PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión"

Transcripción

1 PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión Comprobación experimental de la Ley de la Reflexión de la luz en espejos planos y cilíndricos Objetivos Estudiar las leyes de la óptica geométrica. Trabajar con rayos de luz. Realizar la comprobación experimental de la ley de la reflexión de la luz en espejos. Medir la distancia focal y determinar el radio de curvatura de un espejo cilíndrico cóncavo y uno convexo. Introducción teórica La ley de la reflexión de la luz establece que al incidir un rayo de luz sobre una superficie espejada, este rayo se refleja con un ángulo de reflexión (θr) igual al ángulo de incidencia (θi) con signo cambiado, siendo ambos ángulos medidos a partir de la normal (perpendicular) a la superficie espejada en el punto de incidencia: θr = -θi En un espejo plano, los haces de rayos paralelos se reflejan sobre sí mismos. En un espejo cilíndrico cóncavo, los haces de rayos incidentes paralelos son reflejados de modo que se concentran en su punto focal, resultando la distancia focal (f) de tal espejo, igual a la mitad de su radio de curvatura (R): f = R/2 En un espejo cilíndrico convexo, los haces de rayos incidentes paralelos son reflejados de modo que sus prolongaciones se concentran en su punto focal, resultando la distancia focal (f) de tal espejo, igual a la mitad de su radio de curvatura (R): f = R/2 Elementos necesarios Mesa giratoria graduada para medir ángulos Espejo plano Espejo cilíndrico cóncavo 1

2 Desarrollo de la experiencia Parte a) Espejo plano 1. Coloque el espejo plano sobre la mesa giratoria graduada, con su frente perpendicular a la línea indicada NORMAL. 2. Utilice la fuente luminosa en el modo correspondiente a un rayo de luz (girando la rueda selectora) y ubíquela de modo que el rayo incida sobre la normal (ángulo 0 ). 3. Gire la mesa graduada y para al menos cuatro ángulos de incidencia distintos registre los ángulos del rayo incidente y del rayo reflejado. 4. Organice los resultados en una tabla. Estime las incertidumbres y las causas de errores en las mediciones realizadas. Parte b) Espejo cilíndrico cóncavo 1. Coloque ahora el espejo cilíndrico cóncavo sobre la mesa giratoria graduada, con su centro perpendicular a la línea indicada NORMAL, de modo que el rayo reflejado vuelva sobre el rayo incidente. 2. Utilice la fuente luminosa en el modo correspondiente a 5 rayos paralelos (girando la rueda selectora) y ubíquela de modo que el rayo central incida sobre la normal (ángulo 0 ). 3. El punto donde los 5 rayos reflejados se cruzan es el foco (o punto focal) del espejo cilíndrico cóncavo. Para determinar la distancia focal (f) del espejo, mida la distancia desde el foco hasta el espejo, sobre el rayo reflejado central. 4. Gire la mesa graduada un ángulo de unos 30. Sin mover nada más seleccione en la fuente luminosa el modo de 3 colores (RGB) y observe el color del punto focal. 5. Diseñe algún procedimiento apropiado y mida el radio del espejo cilíndrico cóncavo. 6. Estime las incertidumbres y las causas de errores en las mediciones realizadas en los puntos anteriores. Parte c) Espejo cilíndrico convexo 1. Coloque ahora el espejo cilíndrico convexo sobre la mesa giratoria graduada, con su centro perpendicular a la línea indicada NORMAL, de modo que el rayo reflejado central vuelva sobre el rayo incidente. 2. Utilice la fuente luminosa en el modo correspondiente a 5 rayos paralelos (girando la rueda selectora) y ubíquela de modo que el rayo central incida sobre la normal (ángulo 0 ). 3. El punto donde las prolongaciones de los 5 rayos reflejados se cruzan es el foco (o punto focal) del espejo cilíndrico convexo. Para determinar la distancia focal (f) del espejo, mida la distancia desde el foco hasta el espejo, sobre la prolongación del rayo reflejado central. 4. Diseñe algún procedimiento apropiado y mida el radio del espejo cilíndrico convexo. 5. Estime las incertidumbres y las causas de errores en las mediciones realizadas en los puntos anteriores. 2

3 Nota: Tenga en cuenta que en este tipo de espejo los rayos reflejados son divergentes y no se cruzan. Las que se cruzan en el foco son las prolongaciones de los rayos reflejados. Utilice regla (o hilos) para extender las prolongaciones de los rayos reflejados detrás del espejo y determinar la posición del foco en el punto donde estas prolongaciones se cruzan. Cuestionario y conclusiones a elaborar Interprete los resultados obtenidos. Compárelos con los valores esperados de acuerdo a lo establecido por las leyes de la reflexión. Compárelos con la fórmula para el cálculo de la distancia focal en base al radio de curvatura. Cuál será la distancia focal de un espejo plano? Discuta la diferencia entre imágenes reales y virtuales. 3

4 PRÁCTICA DE LABORATORIO N 3 Unidad 3 Óptica Espejos esféricos cóncavos Determinación de la distancia focal y el aumento de un espejo esférico cóncavo Objetivos Estudiar los espejos esféricos cóncavos y las características de las imágenes producidas. Determinar experimentalmente, utilizando un banco óptico, la distancia focal de un espejo esférico cóncavo, y el aumento obtenido para una determinada combinación de distancia al objeto y la imagen. Introducción teórica Para un espejo esférico se tiene que: 1/f = 1/p + 1/q donde f es la distancia o longitud focal del espejo, p es la distancia desde el objeto al espejo y q es la distancia desde la imagen al espejo (con las convenciones de signos correspondientes). A partir de las mediciones de las distancias desde el espejo al objeto y desde el espejo a la imagen, puede determinarse experimentalmente la longitud focal del espejo. Se define el aumento lateral de un espejo a la relación: M = h /h = -q/p donde h y h son los tamaños de la imagen y el objeto respectivamente, q es la distancia desde la imagen al espejo y p es la distancia desde el objeto al espejo. Si la imagen está invertida con respecto al objeto, M tendrá signo negativo. Elementos necesarios Banco óptico Espejo esférico cóncavo de distancia focal desconocida Pantalla partida Desarrollo de la experiencia 1. Ubique la fuente luminosa y el espejo sobre el banco óptico, a una distancia de 50cm, con la retícula luminosa graduada (flechas cruzadas) de la fuente apuntando hacia el espejo cóncavo. 4

