Análisis de Componentes de la Varianza

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de Componentes de la Varianza"

Transcripción

1 Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable dependiente Y. Está diseñado para analizar un experimento anidado en el cual los factores están estructurados en una manera jerárquica. En tal estudio, las muestras de cada factor son tomadas del interior de las muestras del factor inmediatamente arriba de él. Por ejemplo, b conjuntos podrían haber sido tomados de un proceso. Entonces s muestras podrían ser tomadas de cada conjunto. Finalmente, t pruebas podrían ser realizadas en cada muestra. El conjunto final de datos tendría un total de n = bst medidas. Este procedimiento está diseñado para un experimento en el cual los factores están estructurados en un estricto orden jerárquico y en el cual todos los efectos se asumen como aleatorios. El procedimiento Modelos Lineales Generales debería ser usado para situaciones más complicadas. StatFolio de Muestra: varcomp.sgp Datos de la Muestra: El archivo pigment.sf6 contiene datos de un experimento descrito por Box, Hunter y Hunter (978). En ese experimento, b = 5 conjuntos de pegamento de pigmento fueron seleccionados. De cada conjunto, s = 2 muestras fueron tomadas y t = 2 pruebas fueron ejecutadas en cada muestra para medir la humedad contenida. Un total de n = 60 mediciones se encuentran en el archivo y una parte de éstas se muestra abajo: Batch Simple Test Moisture Los conjuntos están numerados del a b = 5. Las muestras están numeradas del al bs = 30, sin embargo ellas podrían haber sido etiquetadas del a s = 2 dentro de cada conjunto. Las pruebas están numeradas del a t = 2 dentro de cada muestra, sin embargo éstas podrían haber sido numeradas del al bst = 60. Cada esquema de numeración proporcionará idénticos resultados por StatPoint, Inc. Análisis de Componentes de la Varianza -

2 Captura de Datos Los datos consisten de una sencilla columna que contiene las mediciones así como múltiples columnas que indican los niveles de los factores experimentales. Variable Dependiente: columna numérica que contiene las observaciones. Factores en Orden de Anidamiento: columnas numéricas o no numéricas que contienen los niveles que identifican cada factor. Los factores deben ser capturados de arriba hacia abajo, por ejemplo cada factor se asume para ser anidado en el factor que se encuentra inmediatamente arriba de él en la lista. Este es uno de los pocos procedimientos de STATGRAPHICS en los que el orden de los factores afecta el análisis. Selección: selecciona el subconjunto. Nota: la prueba del factor final puede omitirse de la lista de factores en el cuadro de diálogo. Si es así, sus efectos serán incluidos como un término de Residuo en la tabla de ANOVA. Modelo Estadístico El modelo estadístico relevante para la muestra de datos es Ybst = μ + ε + ε + ε () b s t donde μ = media del proceso ε b = desviación de la media de conjunto b de la media del proceso μ 2006 por StatPoint, Inc. Análisis de Componentes de la Varianza - 2

3 ε s = desviación de la media de la muestra s de la media del conjunto b ε t = desviación del cálculo de la prueba t de la media de la muestra s STATGRAPHICS Rev. 4/25/2007 Las desviaciones se asumen usualmente como muestras aleatorias de distribuciones normales con desviaciones estándar: σ b = desviación estándar entre los conjuntoss σ s = desviación estándar entre las muestras dentro de los conjuntos σ t = desviación estándar entre los resultados de pruebas dentro de cada muestra Suponiendo que los diversos componentes del error son independientes, la variabilidad del proceso general es la suma de la variabilidad explicada por los diversos componentes, por ejemplo: σ σ b + σ s + = σ (2) 2 t Resumen del Análisis El Resumen del Análisis muestra el número de observaciones n y un análisis de la tabla de varianza. Análisis Componentes de la Varianza - moisture Variable dependiente: moisture Factores: batch sample test Número de casos completos: 60 Análisis de Varianza para moisture Fuente Suma de Cuadrados Gl Cuadrado Medio Comp. Var. Porciento TOTAL (CORREGIDO) Batch Sample Test La tabla muestra: Sumas de Cuadrados: una descomposición de la suma de las desviaciones cuadradas alrededor de la gran media. GL: los grados de libertad asociados con cada suma de cuadrados. Cuadrado Medio: las sumas de cuadrados divididos entre sus grados de libertad. Componentes de la Varianza: los componentes de la varianza estimada los cuales son las varianzas estimadas de cada factor dentro del factor donde está anidado. Los componentes de 2006 por StatPoint, Inc. Análisis de Componentes de la Varianza - 3

