Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía College Board 2012 Rev 28 Página 48 de 120. NOTA: La figura no está dibujada a escala."

Transcripción

1 Conceptos de geometría Las figuras que acompañan a los ejercicios en la prueba tienen el propósito de proveerle información útil para resolver los problemas. Las figuras están dibujadas con la mayor precisión posible, excepto cuando se indique lo contrario. Cuando las líneas parecen rectas, puede presumirse que son rectas. A continuación aparecen varios ejemplos que ilustran formas de interpretar las figuras. En esta figura, se puede presumir que AD y BE son segmentos de rectas que se interceptan en C. NO se debe presumir que AC = CD, que p = 60 ni que r = 90, aunque pueda parecer que tienen esos valores. Toda vez que ACB y DCE son ángulos verticales (opuestos por el vértice), usted puede concluir que x = y. Aun cuando la nota indica que la figura no está dibujada a escala, se puede presumir que los puntos P, Q, R, S y T están en la recta PT. También se puede presumir que Q queda entre P y R, que R queda entre Q y S, y que S está entre R y T. No se puede presumir que PQ, QR, RS y ST tienen largos iguales. De hecho, toda vez que los largos de PT y PS se señalan de 18 y 12, respectivamente, el largo de ST es 6 mientras que PQ tiene un largo de 4. Por lo general, aun cuando una figura no esté dibujada a escala, puede presumirse que los puntos en la recta están en el orden ilustrado, pero los largos específicos (por ejemplo, PQ y ST ) pueden no estar representados con exactitud. En tales casos, la respuesta debe basarse en otra información que se ofrece sobre la figura como, por ejemplo, los largos específicos ilustrados. NOTA: La figura no está dibujada a escala. Esta figura tampoco se ha dibujado a escala. Sin embargo, se puede presumir que ABC, ABD y DBC son triángulos, y que D queda entre A y C. Las siguientes observaciones son válidas: (1) largo AD < largo AC (2) ABD < ABC (3) Área ABD < Área ABC Las siguientes observaciones NO son válidas. (Estas afirmaciones pueden ser o no ciertas.): (1) largo AD > largo DC (2) BAD = BDA (3) DBC < ABD Las tres observaciones válidas ilustran que la información sobre la posición relativa de puntos y ángulos puede presumirse de la figura, pero las tres observaciones que no son válidas ilustran que los largos específicos y las medidas en grados pueden no estar trazadas con precisión. Página 48 de 120

2 Propiedades de las rectas paralelas Si dos rectas paralelas se cortan por una transversal, los ángulos alternos internos tienen la misma medida. Por ejemplo: Si dos rectas paralelas se cortan por una transversal, los ángulos correspondientes tienen la misma medida. Por ejemplo: Nota: Las palabras como alternos internos o correspondientes generalmente no se usan en la prueba, pero se necesita saber cuáles ángulos tienen la misma medida. Relaciones entre ángulos x + y + z = 180 (Porque la suma de los ángulos interiores de un triángulo es igual a 180 ) z = w (Cuando dos rectas se interceptan, los ángulos opuestos por el vértice tienen la misma medida.) y = 70 (Porque x es igual a y, y x = 180) y = 30 (Porque la medida de un ángulo rectilíneo es igual a 180, y = x = 80 (Porque x = 180) Página 49 de 120

3 x = 10 (Porque 4 x + 5 x = 90) Además, el lado AC es más largo que el lado BC. (Porque la medida del ángulo B es mayor que la medida del ángulo A) La suma de las medidas de todos los ángulos internos del polígono que aparece arriba es 3 (180 ) = 540, porque puede dividirse en 3 triángulos y la suma de las medidas de los ángulos internos de cada uno de ellos es de 180. (Porque x + z = 180 y y = z ) Relaciones entre los lados de un triángulo con respecto a sus ángulos y = 1 Porque el largo del lado opuesto al ángulo de 30 de un triángulo rectángulo es igual a la mitad de la hipotenusa x= raíz cuadrada de 3 De acuerdo con el teorema de Pitágoras, x =2 2 x 2 =3 x = y = 10 (Porque el ángulo que aparece sin marcar es de 60 ; todos los ángulos de este triángulo miden lo mismo y, por lo tanto, todos los lados tienen igual longitud) Página 50 de 120

