ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema"

Transcripción

1 ANÁLISIS DE SISTEAS LINEALES 1. odeldo de item SISTEA Reliz FUNCIÓN Poee ESTRUCTURA Preent COPORTAIENTO Figur 1.1: Definición de Sitem Sitem: Un item reliz un función, poee un etructur y preent un comportmiento. 1/28

2 Sitem de control de lzo bierto E quel en el cul ni l vrible del item ni l lid influyen en el control de ét. El éxito del control de lzo bierto depende de: Exctitud del modelo del item Repetibilidd de lo evento relciondo durnte un lrgo período. (Auenci de perturbcione extern). Sitem de control de lzo cerrdo E quel en el cul l vrible del item o l lid influyen en el control de ét, típicmente por medio del uo de relimentción. 2/28

3 Relimentción Un muetr de l eñl de lid e tomd y redirigid hci l entrd pr fine de comprción. Plnt Equipo fíico que e relcion con l mgnitud que e control. Se repreentn como item linele invrible en el tiempo (LTI). Controldor Etbilidd Elemento que e ñde pr llevr cbo el control. Propiedd de un item que nte un entrd finit reccion con un lid finit. 3/28

4 Servocontrol Sitem en el cul l lid e l poición o lgun de u derivd. Sitem dinámico Unidd funcionl cuyo principle decriptore vrín en el tiempo y por lo tnto pueden er decrito como funcione del tiempo. odeldo El modeldo e un btrcción: l dinámic erá btríd del crácter fíico. 4/28

5 Objetivo de l btrcción Decribir lo proceo temporle por medio de funcione del tiempo (eñle). Reumir l relcione entre eo proceo como dependenci funcionle entre l funcione del tiempo. No import que repreenten l vrible temporle, ino cuále vrible del fenómeno reproducen el comportmiento dinámico del item en cuetión. odeldo: Simulción: Identificción: Comportmiento Función Función Comportmiento Comportmiento Etructur Tbl 1: Relcione entre lo componente de un item 5/28

6 Po del odeldo 1) Decripción concret del problem (y l plnt). 2) Selección de l vrible que on importnte pr l decripción del comportmiento dinámico 3) Definición de l exctitud del modelo (linelizcione, proximcione) 4) Identificción de entrd y lid (ún de perturbcione) 5) Creción de un decripción de l etructur Identificr lo componente importnte y u relcione Prtir el item en u elemento, (y luego trtmiento prcil). L relcione cuntittiv no interen ún Será evidente cuále vrible pueden er influencid externmente, cule on intern y cuále pueden er medid externmente. 6) Obtención de l relcione funcionle pr cd elemento o componente. Anlíticmente ( prtir de leye fíic) Empíricmente (experimentlmente) reultdo : modelo cuntittivo 6/28

7 7) Prueb del modelo Análii (Etbilidd, error de etdo etcionrio, repuet de frecuenci) Simulción (comprción de lo reultdo de l imulción con medid del proceo) Síntei del controldor (dieño) Etructur del item Importnci Contribuye l comprenión del comportmiento del item muetr l relción entre l prte proporcion un viión globl de l propiedde dinámic del item. muetr donde el item e encuentr relimentdo, lo punto donde etá fuerte o débilmente copldo y eventulmente puede prtire. 7/28

8 Repreentcione gráfic de l etructur del item Por medio de digrm bloque: L etructur del item e decribe trvé de un conjunto de elemento de trnferenci (trnmitnci) y l relcione entre éto. d(t) v(t) + + y(t) - Figur 1.2: Sitem de control relimentdo 8/28

9 Elemento del digrm de bloque + - Punto de um (ret) Linele Decripción - Ecucione diferencile - Trnformd - Funcione de trnferenci - Vrible de etdo - Gráfico de curv crcterític No linel Señl Vectore (de eñle) Figur 1.3: Elemento del digrm de bloque 9/28

10 Digrm de Flujo de Señle L etructur del item e decribe trvé de un gráfico dirigido, donde lo nodo repreentn l eñle y l flech repreentn propiedde de trnferenci. x Señl x (nodo) Relcione funcionle (Propiedde de trnferenci) (flech) 1 G 1 1 W E U Y -G 2 E = W 1 - U G 2 U = E G1 Y = U 1 Figur 1.4: Elemento del digrm de flujo de eñle 10/28

