: 22G7 CODIGO: 8101 REQUISITOS: No tiene CREDITOS: 6 HORAS DE TEORIA: 4 HORAS DE PRACTICA : 4 TEMA 1: Lógica simbólica. Las conectivas lógicas.

Más detalles

SISTEMAS INFORMÁTICOS PROGRAMACION I - Contenidos Analíticos Ing. Alejandro Guzmán M. TEMA 2. Diseño de Algoritmos

SISTEMAS INFORMÁTICOS PROGRAMACION I - Contenidos Analíticos Ing. Alejandro Guzmán M. TEMA 2. Diseño de Algoritmos TEMA 2 Diseño de Algoritmos 7 2. DISEÑO DE ALGORITMOS 2.1. Concepto de Algoritmo En matemáticas, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latín, dixit algorithmus

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

MATEMÁTICAS I GRADO EN INGENIERÍA INFORMÁTICA

MATEMÁTICAS I GRADO EN INGENIERÍA INFORMÁTICA TEMA 3: INTERPRETACIÓN DE RAZONAMIENTOS LÓGICOS MATEMÁTICAS I. 2011 12 GRADO EN INGENIERÍA INORMÁTICA 3.1. Interpretación del lenguaje formal de la lógica de primer orden. 3.2. Evaluación semántica de

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

3. OBJETIVOS ESPECÍFICOS (De formación académica): Como resultado de cada capítulo el estudiante estará en capacidad de:

3. OBJETIVOS ESPECÍFICOS (De formación académica): Como resultado de cada capítulo el estudiante estará en capacidad de: MATERIA Lógica y Argumentación. CÓDIGO 08273 PRERREQUISITOS: Ninguno. PROGRAMAS: Todos los programas de pregrado. PERÍODO ACADÉMICO: 162-2 (Segundo semestre de 2016) INTENSIDAD HORARIA: 4 horas semanales

Más detalles

Razonamientos. Premisas Conclusión Premisas Conclusión V V V V V F F V F V F F F F

Razonamientos. Premisas Conclusión Premisas Conclusión V V V V V F F V F V F F F F 2.3.1.1 Validez e invalidez. Verdad y falsedad es una propiedad de las proposiciones o enunciados. Con las proposiciones o enunciados se pueden construir razonamientos. Pero los razonamientos no son ni

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL MATEMÁTICA I AÑO LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Nadie aprende si no se ha equivocado al intentarlo... - DE QUÉ TRATA LA LÓGICA? La lógica investiga la relación de consecuencia que se da entre

Más detalles

Lógica de Predicados 1

Lógica de Predicados 1 Lógica de Predicados 1 rafael ramirez rafael@iua.upf.es Ocata 320 Porqué Lógica de Predicados La logica proposicional maneja bien afirmaciones compuestas de no, y, o, si entonces En situaciones con un

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

TEMA 3 ÁLGEBRA DE CONMUTACIÓN

TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES

Más detalles

Lógica Matemática, Sistemas Formales, Cláusulas de Horn

Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

Cálculo Proposicional

Cálculo Proposicional Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)

Más detalles

Ejercicios (Números reales)

Ejercicios (Números reales) Ejercicios (Números reales).. Decir si cada una de las siguientes expresiones es cierta o falsa: a) d) 30ÿ ÿ00 k j 4 k 30ÿ 00 ÿ k j 4, b) k ÿ00 00, c).. Expresar con notación de sumatorio: 0ÿ a) ` 3 `

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS

Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS Contenidos del Curso Introducción a la I.A. Cómo razonamos?. Algunas experiencias con el razonamiento automático El problema de representación

Más detalles

ARITMÉTICA MODULAR. Unidad 1

ARITMÉTICA MODULAR. Unidad 1 Unidad 1 ARITMÉTICA MODULAR 9 Capítulo 1 DE LA TEORÍA DE CONJUNTOS Objetivo general Presentar y afianzar algunos conceptos de la Teoría de Conjuntos relacionados con el estudio de la matemática discreta.

Más detalles

1.1. Proposiciones y valor de verdad

1.1. Proposiciones y valor de verdad Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Introducción al Álgebra 10-1 Importante: Visita regularmente http://www.dim.uchile.cl/~docencia/algebra para mantenerte

Más detalles

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad

Más detalles

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas

Más detalles

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍAS L Ó G I C A Carrera: Programador Universitario en Informática Equipo Docente: Miriam Alagastino Ximena Villarreal

Más detalles

Pablo Cobreros Tema 6. El tamaño del infinito

Pablo Cobreros Tema 6. El tamaño del infinito Lógica II Pablo Cobreros pcobreros@unav.es Tema 6. El tamaño del infinito Introducción Introducción La noción de cardinal Afirmaciones acerca del tamaño La noción de cardinal El tamaño del infinito Introducción

Más detalles