PROBLEMAS DE EQUILIBRIO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE EQUILIBRIO"

Transcripción

1 PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro En un tazón Líquido girando

2 En el extremo de una cuerda de 80 cm de longitud, cuya resistencia a la rotura por tracción es 50 kp., se sujeta una piedra de 1'2 kg y, a continuación, se le hace girar verticalmente de forma acelerada. Determinar a qué velocidad saldrá la piedra cuando se rompa la cuerda. Según el principio de d'alembert, para que un cuerpo está en equilibrio dinámico la suma de todas las fuerzas incluidas las de inercia debe ser cero. A medida que aumente la velocidad de giro la tensión de la cuerda aumenta, siendo ésta máxima cuando la piedra se encuentre en la parte inferior, en donde la tensión es igual al peso más la fuerza centrífuga. Cuando la tensión de la cuerda supere la resistencia por tracción, la cuerda se romperá, sucediendo en la parte inferior, y la velocidad de salida será tangente a la circunferencia de giro. T = P + F c T = m. g + m.v 2 /R v = [ R.(T - m.g) / m ] 1/2 En este caso: v = [ 0'8.(50.9'8-1'2.9'8) /1'2 ] 1/2 = 17 ' 86 m /s Un vehículo circula a 108 km /h por una curva peraltada de radio 200 m sin riesgo de derrapar. Determinar el ángulo del peralte. Según el principio de d'alembert, para que un cuerpo está en equilibrio dinámico la suma de todas las fuerzas incluidas las de inercia debe ser cero. Si no tiene riesgo de derrapar es porque la fuerza resultante es perpendicular a la calzada; es decir la suma del peso, P, y de la fuerza centrífuga, F c, es perpendicular a la calzada, por lo que: tg θ = F c /P = ( m.v 2 /R ) / (m.g) = v 2 / (R.g) En este caso: θ = arc tag 30 2 / (200.9'8) = 24 ' 7º Un camión tiene una anchura de 2 m y su centro de masas está a 1'50 m de altura. Determinar qué velocidad máxima debe llevar para no volcar en una curva de radio 30 m. Las fuerzas de rozamiento, Fr, no ejercen ningún momento respecto al punto O. Para que el camión no vuelque el momento del peso, P, respecto al punto O debe ser mayor que el momento de la fuerza centrífuga, F c : M o (P) > M o (F c ) P. d /2 > F c.h m. g. d /2 > m. v 2.h /R v 2 < g. d. R /(2.h) v < [ g. d. R /(2.h) ] 1/2 En este caso: v < [ 9' /(2.1'5) ] 1/2 = 14 m /s El resultado no depende de la masa del camión pero si de su anchura y de la posición del centro de masas.

3 Un patinador toma una curva de 8 metros de radio con una velocidad de 36 km /h. Qué inclinación debe llevar para estar en equilibrio dinámico?. R n reacción normal del suelo Según el principio de d'alembert, para que un cuerpo está en equilibrio dinámico la suma de todas las fuerzas incluidas las de inercia debe ser cero. Para estar en equilibrio dinámico, la suma de todas las fuerzas y el momento total, incluidas las fuerzas de inercia, deben ser cero. P peso del cuerpo F c fuerza centrífuga F r fuerza de rozamiento S F = 0 F r = F c R n = P S M = 0 P.d. cos θ = F c.d. sen θ tg θ = p /F c = m.g /(m.v 2 /R) = g.r / v 2 es decir la suma del peso con la fuerza centrífuga debe pasar por el punto de apoyo. En este caso: θ = arc tg (9'8.8 /10 2 ) = 38º Una puerta de 2m de alto por 1 m de ancho tiene una masa de 20 Kg. Tiene dos bisagras en un lateral situadas a 20 cm de los extremos, cada una de ellas sostiene el mismo peso. Determinar las reacciones de las bisagras. Si está en equilibrio la suma de todas las fuerzas debe ser cero: Si cada bisagra sostiene el mismo peso: A x = B x A y + B y = P A y = B y = P / 2 = 20 / 2 = 10 Kp = 98 N Por estar en equilibrio la suma de momentos respecto a cualquier punto es cero. Sean d la separación de las bisagras y a la anchura de la puerta: Respecto a la bisagra A: B x.d = P. a/2 Respecto a la bisagra B: A x.d = P. a/2 A x = B x = P. a /(2.d) = 20. 1/(2.1'6) = 6'25 Kp = 61'25 N La reacción total en cada bisagra tiene el sentido expresado en el dibujo y sus módulos serán: A = B = (61' ) 1/2 = 115'57 N θ = arc tg = 98 / 61'25 = 58º