11 Decripción de item linele en el tiempo ) A trvé de ecucione diferencile Leye fíic modelo mtemático Sitem eléctrico Leye de Kirchhoff Sitem mecánico Leye de Newton Leye de conervción de l energí e impulo Se trbjrá con item linele, de prámetro concentrdo e invrinte en el tiempo (LTI). u(t) Sitem dinámico (LTI) y(t) Figur 1.5: Sitem dinámico linel invrinte en el tiempo 11/28

12 Form generl de l ecución diferencil (relción dinámic entre y(t) y u(t)). d n y t n 1 () d y() t dy () t n n + n 1 n 1 + K y() t = b dut q q 1 () d u() t b b du () t q q + q 1 q 1 + K but 0 () () 1 Ecución diferencil ordinri de n-orden, donde i y b i on rele y provienen de lo prámetro fíico del item. Condicione inicile n d y ( ) n 1 0 d y ( 0 ),,, n n y ( ); 1 L 0 q < n pr culidd Dd u(t) pr t 0 y l condicione inicile e poible conocer y(t) 12/28

13 Función de Trnferenci Cálculo de l función de trnferenci: plicmo l Trnformd de Lplce l ecucion (1) y poniendo tod l condicione inicile en cero e tiene: n n 1 q 1 Y () + Y () + K+ Y () + Y () = b U () + K + bu () + bu () n n q n n 1 q q 1 ( + + K+ + ) Y() = ( b + b + K + b + b ) U() n n q q Propiedde de l Trnformd de Lplce que e plicn L f(t) d L f(t) & = F() f () t = { } t= 0 ; F ()= L { f(t) } L k d f(t) k k k k d f t = F() f() t f& () () t K t= 0 t= 0 t= 0 13/28

14 Y () = U() q q 1 b + b + K+ b+ b q q 1 n n K + + n n = G () Función de trnferenci en form de cociente de polinomio Crcterític de l función de trnferenci: Tiene n polo y q cero E complet (lo coeficiente de l ecución diferencil etán contenido completmente) Depende únicmente de l plnt (no de l entrd o de lo vlore inicile, eto on cero) 14/28

15 15/28 Otr form de repreentr G() ) )( )( ( ) ( ) )( ( ) ( n q q C G λ λ λ = L Función de trnferenci en form de cociente de producto de cero entre producto de polo = = = n i i q i i q C G 1 1 ) ( ) ( ) ( λ ) ( lim b G K p = = q < n Función etrictmente propi (plnt) q = n Función propi (controldor) q > n Función impropi (no exite)

16 odelo de Elemento ecánico Elemento mecánico de trlción (e uponen linele) x 2 x 1 K Reorte F = K( x 1 x2) B Fricción vico F = B( x& ) 1 x& 2 = & x 1 Figur 1.6: Elemento mecánico de trlción 16/28

17 x 1 F F = K x K F F = B dx = B v, v = dx x 2 x 1 F = B(v1 -v2) = B ( dx 1 dx 2 ) Figur 1.7: odelo linele de elemento mecánico de trlción 17/28

18 Ley de Newton F = m Efecto de l grvedd: El efecto de l grvedd puede uprimire de l ecucione i e hce un cmbio del item de referenci. K K y f(t) δ g+f(t) Kδ = F = g x Figur 1.8: Efecto de l grvedd obre un item mecánico 18/28

19 Ejemplo 1.1: odeldo de un item mecánico de trnlción x x 2 x 1 F F K F F = (x 1 -x 2 )K Figur 1.9: Digrm de cuerpo libre del reorte 19/28

20 x 2 x 1 B K Punto P (x 1 ): B dx 2 d2 x 1 2 F = F K(x 1 -x 2 ) d 2 x ΣF = F K(x 1 -x 2 ) = 0 F - K(x 1 -x 2 ) = d 2 x 1 2 Punto Q (x 2 ): F = 0 Kx ( x B dx 1 2) = ( ) 2 Figur 1.10: Digrm del item mecánico totl y de cuerpo libre de l m 20/28