4 la varianza son estimados al especificar los cuadrados de medias en la tabla de la ANOVA igual a sus valores esperados y resolviendo las ecuaciones resultantes. Porciento: el porcentaje de la varianza total del proceso representada por cada componente. En los datos de la muestra las estimaciones de los componentes de la varianza son: $ σ b 2 = 7.28 $ σ s 2 =28.53 $ σ t 2 = La estimación de la variabilidad total del proceso es ˆ σ = + = ˆ 2 ˆ σ ˆ b + σ s σ t Note que la variabilidad entre muestras dentro del mismo conjunto representa sobre el 78% de la variabilidad total indicando un problema con la homogeneidad dentro de los conjuntos. Diagrama de Puntos El cuadro Diagrama de Puntos grafica los datos por niveles de un factor seleccionado Gráfica de Componentes de Varianza moisture batch La gráfica de arriba muestra líneas horizontales en cada una de las 5 medias de conjuntos. Cada punto representa la media de una muestra dentro de un conjunto. Opciones de Cuadro 2006 por StatPoint, Inc. Análisis de Componentes de la Varianza - 4

5 Factor: el factor a ser graficado en el eje horizontal. Gráfica de Desviación de Componentes La Gráfica de Desviación de Componentes muestra la desviación de cada observación de la media de todas las observaciones al mismo nivel de un factor seleccionado: Gráfica de Desviación de Componentes para moisture batch 9.49% sample 78.0% test desviación de la media 2.5% Cada sección de la gráfica contiene un punto que corresponde a cada observación. En cada sección, una media diferente ha sido substraída del valor de los datos. Sección Superior (conjunto): muestra la desviación de cada observación de la media general de todas las observaciones. Sección del Centro (muestra): muestra la desviación de cada observación de la media del conjunto del cual fue tomado. Sección Inferior (prueba): muestra la desviación de cada observación de la media de la muestra de la cual fue tomada. El efecto es para mostrar de abajo hacia arriba la contribución adicional de cada componente. La variabilidad en la sección inferior se explica solamente al proceso de prueba. La variabilidad en la sección del centro incluye la variabilidad de las pruebas y la variabilidad entre muestras dentro del mismo conjunto. La variabilidad en la sección superior proviene de los tres componentes por StatPoint, Inc. Análisis de Componentes de la Varianza - 5

6 En la gráfica de arriba es claro que una cantidad substancial de variabilidad es introducida en el nivel de las muestras dentro de los conjuntos. Resumen Estadístico La tabla del Resumen Estadístico muestra los tamaños muestrales, medias y desviaciones estándar en cada nivel de los factores. Una parte de la tabla se muestra abajo: Resumen estadístico para moisture Desviación Nivel Recuento Media Estándar MEDIA GLOBAL Batch Muestra Gráficas de Residuos Como con todos los modelos estadísticos es una buena práctica examinar los residuos. Los residuos son iguales a los valores de los datos observados menos los valores predichos por el modelo estadístico subyacente. El procedimiento Componentes de Varianza crea 3 gráficas de residuos:. versus nivel de factor. 2. versus valor predicho. 3. versus número de fila. Nota: En los datos muestrales, los factores han sido especificados para cada nivel de error experimental así que los residuos son todos igual a 0. Si la prueba es removida como un factor, entonces su efecto será reflejado en un término del residuo. Las gráficas de abajo reflejan eso como análisis: 2006 por StatPoint, Inc. Análisis de Componentes de la Varianza - 6

7 Residuos versus Nivel de Factor Esta gráfica es útil para visualizar cualquier diferencia en la variabilidad en varios niveles de un factor. Gráfico de Residuos para moisture residuo batch El residuo promedio en cada nivel es igual a 0. Paneles de Opciones Factor: factor a ser mostrado en el eje horizontal Residuos versus Predicho Esta gráfica es útil para detectar cualquier heteroscedasticidad en los datos por StatPoint, Inc. Análisis de Componentes de la Varianza - 7