5 2. Coloque la pantalla partida entre la fuente luminosa y el espejo cóncavo, como se muestra en la siguiente figura. Pantalla Pantalla partida partida Espejo 3. Deslice la pantalla partida hasta obtener una imagen nítida de la retícula luminosa (objeto) sobre la pantalla. Anote las distancias del espejo al objeto (p) y del espejo a la imagen en la pantalla (q) y calcule 1/p y 1/q. 4. Repita el paso 3 para distancias entre la fuente luminosa y el espejo (p) de 45cm, 40cm, 35cm, 30cm y 25cm. Mida p y q para cada situación y calcule 1/p y 1/q. 5. Para la última posición (p = 25cm), mida el tamaño del objeto (h) y el tamaño de la imagen (h ). 6. Organice los resultados en una tabla, en la cual para cada caso aparezcan los valores de p, q, 1/p y 1/q. 7. Con los valores obtenidos, grafique 1/p versus 1/q. Esto debería dar una recta* en la cual los puntos de intersección con los ejes vertical (1/p) y horizontal (1/q) valen 1/f. Porqué? 8. A partir del valor de 1/f hallado para cada punto de corte con los ejes, calcule el valor para la distancia focal del espejo (f), promediando ambos valores. 9. A partir de las mediciones de h y h realizadas en el punto 5, calcule el aumento lateral para esa posición del espejo y fuente luminosa. Compare este valor con el obtenido al utilizar los correspondientes valores de p y q para realizar el cálculo. 10. Estime las incertidumbres y las causas de errores en las mediciones realizadas. 11. Presente los resultados correspondientes a las distancias focales del espejo como el valor medio de las mediciones, con las incertidumbres que considere apropiadas. *Nota: Puede encontrarse la recta más probable en forma gráfica, o analítica usando un método de regresión lineal (cuadrados mínimos), para hallar la recta que mejor se ajuste a los datos experimentales. 5

6 Cuestionario y conclusiones a elaborar Interprete los resultados obtenidos. Las imágenes obtenidas son directas o invertidas?, reales o virtuales? Proponga otra forma para determinar la distancia focal del espejo cóncavo. 6

7 PRÁCTICA DE LABORATORIO N 4 Unidad 3 Óptica Ley de Snell de la Refracción Determinación del índice de refracción de una pieza de acrílico utilizando la ley de Snell Objetivos Estudiar la ley de Snell de la refracción de la luz. Medir los ángulos de los rayos incidente y refractado cuando la luz cambia de medio de propagación. Determinar experimentalmente el índice de refracción de una pieza de acrílico translúcido. Introducción teórica Cuando un rayo de luz alcanza la superficie de separación entre dos medios transparentes, con un ángulo de incidencia θ 1, parte de la luz se refleja volviendo al primer medio y parte se refracta, ingresando al segundo medio con un ángulo de refracción θ 2. La ley de Snell establece que ambos ángulos cumplen la siguiente relación: n 1 Sen(θ 1 ) = n 2 Sen(θ 2 ) donde θ 1 y θ 2 son los ángulos del rayo incidente y del rayo refractado, medidos a partir de la normal (perpendicular) a la superficie de separación de los medios, y n 1 y n 2 son, respectivamente, los índices de refracción de los ambos medios. Elementos necesarios Mesa giratoria graduada para medir ángulos Pieza semicilíndrica de acrílico (con forma de D) Desarrollo de la experiencia 1. Coloque el semicilindro de acrílico, con su frente perpendicular a la línea indicada NORMAL. 2. Utilice la fuente luminosa en el modo correspondiente a un rayo de luz (girando la rueda selectora) y ubíquela de modo que el rayo incida sobre la normal (ángulo 0 ). 3. Gire la mesa graduada y para al menos cuatro ángulos de incidencia distintos registre los ángulos del rayo incidente y del rayo refractado. 4. Aplicando la ley de Snell, calcule en cada caso el valor para el índice de refracción del acrílico. 5. Organice los resultados en una tabla. Estime las incertidumbres y las causas de errores en las mediciones realizadas. 6. Presente el resultado correspondiente al índice de refracción del acrílico como el valor medio de los obtenidos en cada medición, con la incertidumbre que considere apropiada. 7

8 Nota: Puede tomarse el valor del índice de refracción del aire igual a 1. Cuestionario y conclusiones a elaborar Interprete los resultados obtenidos. Compare el índice de refracción encontrado con el valor esperado para el índice de refracción del acrílico (n ~ 1,5). 8