4 Una escalera uniforme de 80 Kp de peso y 6 m de longitud está apoyada en la pared, formando un ángulo de 53º con el suelo. El coeficiente de rozamiento con el suelo es diez veces superior que el coeficiente de rozamiento con la pared. Determinar las reacciones de la pared y el suelo. Sean los coeficientes de rozamiento: con el suelo: m con la pared: k.m siendo en este caso k = 0'1 Las fuerzas de rozamiento serán: F 2 = m. N 2 [1] F 1 = k. m. N 1 [2] Por estar en equilibrio la suma de todas las fuerzas debe ser cero: F 2 = N 1 m. N 2 = N 1 N 2 = N 1 / m [3] P = N 2 + F 1 P = N 2 + k. m. N 1 = N 1 / m + k. m. N 1 [4] y el momento total, respecto a cualquier punto, debe ser cero; respecto al punto A: P. a. cos θ = N 1.2a. sen θ + F 1. 2a. cos θ P - 2. F 1 = 2. N 1. tg θ N 1 / m + k. m. N 1-2.k. m. N 1 = 2. N 1. tg θ 1 / m + k. m - 2.k. m = 2. tg θ 1 / m - k. m = 2. tg θ 1 - k. m 2 = 2. m. tg θ k. m m. tg θ - 1 = 0 m = [ -2. tg θ ± (4. tg 2 θ + 4. k) 1/2 ] / 2k = [ -2. tg 53 ± (4. tg '1) 1/2 ] / 0'2 = 0'372 de [4] P = N 1 / m + k. m. N 1 N 1 = m. P / (1 + k. m 2 ) = 0' / (1 + 0'1.0'372) = 28'66 kp de [3] de [1] de [2] N 2 = N 1 / m = 28'66 / 0'372 = 77'05 kp F 2 = m. N 2 = 0' '05 = 28'66 kp F 1 = k. m. N 1 = 0'1. 0' '66 = 1'07 kp Si el coeficiente de rozamiento con la pared fuera nulo: m = 1 /(2.tg 53) = 0'377 de [4] P = N 1 / m + k. m. N 1 N 1 = m. P / (1 + k. m 2 ) = 0' / ( '377) = 30'14 kp de [3] de [1] de [2] N 2 = N 1 / m = 30'14 / 0'377 = 80 kp F 2 = m. N 2 = 0' = 30'14 kp F 1 = k. m. N 1 = 0. 0' '14 = 0 kp

5 Una regla uniforme de 1 m de longitud y masa 60 gramos tiene a 12 cm de un extremo una masa añadida de 10 gramos. Determinar a qué distancia mantendrá el equilibrio sobre el filo de una navaja. Si está en equilibrio el momento total es cero: Utilizaremos las unidades gramo y centímetro. a = 12 cm L = 100 cm La densidad lineal de la regla será: d = M / L = 60 / 100 = 0'6 gr / cm m.g.(x-a) + d.x.g.x/2 = d.(l-x).g.(l-x)/2 2.m.(x-a) + d.x 2 = d.(l-x) (x-12) + 0'6.x 2 = 0'6.(100-x) 2 20.x '6.x 2 = x + 0'6.x x = 6240 x = 6240 / 140 = 44'57 cm Dos masas m 1, m 2 están unidas por una cuerda inextensible y sin masa de longitud L, y están colocadas sobre un cilindro de radio r. Determinar la posición de equilibrio y las ecuaciones del movimiento. a) Resolución: Cada masa está sometida a su propio peso p y a la reacción R del cilindro. Se descompone el peso en la dirección del radio y la tangente. Si la longitud de la cuerda es L L = β.r R 1 = m 1.g.senθ T 1 = m 1.g.cosθ R 2 = m 2.g.sen(π - (θ + β )) T 2 = m 2.g.cos(π - (θ + β )) = - m 2.g.cos (θ + β ) Si están en equilibrio: T 1 = T 2 m 1.g.cosθ = - m 2.g.cos (θ + β ) b) Resolución elegante: Un cuerpo está en equilibrio si su energía potencial es mínima (estable), máxima (inestable) o constante (indiferente). La energía potencial del sistema será: E p = m 1.g.y 1 + m 2.g.y 2 = m 1.g.r.senθ + m 2.g.r.sen(π - (θ +β )) = g.r.[ m 1.senθ + m 2.sen(θ +β ) ] Si debe estar en equilibrio, la derivada de la energía potencial debe ser cero de p /dθ = g.r.[ m 1.cosθ + m 2.cos(θ +β ) ] = 0