8 Gráfico de Residuos para moisture residuo moisture predicho La heteroscedasticidad ocurre cuando la variabilidad de los datos cambia conforme la media cambia y podría necesitar la transformación de los datos antes de realizar la ANOVA. La heteroscedasticidad se evidencia usualmente por un patrón en forma de embudo en la gráfica de los residuos. Residuos versus Observación Esta gráfica muestra los residuos versus el número de fila en la hoja de base de datos: Gráfico de Residuos para moisture residuo número de fila Si los datos se ordenan en orden cronológico cualquier patrón en los datos podría indicar una influencia externa. No se encuentra evidencia de tal patrón en la gráfica de arriba. Guardar Resultados Los siguientes resultados pueden ser guardados en la hoja de base de datos:. Componentes de Varianza los componentes de varianza estimada. 2. Residuos los n residuos por StatPoint, Inc. Análisis de Componentes de la Varianza - 8

9 Cálculos La estimación de los componentes de la varianza sigue el procedimiento descrito en la documentación Modelos Lineales Generales por StatPoint, Inc. Análisis de Componentes de la Varianza - 9

Exactitud y Linearidad del Calibrador

Exactitud y Linearidad del Calibrador Exactitud y Linearidad del Calibrador Resumen El procedimiento Exactitud y Linearidad del Calibrador fue diseñado para estimar la exactitud del sistema de medición. En contraste con los procedimientos

Más detalles

Análisis Probit. StatFolio de Ejemplo: probit.sgp

Análisis Probit. StatFolio de Ejemplo: probit.sgp STATGRAPHICS Rev. 4/25/27 Análisis Probit Resumen El procedimiento Análisis Probit está diseñado para ajustar un modelo de regresión en el cual la variable dependiente Y caracteriza un evento con sólo

Más detalles

Gráfico de Medias Móviles (MA)

Gráfico de Medias Móviles (MA) Gráfico de Medias Móviles (MA) Resumen El procedimiento Gráfico de Medias Móviles crea cuadros de control para una sola variable numérica donde los datos se han recolectado ya sea individualmente o en

Más detalles

Método de Análisis del Riesgo (Estudio del Calibrador Atributos)

Método de Análisis del Riesgo (Estudio del Calibrador Atributos) Método de Análisis del Riesgo (Estudio del Calibrador Atributos) Resumen El Método de Análisis del Riesgo cuantifica la incertidumbre de un sistema de medición donde las observaciones consisten de atributos

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

Diagrama de Barras Múltiple

Diagrama de Barras Múltiple Múltiple El procedimiento Múltiple grafica dos o más columnas de totales o frecuencias ya sea utilizando barras horizontales o verticales. Si lo desea, pueden agregarse barras de error para desplegar el

Más detalles

Regresión en Cadena. StatFolio de Ejemplo: ridge reg.sgp

Regresión en Cadena. StatFolio de Ejemplo: ridge reg.sgp Regresión en Cadena Resumen El procedimiento Regresión en Cadena está diseñado para ajustar un modelo de regresión múltiple cuando las variables independientes exhiben multicolinealidad. Multicolinealidad

Más detalles

Pronósticos Automáticos

Pronósticos Automáticos Pronósticos Automáticos Resumen El procedimiento de Pronósticos Automáticos esta diseñado para pronosticar valores futuros en datos de una serie de tiempo. Una serie de tiempo consiste en un conjunto de

Más detalles

Estadísticas por Filas

Estadísticas por Filas Estadísticas por s Resumen El procedimiento Estadísticas por s calcula estadísticas para datos en filas de la hoa de datos. Esto contrasta con la mayoría de los procedimientos de STATGRAPHICS que esperan

Más detalles

Regresión Polinomial. StatFolio de Ejemplo: polynomial reg.sgp

Regresión Polinomial. StatFolio de Ejemplo: polynomial reg.sgp Regresión Polinomial Resumen El procedimiento Regresión Polinomial está diseñado para construir una modelo estadístico que describa el impacto de un solo factor cuantitativo X en una variable dependiente

Más detalles

Transformaciones de Box-Cox

Transformaciones de Box-Cox Transformaciones de Box-Cox Resumen El procedimiento para las Transformaciones de Box-Cox es diseñado para determinar una transformación optima para Y mientras se estima un modelo de regresión lineal.