21 Elemento mecánico de rotción Σ = J α celerción ngulr momento de inerci J omento rotcionl Reorte torionl θ 2 θ 1 K = B(ω 1 -ω 2 ) ω 2 ω 1 B omento en el reorte torionl: = K( θ - θ ) 1 2 Figur 1.11: Elemento mecánico de rotción 21/28

22 Ejemplo 1.2: odeldo de un item mecánico de rotción θ 3 θ 2 θ 1 B J ) 1 2 K B θ 2 θ 1 J b) B J θ, α, ω c) Figur 1.12: Digrm del item mecánico de rotción 22/28

23 Ecución de movimiento pr l figur 1.12c J d 2 θ B d θ 2 + = 0 J d 2 θ 2 = Bdθ 23/28

24 Ejemplo 1.3: odeldo de un otor CD controldo por rmdur con excitción independiente (contnte) R L + U U i - Figur 1.13: otor CD controldo por rmdur con excitción contnte Ecucione del motor: φ e = K i t 1 e() i () t = cte φ = cte e e α i 24/28

25 = Ci φ e U i α ω( n) U i = Cφ e dθ U = 0 U Ri L di Ui = 0 L di dθ + Ri + Cφe = U L di + Ri = U Ui 25/28

26 Undo Trnformd de Lplce e tiene mt () = Ci() t φ () = Cφ I () e e I () Cφ e () L di + Ri = U Ui LI () + RI () = U () U() i I ()( L + R ) = ( U U ) i I = U Ui 1 = ( U Ui) ( L + R ) ( L + R ) 26/28

27 U ( L + R ) I U i dθ Ui = Cφe U = Cφ θ() i e U i () Cφ e θ() 27/28

28 f = β θ β I + U Cφ ( L + R ) e ( J m ) θ U i Cφ e θ() Figur 1.14: Digrm de bloque pr el motor CD controldo por rmdur 2 d θ dθ J = β 2 2 J θ ( ) = ( ) β θ θ ( ) = ( ( ) ( ) ) f 1 2 J 28/28

Tema 3. Modelado de sistemas físicos

Tema 3. Modelado de sistemas físicos de Sitem y Automátic Tem 3. Modeldo de item fíico Automátic º Curo del Grdo en Ingenierí en Tecnologí Indutril de Sitem y Automátic Contenido Tem 3.- Modeldo de item fíico 3.. Introducción. 3.. Modeldo

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

PROBLEMA RESUELTO DE ESTABILIDAD

PROBLEMA RESUELTO DE ESTABILIDAD Univeridd Ncionl de Rorio Fcultd de Cienci Exct Ingenierí y Agrimenur Ecuel de Ingenierí Electrónic Deprtmento de Electrónic ELECTRÓNICA III PROBLEMA RESUELTO DE ESTABILIDAD AUTOR: Federico Miyr REVISIÓN:

Más detalles

ECUACIÓN DE BERNOULLI

ECUACIÓN DE BERNOULLI ECUACIÓN DE BERNOULLI 1. RESUMEN Ete lbortorio trt obre l comprobción de l ecución de Bernoulli. Aquí e intent comprobr l relción que exite entre l velocidd (cbez dinámic), l cbez (cbez etátic) y l cbez

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Tema 3 Respuesta en Frecuencia

Tema 3 Respuesta en Frecuencia CIRCUITOS ANALÓGICOS SEGUNDO CURSO Tem 3 Repuet en Frecuenci Sebtián López y Joé Fco. López Intituto Univeritrio de Microelectrónic Aplicd IUMA Univeridd de L Plm de Grn Cnri 357 - L Plm de Grn Cnri Tfno.

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA. Págin 1 de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FISICA I/11 PRACTICA Nro. 8 MASA INERCIAL

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moviiento ociltorio Moviiento rónico iple (MAS) Cineátic IES L Mgdlen. Avilé. Aturi Se dice que un prtícul ocil cundo tiene un oviiento de vivén repecto de u poición de equilibrio, de for tl que el oviiento

Más detalles

Un sistema mecánico está conformado por los elementos siguientes: Elementos Representación gráfica Ecuación fundamental

Un sistema mecánico está conformado por los elementos siguientes: Elementos Representación gráfica Ecuación fundamental em. odeldo temático Introducción EOÍA E ONOL r el estudio de los sistems de control es necesrio conocer el comportmiento de los elementos que eventulmente pueden ormr prte de un sistem controlr y del sistem