6 Como la derivada segunda es negativa, la energía potencial es máxima, el equilibrio es inestable. Determinar la posición de equilibrio de un punto de masa m situado en el interior de una semiesfera de radio R que gira con velocidad angular w constante alrededor del eje vertical. Según el principio de d'alembert, para que un cuerpo está en equilibrio dinámico la suma de todas las fuerzas incluidas las de inercia debe ser cero. El punto está sometido al peso y a la fuerza centrífuga debida al giro de la semiesfera. La condición de equilibrio es que la suma del peso y de la fuerza centrífuga tenga la dirección radial. Un recipiente contiene un líquido y gira uniformemente. Demostrar que la sección de la superficie líquida forma una parábola. Según el principio de d'alembert, para que un cuerpo está en equilibrio dinámico la suma de todas las fuerzas incluidas las de inercia debe ser cero. En cualquier punto de la superficie de un líquido en equilibrio, la resultante R de las fuerzas aplicadas debe ser perpendicular a la superficie del líquido. Las fuerzas que existen en cualquier punto son la fuerza centrífuga F c y el peso p, por lo que: tan q = F c / p = m.w 2.x / (m.g) = w 2.x / g pero tan q es la pendiente de la recta tangente a la curva, es decir, es la derivada de la función en ese punto, por lo que dy / dx = w 2.x / g y = w 2. x / g dx y = w 2.x 2 /(2.g) + k siendo k una constante de integración cuyo valor es -h, pues es el valor que toma y para x=0 Luego la función es polinómica de segundo grado y por tanto una parábola: y = w 2. x 2 /(2.g) - h Como ampliación comprobaremos que existe un punto b, intersección de la parábola con el nivel horizontal del líquido en reposo, invariante, es decir todas las parábolas producidas por diferentes velocidades pasan por dicho punto: Si x = b, y = 0 h = w 2. b 2 /(2.g) por otro lado, el área coloreada bajo la parábola debe ser igual al área del rectángulo a.h del líquido en reposo:

7

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton =

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton = FUEZA CENTIPETA Y CENTIFUGA. De acuerdo con la segunda ley de Newton = F m a para que un cuerpo pesa una aceleración debe actuar permanentemente sobre el una fuerza resultante y la aceleración tiene el

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

LAS FUERZAS Y EL MOVIMIENTO

LAS FUERZAS Y EL MOVIMIENTO Página 1 LAS UEZAS Y EL MOVIMIENTO DINÁMICA: Es la parte de la ísica que estudia las fuerzas como productoras de movimientos. UEZA: Es toda causa capaz de modificar el estado de reposo o movimiento de

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

Tema 4: Dinámica del movimiento circular

Tema 4: Dinámica del movimiento circular Tema 4: Dinámica del movimiento circular Ya has estudiado las características del movimiento circular uniforme, calculando la velocidad de giro, relacionándola con la lineal y teniendo en cuenta además

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09) EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12

Mecánica. Ingeniería Civil. Curso 11/12 Mecánica. Ingeniería ivil. urso / ) eterminar la dirección θ del cable y la tensión F que se requiere para que la fuerza resultante sobre el bidón de la figura sea vertical hacia arriba de módulo 800 N.

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación.