4 Fórmulas de áreas y perímetros de algunas figuras geométricas El área de un rectángulo = largo x ancho = L x A El perímetro de un rectángulo = 2 (L + A) Ejemplos: a) b) El área de un círculo = πr 2 (en esta fórmula r es el radio). La circunferencia =2πr=πd (en esta fórmula d es el diámetro). Ejemplos: Página 51 de 120

5 El área de un triángulo El volumen de un sólido rectangular (una caja) Ejemplos Página 52 de 120

6 Preprueba 3: Geometría Instrucciones: A continuación, tendrás la oportunidad de contestar una Preprueba en formato de selección múltiple de manera que puedas evaluar tu dominio de destrezas básicas en Geometría. Dispondrás de 15 minutos para contestar. 1 En la Figura 2 los triángulos ABC y DEF son semejantes. Cuánto mide el lado DF? a) b) c) 4 d) e) Si un círculo tiene una circunferencia de 20π, entonces su área es: a) 20π b) 100π c) 10π d) 40π e) 200π Página 53 de 120

7 3 En la siguiente figura, cuál es el área del triángulo? a) 4 b) 15 c) 8.5 d) 8 e) Dos puntos en una línea horizontal tienen coordenadas (5,3) y (22, 3). Cuán largo es el segmento que conecta los dos puntos? a) 19 b) 17 c) 27 d) 17 e) 6 5 El vértice de una parábola está en (4, -8). Si la parábola es trasladada 5 unidades hacia la derecha y 6 unidades hacia abajo. Cuál es la nueva coordenada del vértice? a) ( 1, 14) b) (10, 3) c) ( 2, 3) d) (9, 3) e) (9, 14) 6 En la siguiente figura, el cuadrado PQRS se divide en cuatro cuadrados iguales más pequeños. Si el área sombreada es igual a 3 centímetros cuadrados, cuántos centímetros cuadrados mide el área de PQRS? a) 1 b) 5 c) 6 d) 8 e) 7 Página 54 de 120

8 7 En la siguiente figura, el triángulo PQR es equilátero. Cuál es el perímetro del triángulo PQS? a) 28 b) 14 c) 25 d) 19 e) 18 8 En la figura de abajo, cuánto mide el ángulo a en grados? a) 59 b) 38 c) 97 d) 121 e) 83 9 Cuántos centímetros cuadrados mide el área de superficie del prisma que se muestra abajo? a) 134 b) 24 c) 158 d) 48 e) 110 Página 55 de 120

9 10 En un triángulo ABC, el ángulo C es recto. Si AB = 20 cm y CB = 16 cm, cuántos centímetros mide el segmento AC? a) 12 b) 6 c) 25 d) 4 e) En la siguiente figura, la medida en grados del ángulo x es igual a: a) 15 b) 30 c) 25 d) 60 e) En la Figura 1, C es punto medio del segmento AB. Cuánto mide el segmento AC? a) b) 2 c) 3 d) 4 e) En la figura que se muestra abajo el área, en unidades cuadradas, de la región sombreada es: a) 25π - 24 b) 25π + 24 c) 24 d) 25π e) 100π - 24 Página 56 de 120

10 14 El área, en unidades cuadradas, del polígono que se muestra abajo es: a) 144 b) 120 c) 60 d) 24 e) En la siguiente figura, el perímetro del triángulo RST es tres veces el largo de RS, cuánto mide RT? Nota: La figura no está hecha a escala a) 3 b) 8 c) 5 d) 9 e) 17 Página 57 de 120

11 Prueba: Conceptos básicos de geometría Indica que concepto de la Tabla 1 corresponde a la definición de la Tabla 2 Tabla 1 a) Circunferencia b) Punto medio c) Puntos Coplanales d) Puntos Colineales e) Bisectriz de un ángulo f) Rectas Concurrentes g) Segmento de Recta h) Radio i) Rectas Paralelas Tabla 2 Tres o más rectas se cruzan en un mismo punto Todos sus puntos equidistan de otro punto llamado centro Puntos sobre una misma recta Parte de la recta comprendida entre 2 puntos, incluso éstos Puntos sobre un mismo plano Rectas que nunca se cruzan en un mismo plano Origen en el vértice y divide al ángulo en 2 partes iguales Une al centro de la circunferencia con ésta Punto de un segmento que lo divide en 2 partes iguales Figura formada por 2 semirrectas con origen común (vértice) Página 58 de 120