Más detalles

PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA

PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA PRÁCTICA Nº : DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA º Cálculo teórico y experimentl de l celerción del sistem 2º Cálculo del coeficiente de rozmiento del sistem DATOS: Sensor: Pole linel inteligente

Más detalles

GUÍA VI: MÁQUINAS SINCRÓNICAS

GUÍA VI: MÁQUINAS SINCRÓNICAS Sitem Electromecánico, Guí : Máquin Sincrónic GUÍA : MÁQUNAS SNCRÓNCAS 1. Un generdor incrónico de 440 [ LL ], 50 [ka], triáico, do polo, gir velocidd nominl. Se neceit un corriente de cmpo de 7 [A] pr

Más detalles

SISTEMAS MECANICOS EJEMPLO 1.- SISTEMA MECANICO TRASLACIONAL. Carrito que se desplaza en línea recta en dirección horizontal.

SISTEMAS MECANICOS EJEMPLO 1.- SISTEMA MECANICO TRASLACIONAL. Carrito que se desplaza en línea recta en dirección horizontal. SISTEAS ECANICOS EJEPLO.- SISTEA ECANICO TRASLACIONAL Carrito que e deplaza en línea recta en dirección horizontal. Ft) 0 yt) Objetivo: Determinar la repueta dinámica del deplazamiento del carrito yt)

Más detalles

METODO DEL ESPACIO DE ESTADO

METODO DEL ESPACIO DE ESTADO Fcltd de Ingenierí Bioingenierí Control de Proceo METODO DEL ESPACIO DE ESTADO ESTADO: El etdo de n item dinámico e el conjnto má eqeño de vrile denomind vrile de etdo tl qe el conocimiento de e vrile

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes. ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moiiento ociltorio Moiiento rónico iple (MAS) Cineátic IES L Mgdlen. Ailé. Aturi Se dice que un prtícul ocil cundo tiene un oiiento de ién repecto de u poición de equilibrio, de for tl que el oiiento e

Más detalles

Análisis de Sistemas Lineales. Controlabilidad y Observabilidad

Análisis de Sistemas Lineales. Controlabilidad y Observabilidad Análisis de Sistems Lineles Controlbilidd y Observbilidd Contenido Controlbilidd de estdo Trnsformción form cnónic (regulr) controlble, FCC Observbilidd de estdo Trnsformción form cnónic (regulr) observble,

Más detalles

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,

Más detalles

f (t) dt Veamos primero el caso en que uno de los límites es infinito: si b =, entonces se define f (t) dt = lím

f (t) dt Veamos primero el caso en que uno de los límites es infinito: si b =, entonces se define f (t) dt = lím Cpítulo 2 Trnformd de Lplce 2.. Integrle impropi Vmo repr l co prendid en Análii I obre integrle impropi. Por hor penremo en un función de vrible e imgen rel, e decir, f : [, b] R. Cundo e define f (t

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 016 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.cr Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs ANÁLISIS TEMPORAL Concepto generale 1. Régimen tranitorio y permanente. 2. Señale normalizada de entrada. 3. Repueta a ecalón de itema de tiempo continuo. 4. Relación entre la repueta temporal y la ituación

Más detalles

1. Discretización a Sistemas Discretos.doc Discretización

1. Discretización a Sistemas Discretos.doc Discretización . Discretizción. Discretizción.. Histori.. Futuro 3.3. Crcterístics del Control Digitl 4.4. Sistem Discreto 5.5. Ecuciones en Diferencis 6.6. rnsformd de Lplce de un Secuenci 7.7. rnsformd en Z 9.8. Operdor

Más detalles

La Integral Multiplicativa

La Integral Multiplicativa Universidd del Pís Vsco Mtemátic Aplicd y Estdístic L Integrl Multiplictiv Jun-Miguel Grci Extrcto: Se nliz l relción de l integrl multiplictiv de Volterr con l derivd logrítmic y los sistems diferenciles

Más detalles

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x.

INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x. INTEGRALES IMPROPIAS Hst hor hemos estudido l integrl de Riemnn de un función f cotd y definid en un intervlo cerrdo y cotdo [, ], con., Ahor generlizmos este concepto.. Integrl de un función cotd, definid

Más detalles

Plataforma de Control Para Motor de Imán Permanente

Plataforma de Control Para Motor de Imán Permanente 34 Encuentro de Investigción en IE, 5 7 de Abril, 26 Encuentro de Investigción en Ingenierí Eléctric Zctecs, Zc, Abril 5 7, 26 Pltform de Control Pr Motor de Imán Permnente Roberto Herrer, Luís A. González,

Más detalles

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo

2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teoremas de punto fijo 2. PROBLEMAS DE VALOR INICIAL EN R n. EXISTENCIA, UNICIDAD, DEPENDENCIA CONTINUA O DIFERENCIABLE DE LA CONDICIÓN INICIAL. Teorems de punto fijo Definición 1. Se X un espcio vectoril rel. Se dice que un

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA Sitem Electromecánico, Guí : Máquin de Corriente Continu GUÍA : MÁQUNAS DE COENTE CONTNUA 1. L crcterític de mgnetizción de un generdor de corriente continu operndo un velocidd de 1500 [rpm] e: [A] 0 0,5

Más detalles

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Deprtmeto de Igeierí de Sitem y Automátic Tem 4. Aálii de l Repuet Temporl de Sitem LTI Automátic º Curo del Grdo e Igeierí e Tecologí Idutril Deprtmeto de Igeierí de Sitem y Automátic Coteido Tem 4.-

Más detalles

1.1.-DEFINICIONES...3

1.1.-DEFINICIONES...3 CONTROL I UNIDAD I CONCEPTO BÁICO DE CONTROL...-DEFINICIONE.... Entrd, lid, Plnt, istem, Control, istem de Control, Linelizción, Lzo Aierto,Lzo Cerrdo,istem Linel, istem No Linel,Vrile Controld, Vrile

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

Modelos de procesos y linealización

Modelos de procesos y linealización Modelo de proceo y linelizción Prof. Mrí Jeú de l Fuente Dpt. Ingenierí de Sitem y utomátic Univ. De Vlldolid IS, UV Modelo Repreentción proximd de l relidd btrcción: Incluimo olo uello pecto y relcione

Más detalles

( ) ( ) ρ ρ

( ) ( ) ρ ρ UNIDD 5 - PROBLEM 47 L presión reltiv del s en el primer piso del edificio es 100 mm c.. (mm de column de u). Determine l presión reltiv del s en el octvo piso, un ltur 3 m respecto el primero. sum que

Más detalles

Apuntes Transformada de Laplace (MAT023)

Apuntes Transformada de Laplace (MAT023) Apunte Trnformd de Lplce (MAT3 Segundo emetre de Verónic Gruenberg Stern Vivin Arnd Núñez. Introducción L trnformd de Lplce e un ejemplo de un operdor. Ete oper obre un función, produciendo otr función.

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades

Tema 1: Introducción y fundamentos matemáticos. Parte 3/4 Vectores en física I: Definiciones y propiedades Tem 1: Introducción y fundmentos mtemáticos Antonio González Fernández Deprtmento de Físic Aplicd III Universidd de Sevill Prte 3/4 es en físic I: Definiciones y propieddes Ls mgnitudes se clsificn en

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Método lineal de resolución para sistemas de tuberías complejos. MC2314. Mecánica de Fluidos III Prof. Geanette Polanco Ene-Mar 2011

Método lineal de resolución para sistemas de tuberías complejos. MC2314. Mecánica de Fluidos III Prof. Geanette Polanco Ene-Mar 2011 Método linel de resolución pr sistems de tuberís complejos MC. Mecánic de Fluidos III Prof. Genette Polnco Ene-Mr Sistems de tuberís Cso tipo: Se requiere resolver l distribución de cudles del sistem de

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fech Emisión: 2011/09/15 Revisión No. 1 AC-DO-F-8 Págin 1 de 6 MATEMÁTICAS CÓDIGO 1724101 PROGRAMA Tecnologí en Atención Prehospitlri ÁREA DE FORMACIÓN Fundmentos de Biomédics -