Problema 2.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. Problema.1 Determinar la fuerza total sobre la pared externa A del tanque cilíndrico de la figura, así como su punto de aplicación. F = 99871 N z = 1,964 cm Problema. Un dique tiene la forma que se indica

Más detalles

PRESTACIONES EN VEHÍCULOS

PRESTACIONES EN VEHÍCULOS LABORATORIO DE TECNOLOGÍAS IV 3º ingeniería Técnica Industrial Mecánica PRESTACIONES EN VEHÍCULOS UNIVERSIDAD CARLOS III DE MADRID DEPARTAMENTO DE INGENIERÍA MECÁNICA LEGANÉS 04 1 INDICE DEL CURSO 1.-

Más detalles

APLICACIONES DEL CÁLCULO DIFERENCIAL-II

APLICACIONES DEL CÁLCULO DIFERENCIAL-II APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

α = (rad/s 2 ) Experimento 8

α = (rad/s 2 ) Experimento 8 Experimento 8 MOVIMIENTO DE ROTACIÓN Objetivos 1. Establecer algunas similitudes entre el movimiento de traslación y el de rotación,. Medir la posición, velocidad y aceleración angulares de objetos girando,

Más detalles

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos

Más detalles

Unidad I Funciones Expresar una función. Dominios

Unidad I Funciones Expresar una función. Dominios Unidad I Funciones Epresar una función 1. Un rectángulo tiene un perímetro de 0m. Eprese el área del rectángulo como función de la longitud de uno de sus lados.. Un rectángulo tiene un área de 16 m. Eprese

Más detalles

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 Personas Adultas PARTE ESPECÍFICA: DIBUJO TÉCNICO OPCIÓN B DATOS DEL ASPIRANTE CALIFICACIÓN Apellidos:. Nombre:.... EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 EJERCICIO 1. CIRCUNFERENCIAS

Más detalles

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012

Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Fuerza Aérea Argentina. Escuela de Aviación Militar Asignatura: Física Actividades Ingreso 2012 Unidad 1: Fuerzas Programa analítico Medidas de una fuerza. Representación gráfica de fuerzas. Unidad de

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha V. FRICCIÓN La fricción o rozamiento es una fuerza de importancia singular. La estudiaremos en este lugar como una aplicación concreta de los proble-mas de equilibrio, aun cuando la fricción aparece también

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema). Dinámica Examen de Física-1, 1 Ingeniería Química Segundo parcial Enero de 013 Problemas (Dos puntos por problema) Problema 1: Un resorte vertical de constante k1000 N/m sostiene un plato de M kg de masa

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS

Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola ESTÁTICA DE FLUIDOS CAMPUS TECNOLÓGICO DE LA UNIVERSIDAD DE NAVARRA. NAFARROAKO UNIBERTSITATEKO

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

frenado?. fuerza F = xi - yj desde el punto (0,0) al

frenado?. fuerza F = xi - yj desde el punto (0,0) al 1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a

Más detalles

ENUNCIADO HABITUAL ENUNCIADO TRANSFORMADO

ENUNCIADO HABITUAL ENUNCIADO TRANSFORMADO 1. La velocidad de la luz en el vacío es de 300.000 km/s. La luz del Sol tarda en llegar a la Tierra 8 minutos y 20 segundos. Cuál es la distancia del Sol a la Tierra?. 2. Un ciclista lleva una velocidad

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8 Mecánica. Ingeniería ivil. urso 11/12 Hoja 8 71) Un automóvil está viajando a una velocidad de módulo 90 km/h por una autopista peraltada que tiene un radio de curvatura de 150 m. Determinar el ángulo

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

Física I. Curso 2010/11. Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca

Física I. Curso 2010/11. Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 1. Cinemática Índice 1. Introducción 3 2.

Más detalles

TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA

TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA Departamento de Física y ATC DIVISIÓN DE FÍSICA APLICADA TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA 1. CINEMÁTICA 1.1 Conceptos Generales 1.2 Tipos de movimiento 2. DINÁMICA 2.1 Leyes de Newton 2.2

Más detalles

1 Yoyó con cuerda despreciable 1

1 Yoyó con cuerda despreciable 1 1 Yoyó con cuerda despreciable 1 En este documento se describe el problema clásico de la Física elemental en el que un yoyó, modelado como un disco, cae bajo la acción de la gravedad, sujeto con una cuerda

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

PRUEBA FORMATIVA DE FISICA

PRUEBA FORMATIVA DE FISICA PRUEBA FORMATIVA DE FISICA TEMA 1: Un vector tiene 10 de módulo y sus componentes están en la relación 1:2. La componente rectangular de menor valor es: a) 5 b) c) d) e)... TEMA 2: Una partícula parte

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO IAJANDO EN EL TELEFÉRICO EJERCICIO PRÁCTICO PARA APRENDER Y DIERTIRE CUADERNO DEL ALUMNO DECRIPCIÓN Un viaje tranquilo y sin sobresaltos de 2,4km de longitud a través del cielo de Madrid alcanzando una

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

( j ) N y F 2 DINAMICA VARIOS: Sobre un objeto se ejercen dos fuerzas: F 1. = 2.4i ˆ + 6.4 ˆ

( j ) N y F 2 DINAMICA VARIOS: Sobre un objeto se ejercen dos fuerzas: F 1. = 2.4i ˆ + 6.4 ˆ DINAMICA VARIOS: Sobre un objeto se ejercen dos fuerzas: F 1 2.4i ˆ + 6.4 ˆ ( j ) N y F 2 ( 8.5i ˆ 9.7ˆ j ) N. a) Cuál es el módulo de cada fuerza? b) Cuál es el ángulo de cada una de estas fuerzas con

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

Mecánica. Cecilia Pardo Sanjurjo. Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial.

Mecánica. Cecilia Pardo Sanjurjo. Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial. Mecánica Tema 06. Está-ca analí-ca. Método de los trabajos virtuales. Método del potencial. Cecilia Pardo Sanjurjo DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Este tema se publica bajo Licencia: Crea-ve

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA

Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA Universidad de Pamplona Sede Villa del Rosario LABORATORIO DE MECÁNICA CUESTIONARIO GUIA PARA LAS PRÁCTICAS DE LABORATORIO DE MECÁNICA El cuestionario correspondiente a cada práctica de laboratorio debe

Más detalles

Olimpiada Online de Física - OOF 2013

Olimpiada Online de Física - OOF 2013 1. La figura muestra una pieza metálica apoyada sobre une superficie horizontal. Respecto de la tercera ley de Newton, indique verdadero (V) o falso (F) según corresponda. I. El peso y la normal son fuerzas

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

INVESTIGACIÓN DE ESTACIONAMIENTO

INVESTIGACIÓN DE ESTACIONAMIENTO INVESTIGACIÓN DE ESTACIONAMIENTO Estacionamientos Reservar un lugar por cada 25 cajones o fracción (mínimo uno). Para el cálculo de la demanda el porcentaje mayor a 0.50 se considera como un cajón Ubicación

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita. 1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y

Más detalles

Grupo de Ingeniería Gráfica y Simulación Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid ALTIMETRÍA DE OBRAS

Grupo de Ingeniería Gráfica y Simulación Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid ALTIMETRÍA DE OBRAS Grupo de Ingeniería Gráfica y Simulación Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid ALTIMETRÍA DE OBRAS ALTIMETRÍA DE OBRAS 1. INTRODUCCIÓN: PLANTA, TRAZA Y RASANTE...

Más detalles

ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda.

ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda. FÍSICA GENERAL I Descripción del movimiento 1 Responda las siguientes cuestiones en el caso de un movimiento rectilíneo ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda. a

Más detalles

Bachillerato Internacional Matemáticas II. Curso 2014-2015 Problemas

Bachillerato Internacional Matemáticas II. Curso 2014-2015 Problemas Bachillerato Internacional Matemáticas II. Curso 04-05 Problemas REGLAS DE DERIVACIÓN. Reglas de derivación Obtener la derivada de las siguientes funciones:. y = (x 7x + ). y = (4x + 5). y = (x 4x 5x

Más detalles

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivos 1. Medir la distancia recorrida y la velocidad de un objeto que se mueve con: a. velocidad constante y b. aceleración constante,. Establecer