Más detalles

Histogramas. Ejemplo StatFolio: histogram.sgp

Histogramas. Ejemplo StatFolio: histogram.sgp s Resumen El ilustra la distribución de lo valores de una variable numérica agrupando los datos en intervalos y graficando barras en las cuales la altura es proporcional al numero de observaciones en cada

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Gráficos EWMA. Ejemplo StatFolio: ewmachart.sgp

Gráficos EWMA. Ejemplo StatFolio: ewmachart.sgp Gráficos EWMA Resumen El procedimiento del Gráfico EWMA (Exponentially Weighted Moving Average - Promedios Móviles Exponencialmente Ponderados) construye un gráfico de control para una sola variable numérica

Más detalles

Análisis de Capabilidad (Porcentaje Defectuoso)

Análisis de Capabilidad (Porcentaje Defectuoso) Análisis de Capabilidad (Porcentaje Defectuoso) STATGRAPHICS Rev. 9/4/2006 Este procedimiento esta diseñado para estimar el porcentaje de artículos defectuosos en una población basándose en muestra de

Más detalles

Grafico de Cajas y Bigotes

Grafico de Cajas y Bigotes Grafico de Cajas y Bigotes Resumen El procedimiento del Gráfico de Cajas y Bigotes crea un gráfico diseñado para ilustrar propiedades importantes de una columna de datos numérica. El primero en describirlo

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

ANOVA Multifactorial. StatFolio Muestra: anova.sgp

ANOVA Multifactorial. StatFolio Muestra: anova.sgp ANOVA Multifactorial Resumen El procedimiento ANOVA Multifactorial está diseñado para construir un modelo estadístico describiendo el impacto de dos o más factores categóricos X j de una variable dependiente

Más detalles

Horsepower (Caballos de Fuerza)

Horsepower (Caballos de Fuerza) Análisis de Factores Resumen El procedimiento Análisis de Factores esta diseñado para extraer factores comunes de un conjunto de p variables cuantitativas X. En muchas situaciones, un número pequeño de

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: STATGRAPHICS Re. 4/d/yyyy Pruebas de Hipótesis (Una Muestra) Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: 1. la media μ de una distribución normal.. la desiación

Más detalles

Tabulación Cruzada. Sample StatFolio: crosstabulation.sgp

Tabulación Cruzada. Sample StatFolio: crosstabulation.sgp Tabulación Cruzada El procedimiento de Tabulación Cruzada esta diseñado para resumir dos columnas de datos. Esta construye una tabla de dos-caminos mostrando las frecuencias de ocurrencia de cada uno de

Más detalles

Regresión No Lineal. StatFolio de ejemplo: nonlinear reg.sgp

Regresión No Lineal. StatFolio de ejemplo: nonlinear reg.sgp Regresión No Lineal Resumen El procedimiento Regresión No Lineal ajusta una función especificada por el usuario relacionando una sola variable dependiente Y con una o más variables independientes X. El

Más detalles

Comparación de Líneas de Regresión

Comparación de Líneas de Regresión Comparación de Líneas de Regresión Resumen El procedimiento de Comparación de Líneas de Regresión esta diseñado para comparar líneas de regresión relacionas con Y y X en dos o mas niveles de un factor

Más detalles

Gráfico ARIMA. Ejemplo StatFolio: ARIMA charts.sgp

Gráfico ARIMA. Ejemplo StatFolio: ARIMA charts.sgp Gráfico ARIMA Resumen El procedimiento del Gráfico ARIMA (AutoRegressive Integrated Moving Average - Promedio Móvil Integrado Auto-Regresivo) crea gráficos de control para una sola variable numérica donde

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Diseño de Experimentos Optimización de Múltiples Respuestas

Diseño de Experimentos Optimización de Múltiples Respuestas Diseño de Experimentos Optimización de Múltiples Respuestas Resumen La selección de Optimización de Múltiples Respuestas sobre el menú DDE permite al experimentador determinar las configuraciones de los

Más detalles

Gráfico de Control de Aceptación

Gráfico de Control de Aceptación Gráfico de Control de Aceptación Resumen El procedimiento de Gráfico de Control de Aceptación crea gráficos de control con límites de control modificados basándose en la desviación estándar del proceso

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

1. Límites normales de tolerancia: estos límites asumen que los datos son una muestra aleatoria de una distribución normal.