Más detalles

BOLILLA 4 Movimiento Circular y Leyes de Newton

BOLILLA 4 Movimiento Circular y Leyes de Newton BOLILLA 4 Movimiento Circulr y Leyes de Newton 1. Movimiento Circulr. En usenci de fuerzs, el movimiento en líne rect y velocidd constnte continú indefinidmente. El movimiento circulr, sin embrgo, necesit

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales PROBLEMA En un instlción se mide cudles de un líquido de densidd 1 g/cc y 1 cp de viscosidd con un turbin Serie 81A de Foxboro de 1 pulg de diámetro. () Cuánto vle el cudl mínimo que es cpz de medir el

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

PROBLEMAS DE MOTORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía Fecha : Agosto-2003 Autor : Ricardo Leal Reyes

PROBLEMAS DE MOTORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía Fecha : Agosto-2003 Autor : Ricardo Leal Reyes ROMA D MOTOR NRÓNO Aigntur : onverión lectromecánic de l nergí ech : Agoto-200 Autor : Ricrdo el Reye 1. Un motor incrónico trifáico de polo cilíndrico, conectdo en etrell 172 volt entre líne, r 0, 10

Más detalles

CAPÍTULO 8 PROCESAMIENTO DIGITAL DE SEÑALES

CAPÍTULO 8 PROCESAMIENTO DIGITAL DE SEÑALES 177 CAPÍTULO 8 PROCESAMIENTO DIGITAL DE SEÑALES 8.1 SEÑALES Se trtrán 4 tipo de eñle: Anlógic, x(t): mplitud y tiempo continuo. Muetred, X[n], tiempo dicreto, mplitud continu. Cuntizd, Xq[t], tiempo continuo,

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso -17 Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

FÍSICA I CAPÍTULO 6: CINEMÁTICA III

FÍSICA I CAPÍTULO 6: CINEMÁTICA III FÍSICA I CAPÍTULO 6: CINEMÁTICA III ROTACIÓN DE CUERPOS RÍGIDOS Retomndo el moimiento cicul de un punto: L Figu epeent l dieccione de lo ectoe elocidd y celeción en io punto p un ptícul que e muee en un

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XII.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XII.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES; ECUACIÓN DE POISEUI- LLE En un flujo lminr l corriente es reltivmente lent y no es perturbd por

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

1. Análisis de los Sistemas Discretos. 1. Análisis de los Sistemas Discretos 1

1. Análisis de los Sistemas Discretos. 1. Análisis de los Sistemas Discretos 1 . Análisis de los Sistems Discretos. Análisis de los Sistems Discretos.. Introducción.. Estbilidd... Estbilidd de Sistems Lineles... Estbilidd de Sistems con Entrd y Slid Acotds(BIBO) 3..3. Cómputo de

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

10 Análisis dinámico.

10 Análisis dinámico. 0 Análii inámico. Técnic el lugr e Ríce (LDR) L repuet el régimen trnitorio e un item e control en cen cerr, tipo SISO-LTI, epene e l ubicción e lo polo el lzo cerro. Por icho motivo y con el propóito

Más detalles

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2 Unidd Integrl de Líne. Integrl de funciones vectoriles Cmpos Vectoriles Denición. Un cmpo vectoril en el plno R es un función F : R R que sign cd vector x D R un único vector F (x) R con F (x) = P (x)i

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Transformadas integrales

Transformadas integrales Cpítulo 3 Trnformd integrle Objetivo Conocer l propiedde de l trnformd de Lplce y de Fourier. Aplicr l trnformd de Lplce y de Fourier l reolución de ecucione diferencile linele. 3.1. Trnformd integrle

Más detalles

Teorema del punto fijo Rodrigo Vargas

Teorema del punto fijo Rodrigo Vargas Teorem del punto fijo Rodrigo Vrgs Definición 1. Un punto fijo de un plicción f : M M es un punto x M tl que f(x) = x. Definición 2. Sen M, N espcios métricos. Un plicción f : M N es un contrcción cundo

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

1 a. 1 a. dq πε

1 a. 1 a. dq πε .94 L crg positiv Q está distribuid uniformemente lrededor de un semicírculo de rdio. Hlle el cmpo eléctrico (mgnitud y dirección) en el centro de curvtur P. + + + + + Q + d x d P dθ y d y dl + θ dθ dq

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

Modelo Lineal General. Prof. Susana Martín ndez

Modelo Lineal General. Prof. Susana Martín ndez Modelo Linel Generl Prof. Susn Mrtín Fernández ndez Índice Introducción Modelo Linel Generl Análisis de l Vrinz Regresión n Linel Introducción Un Un modelo linel es un relción entre vribles mtemátics tics

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

1.- Cálculo del coeficiente de autoinducción.