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO 1 Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO IES FRANCÉS DE ARANDA. TERUEL. DEPARTAMENTO DE FÍSICA Y QUÍMICA 2 FÍSICA Y QUÍMICA. 1º BACHILLERATO. CONTENIDOS. I.- CINEMÁTICA. 1. Movimiento: sistema de

Más detalles

TEORIA Y PRACTICA DE ESTÁTICA. Física ING. RAÚL MARTÍNEZ

TEORIA Y PRACTICA DE ESTÁTICA. Física ING. RAÚL MARTÍNEZ TEORIA Y PRACTICA DE ESTÁTICA Física ING. RAÚL MARTÍNEZ TEORIA DE FÍSICA CAPITULO I: MAGNITUDES Y MEDICIONES Magnitud: Todo aquello que se puede medir, se llama magnitud. Ej.: el peso, el tiempo, la temperatura.

Más detalles

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca Cuestión (a) Un grifo gotea sobre una superficie de agua. El goteo tiene lugar a razón de 80 gotas por minuto y genera en el agua ondas circulares separadas 45 cm. Cuál es la velocidad de propagación de

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 kg y realiza un trabajo equivalente a 6.00 kj, Cuál es la profundidad del pozo?

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO 1.- La chapa rectangular ABCD de la Figura 1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto de anclaje A cuando la chapa soporta una carga

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

Preguntas y Problemas de Física www.librosmaravillosos.com L. Tarasov y A. Tarasova

Preguntas y Problemas de Física www.librosmaravillosos.com L. Tarasov y A. Tarasova 1 Prefacio Los autores de este libro han sabido, en la forma más expresiva del diálogo, analizar profundamente casi todas las preguntas del programa y en especial aquellas que son de difícil comprensión.

Más detalles

Capítulo 6. Aplicaciones de la Integral

Capítulo 6. Aplicaciones de la Integral Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

Tema 2. DINÁMICA. Física, J.W. Kane, M. M. Sternheim, Reverté, 1989. Tema 2 Dinámica Caps. 3 y 5 Las leyes de Newton del movimiento

Tema 2. DINÁMICA. Física, J.W. Kane, M. M. Sternheim, Reverté, 1989. Tema 2 Dinámica Caps. 3 y 5 Las leyes de Newton del movimiento Tema 2. DINÁMICA Física, J.W. Kane, M. M. Sternheim, Reverté, 1989 Tema 2 Dinámica Caps. 3 y 5 Las leyes de Newton del movimiento Cap. 3, pp44-69 Movimiento circular Cap. 5, pp96-107 TS 5.8 Efectos fisiológicos

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos XVI OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2005 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI Centro Población Provincia Fecha Teléfono e-mail Las siete primeras preguntas no es

Más detalles

Julián Moreno Mestre www.juliweb.es

Julián Moreno Mestre www.juliweb.es Ejercicio de cálculos de trabajo: 1º Una bomba hidráulica llena un depósito de 500 L situado a 6 m de altura. Qué trabajo ha realizado? Sol: 2.94 10 5 J. 2º Determinar el trabajo realizado por una fuerza

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

TRABAJO Y ENERGIA: TRABAJO Y POTENCIA

TRABAJO Y ENERGIA: TRABAJO Y POTENCIA TRABAJO Y ENERGIA: TRABAJO Y POTENCIA Un telesilla está diseñado para transportar 9 esquiadores por hora desde la base hasta la cima (de coordenadas (25 m, 15m) respecto de la base). La masa promedio de

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas

Más detalles

Tema IV: Trabajo, Potencia y Energía

Tema IV: Trabajo, Potencia y Energía Problemas de Física º acillerato Tema IV: Trabajo, Potencia y nergía.- Una fuerza de 90N tira de un bloque, inicialmente en reposo que pesa 0 kg, situado en un plano inclinado 30º sobre la orizontal. La

Más detalles

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2 Solucionario TRABAJO, ENERGIA Y POTENCIA MECANICA 1.- Calcular el trabajo realizado al elevar un cuerpo de 5 kg hasta una altura de 2 m en 3 s. Expresar el resultado en Joule y en erg. Voy a proponer dos

Más detalles