12 Prueba: Polígonos Instrucciones: Lee detenidamente los enunciados, realiza los cálculos matemáticos y selecciona la alternativa correcta. Tienes 10 minutos para contestar la prueba. 1 La región del círculo comprendida entre dos radios se llama: a) Arco b) Diámetro c) Sector d) Corona 2 La parte de la circunferencia comprendida entre dos puntos se llama: a) Corona b) Diámetro c) Arco d) Sector 3 La longitud del ángulo inscrito correspondiente a un ángulo central de 80 es: a) 160 b) 80 c) 40 d) El ángulo central de un decágono regular mide: a) 90 b) 180 c) 75 d) 36 5 La diagonal de un cuadrado de lado 2 cm. mide: a) Raíz cuadrada de 8 b) 4 c) Raíz cuadrada de 2 d) 2'5 6 Si el lado de un cuadrado inscrito en una circunferencia es 2 cm. Cuánto mide el diámetro de la circunferencia? a) Raíz cuadrada de 2 b) 3'5 c) Raíz cuadrada de 2 d) 4 7 La suma de los ángulos de un rectángulos es: a) 720 b) 180 c) 90 d) 360 Página 59 de 120

13 8 El radio de una circunferencia mide 6 cm. Cuánto mide la diagonal del cuadrado inscrito en ella? a) 120 cm b) Raíz cuadrada de 6 c) 3 cm d) 12 cm 9 Dos circunferencias que se tocan en un solo punto común a ambas se dicen: a) Exteriores b) Secantes c) Tangentes d) Concéntricas 10 La medida de los ángulos interiores de un polígono regular de n-lados nos lo calcula la fórmula a) 180 (n-2) b) (n-2) c) (n-2)180 /n d) 360 /n Página 60 de 120

14 Prueba: Triángulos semejantes Instrucciones: Se te brindan parejas de triángulos semejantes para que determines la medida de un lado desconocido. Hint: utiliza proporciones. Tendrás 20 minutos para contestar la prueba. 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = Página 61 de 120

15 7 x = 8 x = 9 x = 10 x = Página 62 de 120

16 Prueba: Medida de ángulos internos en triángulos Instrucciones: Determina el valor de la variable y colócalo en el lugar provisto. Tendrás 20 minutos para contestar la prueba. Recuerda: la suma de los ángulos internos de un triángulo es de 180 grados. 1 x = 2 x = 3 x = 4 x = 5 x = Página 63 de 120

17 6 x = 7 x = 8 x = 9 x = 10 x = Página 64 de 120

18 11 x = 12 x = 13 x = 14 x = 15 x = Página 65 de 120

19 16 x = 17 x = 18 x = 19 x = 20 x = Página 66 de 120

20 Prueba: Triángulos especiales Instrucciones: Contesta haciendo uso del Teorema de Pitágoras y triángulos especiales y Tendrás 25 minutos para hacer la prueba. 1 x = 2 x = 3 x = 4 x = Página 67 de 120

21 5 x = 6 x = 7 x = 8 x = 9 x = Página 68 de 120

22 10 x = 11 x = 12 x = 13 x = 14 x = Página 69 de 120

23 15 x = 16 x = 17 x = 18 x = 19 x = Página 70 de 120

24 20 x = Página 71 de 120

25 Prueba: Circunferencia Instrucciones: Determina el valor de la circunferencia si conoces el radio. Escribe la contestación en el espacio provisto. Tienes 10 minutos para contestar la prueba. 1 Circunferencia = 2 x = 3 x = 4 x = 5 x = Página 72 de 120

26 Prueba: Clasificación de figuras geométricas Instrucciones: Identifica las figuras geométricas. 1 Figura es: a) Paralelogramo b) Hexágono c) Heptágono d) Pentágono 2 Figura es: a) Heptágono b) Octágono c) Pentágono d) Círculo 3 Figura es: a) Cuadrado b) Pentágono c) Octágono d) Hexágono 4 Figura es: a) Paralelogramo b) Rectángulo c) Heptágono d) Rombo 5 Figura es: a) Cuadrado b) Rombo c) Círculo d) Rectángulo Página 73 de 120