1.- Cálculo del coeficiente de autoinducción. Trbjo Práctico 8 1.- Cálculo del coeficiente de utoinducción. Describ el fenómeno de utoinducción en un bobin. Encuentre l expresión del coeficiente de utoinducción en un solenoide lrgo de N s = 1 espirs

Más detalles

PROBLEMAS DE ÓPTICA INSTRUMENTAL

PROBLEMAS DE ÓPTICA INSTRUMENTAL Grupos A y B Curso 006/007 ROBEMAS DE ÓTICA INSTRUMENTA. Considérese un sistem óptico ilumindo por un hz de luz monocromátic de longitud de ond λ 550nm. El sistem está compuesto por dos lentes delgds que

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Físic Generl Proyecto PE - Curso 008 Instituto de Físic Fcultd de Inenierí UdelR DINÁICA DE LA PARÍCULA AUORES Ivn Devit, Alejndro Brusco, Federico Senttore INRODUCCIÓN En este trbjo, estudiremos el movimiento

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Se l ecución de Schrödinger del oscildor rmónico: d 1 + kx = E (1 m dx L solución de

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

Profesora Anna Patete, Dr. M.Sc. Ing. Escuela de Ingeniería de Sistemas. Universidad de Los Andes, Mérida, Venezuela.

Profesora Anna Patete, Dr. M.Sc. Ing. Escuela de Ingeniería de Sistemas. Universidad de Los Andes, Mérida, Venezuela. Modelado de Sitema Fíico Profeora Anna Patete, Dr. M.Sc. Ing. Departamento de Sitema de Control. Ecuela de Ingeniería de Sitema., Mérida, Venezuela. Correo electrónico: apatete@ula.ve Página web: http://webdelprofeor.ula.ve/ingenieria/apatete/

Más detalles

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo: METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Facultad de Ciencias de la Electrónica

Facultad de Ciencias de la Electrónica Conceptos básicos pr el nálisis en el espcio de estdo Un sistem complejo moderno puede tener vris entrds y slids relcionds entre sí, en un form muy complicd Pr nlizr un sistem con ests crcterístics, se

Más detalles

3 de marzo de 2011 DSIC - UPV. Tema 5: Expresiones Regulares. U.D. Computación. Definiciones. Propiedades. Construcciones. AFs a partir de ERs

3 de marzo de 2011 DSIC - UPV. Tema 5: Expresiones Regulares. U.D. Computación. Definiciones. Propiedades. Construcciones. AFs a partir de ERs UD AFs Lem de UD DSIC - UPV 3 de mrzo de 2011 UD (DSIC - UPV) 3 de mrzo de 2011 1 / 40 Índice UD AFs Lem de sore expresiones regulres utómts finitos utómts finitos UD (DSIC - UPV) 3 de mrzo de 2011 2 /

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Fundmentos de Químic Teóric SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Se l ecución de Schrödinger del oscildor rmónico: d + kx

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA Sistems Electromecánicos, Guí : Máquins de Corriente Continu GUÍA : MÁQUNAS DE COENTE CONTNUA. L crcterístic de mgnetizción de un generdor de corriente continu operndo un velocidd de 500 [rpm] es: [A]

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

= = = 13.7 = 12.8 = = (Regla de la cadena)

= = = 13.7 = 12.8 = = (Regla de la cadena) i f(z), l derivd dey de f(x) con repecto e define como 2. h donde AZ. derivd tmbién e deign por (x). El proceo eguido pr hllr e llm diferencición. AZ En iguiente on funcione de b, c, contnte [con retriccione

Más detalles

Gestión de inventarios

Gestión de inventarios Gestión de inventrios José Mrí Ferrer Cj Universidd Pontifici Comills Introducción Inventrio (stock): Conjunto de bienes lmcendos pr su posterior uso Tipos de bienes del inventrio: Mteris prims en esper

Más detalles