9 PRÁCTICA DE LABORATORIO N 5 Unidad 3 Óptica Lentes cóncavas y convexas Determinación de la distancia focal de dos lentes delgadas Objetivos Estudiar la diferencia entre lentes delgadas convergentes y divergentes. Determinar experimentalmente la distancia focal de una lente delgada biconvexa y de una bicóncava. Introducción teórica Cuando un haz de rayos de luz paralelos atraviesa una lente delgada, los rayos convergen o divergen, dependiendo del tipo de lente. El punto en el cual convergen los rayos de luz en una lente convergente, o el punto en el cual convergen las prolongaciones de estos rayos en una lente divergente, se denomina foco de la lente. La distancia focal (f) de una lente, es la distancia desde el centro de la lente hasta el foco. Si los rayos convergen la distancia focal se considera positiva y si los rayos divergen negativa. Elementos necesarios Lente biconvexa Lente bicóncava Desarrollo de la experiencia 1. Ubique la fuente luminosa sobre una mesa o papel blanco en el modo correspondiente a tres rayos de luz (girando correspondientemente la rueda selectora). 2. Coloque la lente convexa perpendicular a los rayos incidentes. 3. El punto donde se cortan los rayos de luz una vez que la atravesaron la lente, es el foco o punto focal. Mida la distancia entre este punto y la lente, para determinar su distancia focal. 4. Repita la medición varias veces y estime la distancia focal y la incertidumbre en su determinación. 5. Realice el mismo procedimiento con la lente cóncava. Tenga en cuenta que en este tipo de lente los rayos son divergentes y no se cruzan. Las que se cruzan en el foco son las prolongaciones de los rayos transmitidos. Utilice regla (o hilos) para extender las prolongaciones de los rayos detrás de la lente y determinar la posición del foco en el punto donde estas prolongaciones se cruzan. 6. Organice los resultados en una tabla. Estime las incertidumbres y las causas de errores en las mediciones realizadas. 7. Presente los resultados correspondientes a las distancias focales de cada lente como el valor medio de las mediciones, con las incertidumbres que considere apropiadas. 9

10 Cuestionario y conclusiones a elaborar Interprete los resultados obtenidos. Discuta la diferencia entre imágenes reales y virtuales. Utilizando la fórmula del constructor de lentes: 1/f = (n-1) (1/R 1 1/R 2 ) Realice alguna hipótesis acerca de valores posibles para los radios de curvatura (R 1 y R 2 ) de cada una de las lentes estudiadas. 10

11 PRÁCTICA DE LABORATORIO N 6 Unidad 3 Óptica Lentes delgadas convergentes Determinación de la distancia focal y el aumento de una lente delgada convergente Objetivos Estudiar las lentes delgadas convergentes actuando como proyectores de imágenes. Determinar experimentalmente, utilizando un banco óptico, la distancia focal de una lente delgada convergente, y el aumento obtenido, para diferentes combinaciones de distancias al objeto y la imagen. Introducción teórica Para una lente delgada se tiene que: 1/f = 1/p + 1/q donde f es la distancia o longitud focal de la lente, p es la distancia desde el objeto a la lente y q es la distancia desde la imagen a la lente (con las convenciones de signos correspondientes). A partir de las mediciones de las distancias desde la lente al objeto y desde la lente a la imagen, puede determinarse experimentalmente la longitud focal de la lente. Se define el aumento lateral de una lente a la relación: M = h /h = -q/p donde h y h son los tamaños de la imagen y el objeto respectivamente, q es la distancia desde la imagen a la lente y p es la distancia desde el objeto a la lente. Si la imagen está invertida con respecto al objeto, M tendrá signo negativo. Elementos necesarios Banco óptico Lente convergente de distancia focal desconocida Pantalla Desarrollo de la experiencia 1. Ubique la fuente luminosa y la pantalla sobre el banco óptico, a una distancia de 1m, con la retícula luminosa graduada (flechas cruzadas) de la fuente apuntando hacia la pantalla. 11

12 2. Coloque la lente convergente entre la fuente luminosa y la pantalla, como se muestra en la siguiente figura. Pantalla Lente 3. Con la lente cerca de la pantalla, comience a deslizarla hacia la fuente luminosa hasta obtener una imagen nítida de la retícula luminosa (objeto) sobre la pantalla. Anote las distancias de la lente al objeto (p) y de la lente a la imagen en la pantalla (q) y calcule 1/p y 1/q. 4. Mida el tamaño del objeto (h) y el tamaño de la imagen (h ). 5. Sin mover de lugar la fuente ni la pantalla (manteniéndolas a 1m de distancia), deslice la lente hacia la fuente luminosa hasta obtener otra imagen nítida sobre la pantalla, y repita en esta situación las mediciones de q, p, h y h. 6. Repita los pasos 3 al 5 para distancias entre la fuente luminosa y la pantalla de 90cm, 80cm, 70cm, 60cm y 50cm. En cada caso encuentre las dos posiciones de la lente en la cual se obtienen sendas imágenes nítidas de la fuente luminosa sobre la pantalla. Mida p y q para cada situación y calcule 1/p y 1/q. 7. Organice los resultados en una tabla, en la cual para cada distancia de separación entre fuente luminosa y pantalla aparezcan los valores de p, q, 1/p y 1/q (son dos conjuntos de valores para cada distancia). 8. Con los valores obtenidos, grafique 1/p versus 1/q. Esto debería dar una recta* en la cual los puntos de intersección con los ejes vertical (1/p) y horizontal (1/q) valen 1/f. Porqué? 9. A partir del valor de 1/f hallado para cada punto de corte con los ejes, calcule el valor para la distancia focal de la lente (f), promediando ambos valores. 10. A partir de las mediciones de h y h realizadas en el punto 4, calcule el aumento lateral para cada posición de la lente. Compare estos valores con los obtenidos al utilizar los correspondientes valores de p y q para realizar el cálculo. 11. Estime las incertidumbres y las causas de errores en las mediciones realizadas. 12. Presente los resultados correspondientes a las distancias focales de la lente como el valor medio de las mediciones, con las incertidumbres que considere apropiadas. 12

13 *Nota: Puede encontrarse la recta más probable en forma gráfica, o analítica usando un método de regresión lineal (cuadrados mínimos), para hallar la recta que mejor se ajuste a los datos experimentales. Cuestionario y conclusiones a elaborar Interprete los resultados obtenidos. Las imágenes obtenidas son directas o invertidas?, reales o virtuales? Explique por qué para cada distancia fija entre la fuente luminosa (objeto) y la pantalla existen dos posiciones de la lente donde se forman imágenes nítidas del objeto. Proponga otra forma para determinar la distancia focal de la lente convergente. 13

14 PRÁCTICA DE LABORATORIO N 7 Unidad 3 Óptica Polarización de la luz Comprobación experimental de la Ley de Malus Objetivos Introducir al estudiante al fenómeno de polarización de la luz. Obtener luz polarizada. Realizar la comprobación experimental de la ley de Malus. Introducción teórica Un haz de luz natural está comprendido por una gran cantidad de ondas luminosas, cada una de las cuales con su vector de campo eléctrico vibrando en una dirección determinada. Se define la dirección de polarización de cada una de estas ondas individuales, como la dirección en la cual vibra su vector campo eléctrico. Todas estas direcciones están comprendidas en un plano perpendicular a la dirección de propagación del haz luminoso, y como todas las direcciones en este plano son posibles, el haz de luz resultante de la superposición de todas las ondas componentes, no está polarizado. Un haz de luz se dice que está linealmente polarizado, si su vector de campo eléctrico, resultante de la suma de todas sus ondas componentes, vibra siempre en una misma dirección. En estas condiciones, el plano formado por la dirección de vibración del vector campo eléctrico y la dirección de propagación del haz luminoso se denomina plano de polarización de la luz. La luz linealmente polarizada puede producirse haciendo pasar luz natural a través de polarizadores, que son ciertos materiales que transmiten las ondas luminosas cuyos vectores de campo eléctrico vibran en una determinada dirección (dirección de transmisión) y absorben todas las demás. La ley de Malus establece que, cuando luz linealmente polarizada incide en un polarizador se verifica que la intensidad de la luz linealmente polarizada a la salida del polarizador es: I = I 0 Cos 2 θ Donde I 0 es la intensidad luminosa de la luz linealmente polarizada incidente en el polarizador y θ es el ángulo entre el plano de polarización de la luz incidente y la dirección de transmisión del polarizador. Elementos necesarios Banco óptico Polarizadores Fotómetro 14

15 Desarrollo de la experiencia 1. Monte en el banco óptico la fuente luminosa y el fotómetro. 2. Realice unas cuantas mediciones de la intensidad de la fuente luminosa para tomar contacto con el uso del fotómetro. 3. Coloque un polarizador (P1) entre la fuente luminosa y el fotómetro y realice mediciones variando el ángulo del polarizador y registre el ángulo y la intensidad indicada por el fotómetro para varios valores entre 0 y Coloque un segundo polarizador (P2) entre P1 y el fotómetro. Con el eje de transmisión de P1 en posición vertical, vaya girando P2, cambiando su eje de transmisión y registre el ángulo y la intensidad indicada por el fotómetro para varios valores entre 0 y Coloque ambos polarizadores formando un ángulo de 90 y registre la indicación del fotómetro. 6. Intercale entre ambos polarizadores (P1 y P2) un tercer polarizador (P3). Varíe su ángulo de transmisión entre 0 y 90 y registre la intensidad indicada por el fotómetro para varios valores. 7. Organice los resultados en tablas. Trace curvas de Intensidad versus Angulo para las mediciones realizadas en los puntos anteriores 3, 4 y 6. Cuestionario y conclusiones a elaborar Interprete los resultados obtenidos. Compárelos con los valores esperados de acuerdo a lo establecido por la ley de Malus. 15

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión.

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. Física 2º bachillerato Óptica geométrica 1 ÓPTICA GEOMÉTRICA La óptica geométrica

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

PRÁCTICA NÚMERO 5 REFLEXIÓN Y REFRACCIÓN

PRÁCTICA NÚMERO 5 REFLEXIÓN Y REFRACCIÓN PRÁCTICA NÚMERO 5 REFLEXIÓN Y REFRACCIÓN I. Objetivos. 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. II. Material. 1. Riel óptico. 2. Fuente de luz.

Más detalles

TEMA 4: OPTICA. s, y s, y Espejos y lentes FINALIDAD: dado un objeto imagen

TEMA 4: OPTICA. s, y s, y Espejos y lentes FINALIDAD: dado un objeto imagen 4.2.- Espejos y lentes FINALIDAD: dado un objeto imagen s, y s, y Objeto o imagen real: aquél para el cual los rayos de luz se cruzan de forma real. El punto de corte se puede recoger en una pantalla Figura

Más detalles

Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo?

Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo? Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo? Cómo depende la distancia focal del material que forma un espejo?

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el

COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA I TERMINO ACADEMICO 2013-2014 PRIMERA EVALUACIÓN DE FISICA D 01 DE JULIO DEL 2013 COMPROMISO

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

Prismas y lentes CAPÍTULO 5. Editorial Contexto - - Canelones

Prismas y lentes CAPÍTULO 5. Editorial Contexto -  - Canelones CAPÍTULO 5 56 Capítulo 5 PRISMAS Y LENTES interacciones campos y ondas / física 1º b.d. Prismas y lentes Rayo incidente n 1 Prismas En este capítulo estudiaremos qué sucede con la luz cuando atraviesa

Más detalles

10. Óptica geométrica (I)

10. Óptica geométrica (I) 10. Óptica geométrica (I) Elementos de óptica geométrica Centro de curvatura: centro de la superficie esférica a la que pertenece el dioptrio esférico Radio de curvatura: radio de la superficie esférica

Más detalles

PRÁCTICA 14. Reflexión y refracción

PRÁCTICA 14. Reflexión y refracción PRÁCTICA 14 Reflexión y refracción Laboratorio de Física General Objetivos Generales 1. Determinar la ley que rige la reflexión de la luz. 2. Estudiar la ley de la refracción de la luz. Equipo y materiales

Más detalles

Seminario 4: Óptica Geométrica

Seminario 4: Óptica Geométrica Seminario 4: Óptica Geométrica Fabián Andrés Torres Ruiz Departamento de Física,, Chile 7 de Abril de 2007. Problemas. (Problema 5, capitulo 36,Física, Raymond A. Serway, V2, cuarta edición) Un espejo

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

ESPEJOS. Segundo Medio Física Marzo 2012

ESPEJOS. Segundo Medio Física Marzo 2012 ESPEJOS Segundo Medio Física Marzo 2012 ESPEJOS Los espejos son superficies que pueden reflejar en forma ordenada, hasta el 100% de la luz que a ellos llega Los espejos se dividen en 2 : - Espejos Planos

Más detalles

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA Capítulo 1 SEMINARIO 1. Un foco luminoso se encuentra situado en el fondo de una piscina de 3,00 metros de profundidadllena de agua. Un rayo luminoso procedente del foco que llega al ojo de un observador

Más detalles

Unidad 5: Óptica geométrica

Unidad 5: Óptica geométrica Unidad 5: Óptica geométrica La óptica geométrica estudia los fenómenos luminosos utilizando el concepto de rayo, sin necesidad de considerar el carácter electromagnético de la luz. La óptica geométrica

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor Lentes delgadas Una lente delgada es un sistema óptico centrado formado por dos dioptrios, uno de los cuales, al menos, es esférico, y en el que los dos medios refringentes extremos poseen el mismo índice

Más detalles

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO DIOPTRIO PLANO Ejercicio 1. Junio 2.013 Un objeto se encuentra delante de un espejo plano a 70 cm del mismo. a. Calcule la distancia al espejo a la que se forma la imagen y su aumento lateral. b. Realice

Más detalles

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes.

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes. Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Física General Práctica # 4 Espejos y lentes I. Introducción. Los fenómenos de reflexión y refracción están presentes en nuestra vida diaria:

Más detalles

ANALOGIAS. (Págs. 70, 71, 72 y 73).

ANALOGIAS. (Págs. 70, 71, 72 y 73). 1 LICEO SALVADOREÑO CIENCIA, SALUD Y MEDIO, AMBIENTE HERMANOS MARISTAS PROFESORES: CLAUDIA POSADA / CARLOS ALEMAN GRADO Y SECCIONES: 9º: A, B, C, D Y E. UNIDAD N 5: ONDAS, LUZ Y SONIDO. GUIA N 1 ANALOGIAS.

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000 Resumen de Optica Miguel Silvera Alonso Octubre de 2000 Índice 1. Sistemas Opticos ideales 2 1.1. Espejo Plano................. 2 1.2. Espejo Esférico................ 2 1.3. lámina delgada................

Más detalles

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN

PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN PRÁCTICA Nº3 REFLEXIÓN Y REFRACCIÓN 1.- Equipamiento y montaje Componentes del equipo Los accesorios necesarios para la realización de la presente práctica se enumeran a continuación: 1. Caja de Almacenamiento

Más detalles

Práctica de Óptica Geométrica

Práctica de Óptica Geométrica Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

ESPEJOS ESFERICOS. Figura 29. Definición de términos para los espejos esféricos.

ESPEJOS ESFERICOS. Figura 29. Definición de términos para los espejos esféricos. ESPEJOS ESFERICOS Los mismos métodos geométricos aplicados a la reflexión de la luz desde un espejo plano se pueden utilizar para un espejo curvo. El ángulo de incidencia sigue siendo igual que el ángulo

Más detalles

FORMACIÓN DE IMÁGENES EN ESPEJOS

FORMACIÓN DE IMÁGENES EN ESPEJOS FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.

Más detalles

LUZ Y ÓPTICA. Propagación de la luz

LUZ Y ÓPTICA. Propagación de la luz LUZ Y ÓPTICA Propagación de la luz La luz se propaga en línea recta en un medio homogéneo. La hipótesis de la propagación de la luz explica varios fenómenos entre los que se puede resaltar: Cuando un rayo

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Juego de demostración de óptica de laser U17300 y juego complementario Instrucciones de servicio 1/05 ALF Índice Página Exp. Nr. Experimento Equipo 1 Introducción 2 Volumen de suministro

Más detalles

TALLER DE EXPERIMENTOS SENCILLOS DE ÓPTICA

TALLER DE EXPERIMENTOS SENCILLOS DE ÓPTICA GRINCEF TALLER DE EXPERIMENTOS SENCILLOS DE ÓPTICA Hebert Elías Lobo Manuel Villarreal Iris Materán Jesús Rosario Autores Jesús Briceño Juan Carlos Díaz Yasmelis Rivas Juan Lobo Co-autores Experiencias

Más detalles

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real, es cuando está formada sobre los propios rayos. Estas imágenes se pueden recoger sobre una pantalla. Imagen virtual, es cuando está formada por la prolongación

Más detalles

UNIVERSIDAD NACIONAL DE MISIONES

UNIVERSIDAD NACIONAL DE MISIONES OPTICA GEOMÉTRICA PROBLEMAS PROPUESTOS 1: Un rayo que se propaga por el aire incide en la superficie de un bloque de hielo transparente (n h =1,309) formando un ángulo de 40º con la normal a dicha superficie.

Más detalles

Seminario 3: Lentes, espejos y formación de imágenes

Seminario 3: Lentes, espejos y formación de imágenes Seminario 3: Lentes, espejos y ormación de imágenes Fabián Andrés Torres Ruiz Departamento de Física,, Chile 4 de Abril de 2007. Problemas. (Problema 8, capitulo 35,Física, Raymond A. Serway, las supericies

Más detalles

Ondas - Las ondas sonoras - El eco

Ondas - Las ondas sonoras - El eco Ciencias de la Naturaleza 2.º ESO Unidad 11 Ficha 1 Ondas - Las ondas sonoras - El eco La energía interna de una sustancia está directamente relacionada con la agitación o energía cinética de las partículas

Más detalles

LA LUZ. 1.- Qué es la luz?

LA LUZ. 1.- Qué es la luz? 1.- Qué es la luz? LA LUZ La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.

Más detalles

1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado, es (son)

1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado, es (son) Programa Estándar Anual Nº Guía práctica Ondas V: imágenes en espejos y lentes Ejercicios PSU 1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado,

Más detalles

Problemario de Ondas Electromagnéticas, Luz y Óptica

Problemario de Ondas Electromagnéticas, Luz y Óptica Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Ondas Electromagnéticas, Luz y Óptica Física General III Prof. Anamaría Font Marzo 2009 Índice 1. Ondas Electromagnéticas

Más detalles

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp 01. Ya que estamos en el Año Internacional de la Cristalografía, vamos a considerar un cristal muy preciado: el diamante. a) Calcula la velocidad de la luz en el diamante. b) Si un rayo de luz incide sobre

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

Capítulo 21 Óptica 1

Capítulo 21 Óptica 1 Capítulo 21 Óptica 1 Reflexión y refracción Las leyes de la reflexión y de la refracción nos dicen lo siguiente: Los rayos incidente, reflejado y transmitido están todos en un mismo plano, perpendicular

Más detalles

1. Descubrir el resultado de mezclar luces en diferentes combinaciones.

1. Descubrir el resultado de mezclar luces en diferentes combinaciones. Laboratorio 5 Óptica Geométrica 5.1 Objetivos 1. Descubrir el resultado de mezclar luces en diferentes combinaciones. 2. Verificar experimentalmente de la ley de Snell. 3. Determinar el índice de refracción

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes SGUICES027CB32-A16V1 Solucionario guía Ondas V: imágenes en espejos y lentes Ítem Alternativa Habilidad 1 A Reconocimiento 2 D Reconocimiento

Más detalles

(La solución de este problema se encuentra al final de la guía)

(La solución de este problema se encuentra al final de la guía) FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2016 ESPECIALIDADES: AGRIMENSURA- ALIMENTOS-BIOINGENIERÍA- CIVIL - QUÍMICA GUÍA DE PROBLEMAS PROPUESTOS Y RESUELTOS ONDAS Y ÓPTICA GEOMÉTRICA Problema

Más detalles

Reflexión de la luz MATERIALES MONTAJE

Reflexión de la luz MATERIALES MONTAJE Reflexión de la luz Espejos planos Estamos acostumbrados a usar los espejos sin plantearnos que ocurre con los rayos de luz que inciden sobre ellos. Vamos a estudiar el comportamiento de la luz primero

Más detalles

Espejos. Fuente:webdelprofesor.ula.ve

Espejos. Fuente:webdelprofesor.ula.ve Óptica Espejos Los espejos son superficies pulidas que pueden reflejar en forma ordenada, hasta el 100 % de la luz que a ellos llega. Los rayos reflejados o sus prolongaciones se cruzan formando las imágenes.

Más detalles

Distancia focal de una lente convergente (método del desplazamiento) Fundamento

Distancia focal de una lente convergente (método del desplazamiento) Fundamento Distancia focal de una lente convergente (método del desplazamiento) Fundamento En una lente convergente delgada se considera el eje principal como la recta perpendicular a la lente y que pasa por su centro.

Más detalles

LENTES Y ÓPTICA DEL OJO

LENTES Y ÓPTICA DEL OJO LENTES Y ÓPTICA DEL OJO OBJETIVOS En las investigaciones 2 y 3 vimos que si la luz atraviesa superficies de separación entre dos medios diferentes se desvía. Este hecho ha sido empleado para la construcción

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u) 1)

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos OPTICA REFLEXIÓN DE LA LUZ

Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos OPTICA REFLEXIÓN DE LA LUZ Área/Asignatura: Física Grado: 11 Docente: Luis Alfredo Pulido Morales Fecha: Eje Temático: óptica Periodo: 01 02 03 REFLEXIÓN DE LA LUZ Rayos de luz Para explicar los fenómenos de interferencia, difracción

Más detalles

PRÁCTICA Nº.- LENTES.

PRÁCTICA Nº.- LENTES. PRÁCTICA Nº.- LENTES. Objetivo: Estudiar la ormación de imágenes de lentes delgadas y determinar la distancia ocal y la potencia de una lente convergente y de una lente divergente. undamento teórico: La

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Formación de imágenes

Formación de imágenes ormación de imágenes Espejos esféricos: Cóncavos Convexos Lentes Convergentes Divergentes Salir Espejos esféricos cóncavos ormación de imágenes en el espejo esférico. a mayor distancia que el centro de

Más detalles

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )

Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( ) CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.

Más detalles

4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm.

4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm. Problemas Óptica 4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm. Donde debe ser colocada la bujía y como se vera la

Más detalles

MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA 2

MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA 2 MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA PROBLEMA. Un rayo de luz monocromática incide sobre una cara lateral de un prisma de vidrio, de índice de refracción n =. El ángulo

Más detalles

CUESTIONARIO DE ÓPTICA.

CUESTIONARIO DE ÓPTICA. CUESTIONARIO DE ÓPTICA. 1.- Qué es la luz, onda o partícula? 2.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Huygens: Young: Newton:

Más detalles

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD 1.- Un objeto luminoso de 2mm de altura está situado a 4m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada L, de distancia

Más detalles

GUÍA Nº 4 IMAGENES DE REFLEXION FORMADAS POR ESPEJOS PLANOS Y CURVOS

GUÍA Nº 4 IMAGENES DE REFLEXION FORMADAS POR ESPEJOS PLANOS Y CURVOS GUÍA Nº 4 IMAGENES DE REFLEXION FORMADAS POR ESPEJOS PLANOS Y CURVOS 1.- Introducción Suponemos que el espejo tiene poca abertura y que el rayo OP va muy próximo al eje principal (rayo paraxial). La imagen

Más detalles

Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde

Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde Serie 2: Objetos. Formación de imágenes. Imágenes. Dioptras esféricas y planas. Espejos esféricos y planos. Lentes delgadas, sistemas de

Más detalles

Espejos CAPÍTULO 4. Editorial Contexto - - Canelones Espejos planos, imágenes

Espejos CAPÍTULO 4. Editorial Contexto -  - Canelones Espejos planos, imágenes APÍTULO 4 interacciones campos y ondas / física 1º b.d. ESPEJOS apítulo 4 43 Espejos Espejos planos, imágenes En la figura 1 representamos un fuente puntual de luz ubicada en A y un espejo plano. En ella

Más detalles

GUIA DE REFUERZO PAES 2016 CCNN. Óptica geométrica

GUIA DE REFUERZO PAES 2016 CCNN. Óptica geométrica GUIA DE REFUERZO PAES 2016 CCNN Óptica geométrica Sabes qué es la luz? Qué recuerdas del espectro electromagnético? Sabes cuál fue el aporte de Isaac Newton a la parte de la física que estudia la luz?

Más detalles

INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO.

INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser

Más detalles

REFRACCIÓN DE LA LUZ

REFRACCIÓN DE LA LUZ 1 Nombre OBJETIVOS: Ud. Deberá ser capaz de : 1. definir la refracción de la luz 2. comprender el comportamiento que tiene la luz frente a distintos medios 3. describir la ley de refracción 4. describir

Más detalles

Problemario FS107 Óptica Básica Cal16B. Parámetros ópticos

Problemario FS107 Óptica Básica Cal16B. Parámetros ópticos Problemario FS107 Óptica Básica Cal16B Parámetros ópticos 33.3 Un haz de luz tiene una longitud de onda de 650 nm en el vacío. Cuál es la rapidez de esta luz en un líquido cuyo índice de refracción a esta

Más detalles

ÓPTICA ÓPTICA GEOMÉTRICA

ÓPTICA ÓPTICA GEOMÉTRICA ÓPTICA ÓPTICA GEOMÉTRICA IES La Magdalena. Avilés. Asturias En la óptica geométrica se estudian los cambios de dirección experimentados por los rayos de luz cuando son reflejados o refractados mediante

Más detalles

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA-

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

3. Calcular la corriente que circula por un conductor metálico de ρ = 0.17Ω m que tiene una longitud de 0.2m y un área de sección

3. Calcular la corriente que circula por un conductor metálico de ρ = 0.17Ω m que tiene una longitud de 0.2m y un área de sección Electromagnetismo: PROBLEMAS PROPUESTOS. 1. Calcular el campo eléctrico producido por q 1 y q en el punto a, si q 1 =q =3 μ c. Y d=10mm.. Calcular el potencial en el punto b, si q 1 =q y 1 μ c q 3 =q 4

Más detalles

Tema 6. Óptica y Ondas. Imágenes reales y virtuales (conceptos). 2. Establecer las características de las imágenes reales y las virtuales.

Tema 6. Óptica y Ondas. Imágenes reales y virtuales (conceptos). 2. Establecer las características de las imágenes reales y las virtuales. Tema 6. Óptica y Ondas CONTENIDOS Reflexión de la luz en la superficies planas y curvas. Análisis cualitativo y cuantitativo. OBJETIVOS 1. Analizar el fenómeno de reflexión de la luz y las leyes que la

Más detalles

COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS

COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS Adaptación del Experimento Nº 4 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 51-54. Autorizado por el Autor. Materiales: Mesa de

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

La luz su naturaleza y su velocidad. Naturaleza de la luz II

La luz su naturaleza y su velocidad. Naturaleza de la luz II Tema IV Lección 1ª La luz su naturaleza y su velocidad La luz vista por Newton y por Einstein. La luz como onda. Polarización, reflexión y refracción Propagación de la luz. Espejismos y arco iris Lección

Más detalles

FICHAS COMPLEMENTARIAS. REFLEXIÓN

FICHAS COMPLEMENTARIAS. REFLEXIÓN FICHAS COMPLEMENTARIAS. REFLEXIÓN I.- DESCRIPCIÓN DE LOS COMPONENTES Para realizar las prácticas de óptica vas a usar: 1.- Banco óptico: es una base metálica sobre la que colocar los diferentes montajes.

Más detalles

TEMA: Formación de imágenes en lentes convergentes

TEMA: Formación de imágenes en lentes convergentes TEMA: Formación de imágenes en lentes convergentes Objetivos 1. Estudiar un sistema óptico simple. 2. Determinar experimentalmente la longitud focal de una lente convergente. 3. Verificar experimentalmente

Más detalles

1) Enuncie el principio de Fermat. Demuestre a través de este principio la ley de reflexión de la luz en un espejo plano.

1) Enuncie el principio de Fermat. Demuestre a través de este principio la ley de reflexión de la luz en un espejo plano. Unidad 3: ÓPTICA Principio de Fermat. Reflexión. Espejos. Refracción. Ley de Snell. Lentes. Prisma. Fibras ópticas. Luz como fenómeno electromagnético. Luz como fenómeno corpuscular. Interferencia. Polarización.

Más detalles

ÓPTICA. 1. Introducción. 2. Influencia del medio: índice de refracción. 3. Óptica Física Principio de Huygens Reflexión y refracción.

ÓPTICA. 1. Introducción. 2. Influencia del medio: índice de refracción. 3. Óptica Física Principio de Huygens Reflexión y refracción. ÓPTICA. Introducción La óptica es la parte de la Física que estudia los fenómenos que se nos manifiestan por el sentido de la vista. Los manantiales de luz son los cuerpos luminosos, bien por sí mismos,

Más detalles

COMPLEMENTARIAS DE 4º DE ESO

COMPLEMENTARIAS DE 4º DE ESO ACTIVIDADES COMPLEMENTARIAS DE 4º DE ESO Indice 1. Trigonometría para los alumnos de 4º de ESO...2 2. Unidades de presión...4 3. Trazado de rayos...5 Ampliación de 4º de ESO - 1 1. Trigonometría para los

Más detalles

La luz. Según los datos del problema se puede esbozar el siguiente dibujo:

La luz. Según los datos del problema se puede esbozar el siguiente dibujo: La luz 1. Se hace incidir sobre un prisma de 60º e índice de refracció un rayo luminoso que forma un ángulo de 45º con la normal. Determinar: a) El ángulo de refracción en el interior del prisma. b) El

Más detalles

LAS LENTES Y SUS CARACTERÍSTICAS

LAS LENTES Y SUS CARACTERÍSTICAS LAS LENTES Y SUS CARACTERÍSTICAS Las lentes son cuerpos transparentes limitados por dos superficies esféricas o por una esférica y una plana, las lentes se emplean a fin de desviar las rayos luminosos

Más detalles

Seminario 1: Reflexión, Refracción y ángulo crítico

Seminario 1: Reflexión, Refracción y ángulo crítico Seminario 1: Reflexión, Refracción y ángulo crítico Fabián Andrés Torres Ruiz Departamento de Física,, Chile 21 de Marzo de 2007. Problemas 1. Problema 16, capitulo 33,física para la ciencia y la tecnología,

Más detalles

Formación de imágenes en lentes convergentes

Formación de imágenes en lentes convergentes Objetivos Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Formación de imágenes en lentes convergentes. Estudiar un sistema óptico simple. 2. Determinar experimentalmente

Más detalles

Medición del índice de refracción de líquidos.

Medición del índice de refracción de líquidos. Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II Proyecto Experimental: Medición del índice de refracción de líquidos.

Más detalles

UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA. Guillermo Becerra Córdova. Universidad Autónoma Chapingo. Dpto. de Preparatoria Agrícola.

UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA. Guillermo Becerra Córdova. Universidad Autónoma Chapingo. Dpto. de Preparatoria Agrícola. UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA Guillermo Becerra Córdova Universidad Autónoma Chapingo Dpto. de Preparatoria Agrícola Área de Física E-mail: gllrmbecerra@yahoo.com Resumen Dentro de los cursos

Más detalles

UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA FISICA

UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA FISICA UNIVERSIDAD CATOICA ANDRES BEO FACUTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA ABORATORIO DE FÍSICA II TEECOMUNICACIONES OPTICA FISICA Una onda es una perturbación física de algún tipo que se propaga en el

Más detalles

COMPROBACIÓN DE RELACIONES PARAXIALES

COMPROBACIÓN DE RELACIONES PARAXIALES SESIÓN 4: COMPROBACIÓN DE RELACIONES PARAXIALES TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Aproximación paraxial Aproximación de ángulos con el eje óptico pequeños (sen σ σ, tg σ σ). En aproximación paraxial

Más detalles

Qué es la reflexión de la luz?

Qué es la reflexión de la luz? OLEGIO REAL-ROYAL ROYAL SHOOL ESP. VITOR SANTANDER V. LA RELEXIÓN DE LA LUZ: ESPEJOS OLEGIO REAL-ROYAL ROYAL SHOOL ESP. VITOR SANTANDER V. LA RELEXIÓN DE LA LUZ: ESPEJOS OLEGIO REAL-ROYAL-SHOOL Qué es

Más detalles

Medición terrestre de la velocidad de la luz

Medición terrestre de la velocidad de la luz Medición terrestre de la velocidad de la luz Ondas en el agua Ondas en el agua Frente de ondas circulares Frente de ondas planas Onda Electromagnética Sombras Sombras: eclipse Espectro Electromagnético

Más detalles

1 Cuando un objeto es ubicado en frente de un espejo plano la imagen es:

1 Cuando un objeto es ubicado en frente de un espejo plano la imagen es: Slide 1 / 20 1 Cuando un objeto es ubicado en frente de un espejo plano la imagen es: A Vertical, ampliada y real. B Vertical, del mismo tamaño y virtual C Invertida, disminuida y real D Invertida, aumentada

Más detalles

Taller de Fotografía I - F

Taller de Fotografía I - F Taller de Fotografía I - F 2012 Cómo se forma una imagen? Como ya dijimos, las cosas se ven porque éstas reflejan la luz que les llega. Si en una caja estanca a la luz, dejamos pasar los rayos de luz reflejados

Más detalles

Luz polarizada y el microscopio de polarización. Prof. Martin Reich

Luz polarizada y el microscopio de polarización. Prof. Martin Reich Luz polarizada y el microscopio de polarización Prof. Martin Reich Componentes de la radiación electromagnética Ondas transversales direcciones de vibración Vector de Poynting (flujo de energía) Longitudes

Más detalles

Lentes, Espejos, Aberraciones.

Lentes, Espejos, Aberraciones. Lentes, Espejos, Aberraciones. La imagen formada en un telescopio de una estrella es un disco de difracción, y entre mas resolución tenga el telescopio, mas pequeño será ese disco. Cuando se colocan oculares

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

TAREA # 5B OPTICA OPTICA GEOMETRICA (ESPEJOS) Prof. Terenzio Soldovieri C.

TAREA # 5B OPTICA OPTICA GEOMETRICA (ESPEJOS) Prof. Terenzio Soldovieri C. cuerpo libre. La ausencia de éstos tendrá como consecuencia la anulación de la solución del problema correspondiente. Todos los sistemas de coordenadas a usar deben tener el eje +x apuntando hacia el Este

Más detalles