27 6 Figura es: a) Círculo b) Ovalo c) Rectángulo d) Triángulo 7 Figura es: a) Triángulo b) Círculo c) Hexágono d) Cuadrado 8 Figura es: a) Pentágono b) Rombo c) Cuadrado d) Rectángulo 9 Figura es: a) Triángulo b) Rectángulo c) Hexágono d) Círculo 10 Figura es: a) Heptágono b) Rectángulo c) Triángulo d) Círculo Página 74 de 120

28 Prueba: Área y Perímetro Instrucciones: Lee cuidadosamente todas las premisas, realiza los cálculos matemáticos y selecciona la contestación correcta. Tienes 10 minutos para contestar la prueba. 1 El área de un trapecio es de 64 cm 2 su altura es de 8 cm y el de su base mayor 12 cm. Cuánto mide su base menor? Respuesta. 2 Se quiere empastar un terreno rectangular que es 10 metros más largo que ancho y su perímetro es de 100 metros. Cuántos metros cuadrados de pasto necesitan comprar para empastarlo? a) 875 m 2 b) 120 m 2 c) 900 m 2 d) 600 m 2 3 Si el perímetro de un cuadrado es 36 cm más grande que uno de sus lados. Cuánto mide su área? a) 81 cm 2 b) 36 cm 2 c) 121 cm 2 d) 144 cm 2 4 Si un rectángulo tiene base 15 cm y área 105 cm 2. Cuánto mide su altura? a) 7 cm b) 10 cm c) 90 cm d) 15 cm 5 En un triángulo escaleno sus lados son números enteros consecutivos (por ejemplo 6, 7 y 8). Encuentra la medida del lado menor si su perímetro es de 87 cm. a) 30 cm b) 28 cm c) 21 cm d) 13 cm 6 Si el perímetro de un cuadrado mide 20 cm. Cuánto mide su área? a) 5 cm 2 b) 25 cm 2 c) 16 cm 2 d) 400 cm 2 7 Si el área de un triángulo es de 112 cm 2 y su base es de 14 cm, cuánto mide su altura? a) 16 cm b) 7 cm c) 8 cm d) 20 cm Página 75 de 120

29 8 El perímetro de un triángulo equilátero es 60 cm más grande que la medida de sus lados. Cuánto miden los lados de dicho triángulo? a) 15 cm b) 12.5 cm c) 30 cm d) 20 cm 9 Si el área de un cuadrado es 144 cm 2. Cuánto miden sus lados? a) 14 cm b) 17 cm c) 12 cm d) 36 cm 10 Si el perímetro de un rombo es de 48 cm, cuánto miden sus lados? Respuesta. Página 76 de 120

30 Prueba: Volumen Instrucciones: Calcula el volumen de los sólidos geométricos que aparecen a continuación. Tendrás 10 minutos para contestar la prueba. 1 Volumen = 2 Superficie = 3 Superficie = 4 Superficie = 5 Volumen = 6 Volumen = 7 Volumen = Página 77 de 120

31 8 Superficie = 9 Volumen = 10 Superficie = Página 78 de 120

32 Prueba: Transformaciones Instrucciones: Lee la premisa detenidamente y selecciona la alternativa correcta. Tendrás 10 minutos para contestar esta prueba. 1 Los cambios de tamaño se conocen como: a) Reflexión b) Traslación c) Rotación d) Homotecia 2 Una de las siguientes transformaciones resulta en figuras similares: a) Reflexión b) Rotación c) Traslación d) Homotecia 3 La transformación en la que todos los puntos tienen la misma dirección y distancia se conoce como: a) Rotación b) Traslación c) Giro d) Movimiento inverso 4 En un movimiento de rotación completo, en el eje exterior se traza: a) el eje central b) otra figura c) un círculo d) un triángulo 5 Una figura se refleja de acuerdo a su eje de rotación. a) Verdadero b) Falso 6 Existen solamente 3 tipos de transformaciones. a) Verdadero b) Falso 7 Si hay un giro, entonces debe haber: a) homotecia b) un segmento reflexivo c) una traslación d) un centro de rotación 8 En todas las transformaciones, el resultado es figuras congruentes. Respuesta: a) Verdadero b) Falso Página 79 de 120