1. Límites normales de tolerancia: estos límites asumen que los datos son una muestra aleatoria de una distribución normal. Límites de Tolerancia Los límites de tolerancia proporcionan un rango de valores para X tal que se puede tener 100(1-α) % de confianza que P por ciento de la población, de la cual provienen los datos,

Más detalles

Series de Tiempo Suavización

Series de Tiempo Suavización Series de Tiempo Suavización Resumen El procedimiento de Suavización está diseñado para ayudar a ilustrar cualquier tendencia y ciclos presentes en una serie de tiempo. Una serie de tiempo consiste en

Más detalles

4.1 Análisis bivariado de asociaciones

4.1 Análisis bivariado de asociaciones 4.1 Análisis bivariado de asociaciones Los gerentes posiblemente estén interesados en el grado de asociación entre dos variables Las técnicas estadísticas adecuadas para realizar este tipo de análisis

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows. TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

LABORATORIO Nº 9 TABLAS DINÁMICAS

LABORATORIO Nº 9 TABLAS DINÁMICAS OBJETIVO Mejorar el nivel de comprensión y el manejo de las destrezas del estudiante para utilizar tablas dinámicas en Microsoft Excel. 1) DEFINICIÓN Las tablas dinámicas permiten resumir y analizar fácilmente

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

Tema: Medidas de Asociación con SPSS

Tema: Medidas de Asociación con SPSS Tema: Medidas de Asociación con SPSS 1.- Introducción Una de las tareas habituales en el análisis de encuestas es la generación y análisis de tablas de contingencia, para las variables y categorías objetivo

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

Cómo se hace la Prueba t a mano?

Cómo se hace la Prueba t a mano? Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión Estadís5ca Tema 2. Modelos de regresión María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo

Más detalles

Medidas de Tendencia Central.

Medidas de Tendencia Central. Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

5. Regresión Lineal Múltiple

5. Regresión Lineal Múltiple 1 5. Regresión Lineal Múltiple Introducción La regresión lineal simple es en base a una variable independiente y una dependiente; en el caso de la regresión línea múltiple, solamente es una variable dependiente

Más detalles

ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO. Resumen

ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO. Resumen ESTIMACIÓN DE LOS COMPONENTES DE LA VARIACIÓN DE UN SISTEMA DE MEDICIÓN, USANDO EL RANGO RIVAS C., Gerardo A. Escuela de Ingeniería Industrial. Universidad de Carabobo. Bárbula. Valencia. Venezuela Jefe

Más detalles

Diagrama Causa y Efecto

Diagrama Causa y Efecto Diagrama Causa y Efecto Resumen El Diagrama Causa - Efecto o Diagrama Espina de Pescado ilustra las causas de un problema o efectos creando un diagrama parecido al esqueleto de un pescado. Este es frecuentemente

Más detalles

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0

Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

SnapStat: Análisis de Una Muestra

SnapStat: Análisis de Una Muestra SnapStat: Análisis de Una Muestra Resumen La SnapStat Análisis de Una Muestra crea un resumen en una hoja de una sola columna de datos numéricos. Calcula estadísticas de resumen e intervalos de confianza,

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

El Análisis de Correspondencias tiene dos objetivos básicos:

El Análisis de Correspondencias tiene dos objetivos básicos: Tema 8 Análisis de correspondencias El Análisis de Correspondencias es una técnica de reducción de dimensión y elaboración de mapas percentuales. Los mapas percentuales se basan en la asociación entre

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados.

Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados. Bases de Estadística Licenciatura en Ciencias Ambientales Curso 2oo3/2oo4 Introducción al SPSS/PC Este programa estadístico está organizado en dos bloques: el editor de datos y el visor de resultados.

Más detalles

Comparación de Varias Muestras

Comparación de Varias Muestras Comparación de Varias Muestras Resumen El procedimiento de Comparación de Varias Muestras está diseñado para comparar dos o más muestras independientes de datos variables. Se hacen pruebas para determinar

Más detalles

El ejemplo: Una encuesta de opinión

El ejemplo: Una encuesta de opinión El ejemplo: Una encuesta de opinión Objetivos Lo más importante a la hora de planificar una encuesta es fijar los objetivos que queremos lograr. Se tiene un cuestionario ya diseñado y se desean analizar

Más detalles

Pruebas para evaluar diferencias

Pruebas para evaluar diferencias Pruebas para evaluar diferencias Métodos paramétricos vs no paramétricos Mayoría se basaban en el conocimiento de las distribuciones muestrales (t- student, Normal, F): EsFman los parámetros de las poblaciones

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

Comparación de Muestras Pareadas

Comparación de Muestras Pareadas Comparación de Muestras Pareadas Resumen El procedimiento Comparación de Muestras Pareadas está diseñado para comparar datos en 2 columnas numéricas donde los valores en cada fila están pareados, i.e.,

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

Métodos estadísticos aplicados para la Ingeniería Informática

Métodos estadísticos aplicados para la Ingeniería Informática Grado en Ingeniería Informática Métodos estadísticos aplicados para la Ingeniería Informática Rosa Mª Alcover Arándiga Departamento de Estadística e Investigación Operativa Aplicadas y Calidad Objetivo

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Microsoft Project 2013

Microsoft Project 2013 Microsoft Project 2013 SALOMÓN CCANCE Project 2013 Salomón Ccance www.ccance.net CCANCE WEBSITE ANEXO 2. MANEJO DE VISTAS Y TABLAS. 2.1. ELEMENTOS DE VISUALIZACIÓN DE MICROSOFT OFFICE PROJECT PROFESSIONAL

Más detalles

Diseño Gráficos de Control

Diseño Gráficos de Control Diseño Gráficos de Control Resumen Este procedimiento esta diseñado para ayudar a determinar el tamaño de muestra apropiado y los parámetros comunes para los gráficos de control. El diseño esta basado

Más detalles

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación

Más detalles

1. Cómo introducir datos en SPSS/PC? - Recordatorio

1. Cómo introducir datos en SPSS/PC? - Recordatorio 1 Taller de Estadística Curso 2oo5/2oo6 Descripción de datos bivariantes El objetivo de esta práctica es familiarizarse con las técnicas de descripción de datos bidimensionales y con algunas de las opciones

Más detalles

1. Necesidades del Consumidor una lista de m necesidades del consumidor. Estas necesidades constituyen las m hileras de la matriz.

1. Necesidades del Consumidor una lista de m necesidades del consumidor. Estas necesidades constituyen las m hileras de la matriz. Matriz QFD Resumen El procedimiento Matriz QFD crea y presenta una matriz QFD (Quality Function Deployment, Despliegue de la Función de Calidad). QFD es un proceso de planeación dirigido por el cliente

Más detalles

c). Conceptos. Son los grupos o conceptos que se enlistan en las filas de la izquierda de la tabla

c). Conceptos. Son los grupos o conceptos que se enlistan en las filas de la izquierda de la tabla Tema 5. Tablas estadísticas Como ya se había establecido en el tema anterior sobre el uso de las tablas estadísticas, éstas son medios que utiliza la estadística descriptiva o deductiva para la presentación

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 36 alumnos de un curso de Estadística de la Universidad de Talca. En esta base de datos

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Herramientas computacionales para la matemática MATLAB: Análisis de datos.

Herramientas computacionales para la matemática MATLAB: Análisis de datos. Herramientas computacionales para la matemática MATLAB:. Verónica Borja Macías Junio 2012 1 Analizar datos estadísticos en MATLAB es sencillo. Máximo y mínimo max(x) si x es vector encuentra el valor más

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

4. Regresión Lineal Simple

4. Regresión Lineal Simple 1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para

Más detalles