33 9 La línea central entre la reflexión de dos figuras se conoce como: a) segmento reflexivo b) eje de rotación c) eje central d) espejo 10 En todas las transformaciones las figuras conservan las medidas de sus ángulos congruentes. Respuesta: a) Verdadero b) Falso Página 80 de 120

34 Posprueba Geometría Instrucciones: A continuación, podrás contestar la Posprueba del módulo. Los ejercicios están planteados en formato de selección múltiple, selecciona la contestación correcta. Dispondrás de 15 minutos para contestar. 1 En la Figura 1, C es punto medio del segmento AB. Cuánto mide el segmento AC? a) 2 b) 5 7 c) 2 1 d) 3 e) En un triángulo ABC, el ángulo C es recto. Si AB = 20 cm y CB = 16 cm, cuántos centímetros mide el segmento AC? a) 144 b) 12 c) 25 d) 4 e) 6 3 En la siguiente figura, el perímetro del triángulo RST es tres veces el largo de RS, cuánto mide RT? Nota: La figura no está hecha a escala a) 3 b) 5 c) 9 d) 8 e) 17 Página 81 de 120

35 4 El vértice de una parábola está en (4, 8). Si la parábola es trasladada 5 unidades hacia la derecha y 6 unidades hacia abajo. Cuál es la nueva coordenada del vértice? a) ( 1, 14) b) (9, 3) c) ( 2, 3) d) (9, 14) e) (10, 3) 5 Si un círculo tiene una circunferencia de 20π, entonces su área es: a) 40π b) 100π c) 20π d) 10π e) 200π 6 En la figura que se muestra abajo el área, en unidades cuadradas, de la región a) 25π b) 25π 24 c) 100π 24 d) 25π+24 e) 24 7 En la Figura 2 los triángulos ABC y DEF son semejantes. Cuánto mide el lado DF? a) b) c) 4 d) e) Página 82 de 120

36 8 En la siguiente figura, el cuadrado PQRS se divide en cuatro cuadrados iguales más pequeños. Si el área sombreada es igual a 3 centímetros cuadrados, cuántos centímetros cuadrados mide el área de PQRS? a) 1 b) 5 c) 6 d) 8 e) 7 9 Cuántos centímetros cuadrados mide el área de superficie del prisma que se muestra abajo? a) 134 b) 110 c) 24 d) 48 e) El área, en unidades cuadradas, del polígono que se muestra abajo es: a) 24 b) 144 c) 64 d) 120 e) 60 Página 83 de 120

37 11 En la siguiente figura, la medida en grados del ángulo x es igual a: a) 30 b) 15 c) 25 d) 60 e) En la figura de abajo, cuánto mide el ángulo a en grados? a) 83 b) 38 c) 59 d) 121 e) En la siguiente figura, cuál es el área del triángulo? a) 4 b) 8 c) 15 d) 7.5 e) 8.5 Página 84 de 120

38 14 En la siguiente figura, el triángulo PQR es equilátero. Cuál es el perímetro del triángulo PQS? a) 18 b) 25 c) 28 d) 19 e) Dos puntos en una línea horizontal tienen coordenadas (5,3) y (22, 3). Cuán largo es el segmento que conecta los dos puntos? a) 17 b) 27 c) 6 d) 17 e) 19 Página 85 de 120

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:

Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes: Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales. TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

SEMEJANZA Y PROPORCIONALIDAD

SEMEJANZA Y PROPORCIONALIDAD SEMEJANZA Y PROPORCIONALIDAD Teorema de Pitágoras En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. congruencia ( ) : Dos figuras son congruentes

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo

ENCUENTRO NÚMERO CINCO La circunferencia y el círculo MODULO III - GEOMETRIA ENCUENTRO NÚMERO CINCO La circunferencia y el círculo 24 DEAGOSTO DE 2014 MANAGUA FINANCIADO POR: FUNDACIÓN UNO 1 Circunferencia: Una circunferencia es una línea curva cerrada cuyos

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

PRIMER ENSAYO EXAMEN DE GEOMETRIA Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es:

PRIMER ENSAYO EXAMEN DE GEOMETRIA Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es: EJÉRITO E HILE OMNO E INSTITUTOS MILITRES cademia Politécnica Militar PRIMER ENSYO EXMEN E GEOMETRI 2005 1. Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es: a) 68cm b)

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede.

Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede. Unidad 1 Llendo a campar: D írculos 1 D-8. bajo está una mezcla de epresiones racionales. Haga la operación indicada simplifique su solución, si puede. 6 + 8 + 1 + 6 5 + 10 + 8 + + 5 ( + 1) d) + + 5 10

Más detalles

Introducción a la geometría

Introducción a la geometría Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

, calcule el área del triángulo ABN.

, calcule el área del triángulo ABN. Universidad Peruana de iencias plicadas (UP) Perímetros y Áreas ompuestas 1. alcule el área de un triángulo isósceles si el ángulo desigual mide 30º y los lados iguales miden 8m. 30º 8 m 8 m. alcule el

Más detalles

f(x) = sen x f(x) = cos x

f(x) = sen x f(x) = cos x www.matemáticagauss.com Trigonometría f(x) = sen x f(x) = cos x Función tangente f(x) = tan x Dominio: Ámbito: Periodo: Siempre crece 1 Prof. Orlando Bucknor Masís tel.: 9 9990 1) Un intervalo en el que

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

open green road Guía Matemática tutora: Jacky Moreno .co

open green road Guía Matemática tutora: Jacky Moreno .co Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

Geometría

Geometría Geometría Geometría www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2012 Contenido 1. Geometría 2 1.1. Definiciones....................................... 2 1.2. Postulados........................................

Más detalles

CIRCUNFERENCIA INTRODUCCION

CIRCUNFERENCIA INTRODUCCION CIRCUNFERENCIA INTRODUCCION Definición Sea O punto del plano ( P ) y r un real positivo, entonces se denomina circunferencia de centro O y radio r ( C ( O, r ) ), al conjunto formado por y sólo por los

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

Ejercicios Resueltos: Geometría Plana y del Espacio

Ejercicios Resueltos: Geometría Plana y del Espacio Ejercicios Resueltos: Geometría Plana y del Espacio 1. Determine el valor del ángulo en el triángulo de la figura: Ejercicios extraídos de pruebas parciales. Roberto Vásquez B. x x 4x x x 180º 1x 180º

Más detalles

Agudo Recto Obtuso Extendido Completo º 180º. Ángulos complementarios

Agudo Recto Obtuso Extendido Completo º 180º. Ángulos complementarios Definición Ángulo: Vértice: O Lados: OA y OB Clasificación Agudo Recto Obtuso Extendido Completo 0º 90º 90º 90º 80 º 360 º Posiciones relativas Ángulos consecutivos Ángulos adyacentes Ángulos complementarios

Más detalles

Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas.

Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Contenido Objetivos Recursos Total de hora s Polígono regular. Clasificación, elementos, áreas. Identifica las clasificacione s de los polígonos regulares Power Point: clasificación y elementos de los

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

Fundación Uno. 2x La gráfica que se muestra en la figura siguiente corresponde a la función:

Fundación Uno. 2x La gráfica que se muestra en la figura siguiente corresponde a la función: ENCUENTRO # 49 TEMA: Ángulos en Geometría Euclidiana. CONTENIDOS: 1. Introducción a Geometría Euclidiana. 2. Ángulos entre rectas paralelas y una transversal. 3. Ángulos en el triángulo y cuadriláteros.

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA

TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN CENTRO UNIVERSITARIO REGIONAL DE LA CEIBA COMITÉ NACIONAL DE OLIMPIADAS MATEMÁTICAS DE HONDURAS ACADEMIA TALENTOS MATEMÁTICOS DE ATLÁNTIDA TEOREMAS, POSTULADOS

Más detalles

A) 21 cm B) 18 cm C) 17 cm D) 15 cm E) 12 cm. A) 48 cm B) 32 cm C) 24 cm

A) 21 cm B) 18 cm C) 17 cm D) 15 cm E) 12 cm. A) 48 cm B) 32 cm C) 24 cm Geometría - 1 AEA Y PEIMETO 1.- ΔAB y ΔE son rectángulos congruentes. AB = 8 y B = 6. uánto mide AE? A) 10 E B) 12 ) 14 ) 16 E) 20 A B 2.- AB = B = a y A = AE. Entonces, BE mide: A) a 1 B) a 2 2 ) a( 2

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles