Unidad N 2. Medidas de dispersión

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad N 2. Medidas de dispersión"

Transcripción

1 Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos pueda diferir tato e la tedecia cetral como e la variació o puede darse el caso que dos series puede teer la misma tedecia cetral, pero diferir grademete e térmios de variació. Las medicioes de variació so la variaza, la desviació estádar y el coeficiete de variació. 2.1 La variaza Ua medició de variació comúmete usada que toma e cueta cómo se distribuye todos los valores e los datos es la variaza. Esta medició evalúa la forma e que los valores fluctúa alrededor de la media. Defiició de la variaza de muestra: La variaza de muestra es aproximadamete (o casi) el promedio de las diferecias cuadradas etre cada ua de las observacioes e ua serie de datos y la media. Así, para ua muestra que cotiee observacioes, X, X,..., X, la variaza de muestra (dada por el símbolo S 2 ) puede escribirse como _ (X l -X) 2 + (X 2 -X) (X -X) 2 S 2 = -1 Usado uestra otació de sumatoria, la formulació aterior puede expresarse de maera más simple como: 1

2 S 2 = Σ (Xi -X) 2 i = 1-1 dode _ X = media aritmética de muestra = tamaño de muestra X = iésimo valor de la variable aleatoria X Σ (X -X ) 2 = sumatoria de todas las-diferecias cuadradas i=1 etre los valores Xi y X Si el deomiador hubiera sido e lugar de -1, se hubiera obteido el promedio de las diferecias cuadradas alrededor de la media. Si embargo, -1 se usa aquí debido a ciertas propiedades matemáticas deseables que la estadística S 2 posee que la hace apropiada para la iferecia estadística. Si tamaño de muestra es grade, la divisió etre o -1 realmete o hace mucha diferecia. La variació de la població o Variaza Poblacioal está dada por el símbolo σ 2 x, la letra griega sigma, subídice x cuadrada, es decir: dode: N: tamaño de la població X i : iésimo valor de la variable aleatoria N 2

3 Σ (X i -µ x ) 2 : sumatoria de todas las diferecias etre los valores X i y µ x. i = 1 Σ X i Sumatoria de todos los valores X i de la població 2.2 Desviació Estádar Se dijo ateriormete que ua medició de variació comúmete usada que toma e cueta cómo se distribuye todos los valores e los datos es la variaza, a ella le sumamos la Desviació Estádar, ya que esta medició evalúa tambié la forma e que los valores fluctúa alrededor de la media. Defiició de la desviació estádar de muestra: La desviació estádar de muestra (dada por el símbolo S) es simplemete la raíz cuadrada de la variaza de muestra. Esto es: S = Σ (Xl -X) 2 i = 1-1 Cálculo de S 2 y de S: Para calcular la variaza 1) Obteemos la diferecia etre cada observació y la media 2) Elevamos al cuadrado cada diferecia 3) Sumamos los resultados cuadrados 4) Dividimos la sumatoria etre -1 Para calcular la desviació estádar simplemete tomamos la raíz cuadrada de la variaza. Para uestra muestra de seis establecimietos de cría de gaado caprio, los datos si procesar (e cabezas de gaado) so

4 _ y X = 617 cabezas La variaza de muestra se calcula como S 2 = Σ (Xi -X) 2 i = 1-1 = ( ) 2 + ( ) ( ) = y la desviació estádar se calcula como S = S 2 = es: La desviació estádar de la població está dado por el símbolo griego σ x. Esto Obteció de S 2 y de S: Puesto que e los cálculos ateriores elevamos al cuadrado las diferecias, i la variaza i la desviaci6 estádar puede ser egativas. La úica vez e que S 2 y S podría ser cero sería cuado o hubo variació algua e los datos, cuado cada observació de la muestra fuera exactamete igual. E este iusual caso el alcace tambié sería cero. 4

5 Pero los datos uméricos so iheretemete variables, o costates. Cualquier feómeo de iterés aleatorio que pudiéramos imagiar geeralmete toma ua variedad de valores. Lo que idica la variaza y la desviació estádar: La variaza y la desviació estádar mide la dispersió "promedio" alrededor de la media, es decir, cómo las observacioes mayores fluctúa por ecima de ésta y cómo las observacioes meores se distribuye por debajo de ésta. La variaza posee ciertas propiedades matemáticas útiles. Si embargo, su cálculo da como resultado uidades, cuadradas, miles de pesos cuadrados, pesos cuadrados, metros cuadrados, etc. Por lo tato, para u trabajo práctico, uestra pricipal medició de variació será la desviació estádar, cuyo valor está e las uidades origiales de los datos, miles de pesos, pesos, metros, etcétera. Por qué cuadramos las desviacioes: Las fórmulas para variaza desviació estádar o podría simplemete usar Σ (Xi-X) = i=1 como umerador, porque tal vez recuerde que la media actúa como u puto de equilibrio para observacioes mayores y meores que ésta. Por tato, la suma de las desviacioes alrededor de la media siempre es cero; es decir Σ (Xi-X) = 0 i=1 Para demostrar esto, refirámoos uevamete a los datos de las cabezas de gaado de los establecimietos 678,1199,408, 233, 224, 960: E cosecuecia, Σ (Xi-X) = ( ) + ( ) + ( ) + i=1 ( ) + ( ) + ( ) = 0 5

6 Como ya se observó tres de las observacioes so meores que la media y tres so mayores. Auque la suma de las seis desviacioes es cero, la suma de las desviacioes cuadradas os permite estudiar la variació e los datos. Por tato, usamos Σ (Xi-X) 2 = i=1 al calcular la variaza y la desviació estádar. E el proceso de elevació al cuadrado, las observacioes que está más allá de la media obtiee más peso que las observacioes que está más cerca de la media. Por tato, podemos geeralizar de la siguiete maera: 1) Mietras más propagados o dispersos esté los datos, mayor será la variaza y la desviació estádar. 2) Mietras más cocetrados u homogéeos sea los datos, meor será la variaza y la desviació estádar. 3) Si las observacioes so todas iguales (de tal forma que o hay variació e los datos), la variaza y la desviació estádar so todas cero. Uso de la desviació estádar: La regla empírica E la mayor parte de las series de datos, ua gra porció de las observacioes tiede a agruparse de algua maera cerca de la mediaa. E las series de datos sesgadas a la derecha este agrupamieto ocurre a la izquierda (es decir, debajo) de la mediaa y e series de datos sesgadas a la izquierda las observacioes tiede a agruparse a la derecha (es decir, arriba) de la mediaa. E series de datos simétricas, dode la mediaa y la media so iguales, las observacioes tiede a distribuirse igualmete alrededor de estas medicioes de tedecia cetral. Cuado el sesgado extremo o se preseta y tal agrupamieto se observa e ua serie de datos, podemos usar la deomiada regla empírica para examiar la propiedad de variabilidad de datos y obteer ua mejor idea de lo que la desviació estádar está midiedo. La regla empírica establece que e la mayoría de las series de datos ecotraremos que aproximadamete dos de cada tres observacioes (es decir, 67%) 6

7 está coteidas e ua distacia de ua desviació estádar alrededor de la media y aproximadamete 90 a 95% de las observacioes está coteidas e ua distacia de 2 desviacioes estádar alrededor de la media. Así pues, la desviació estádar, como ua medició de la variació promedio alrededor de la media, os ayuda a compreder cómo se distribuye las observacioes por ecima y por debajo de la media y os ayuda a efocar y señalar observacioes iusuales (es decir, exteras) al aalizar ua serie de datos uméricos. Uso de la desviació estádar: La regla de Bieaymé Chebyshev Hace más de u siglo, los matemáticos Bieriaymé y Chebyshev examiaro de maera idepediete la propiedad de variabilidad de los datos alrededor de la media. Ecotraro que, si importar cómo se distribuye ua serie de datos, el porcetaje de observacioes que está coteidas detro de las distacias de k desviacioes estádar alrededor de la media debe ser al meos: ( 1-1 )100% K 2 Por tato, para datos co cualquier forma: 1) Al meos [1- (1/2 2 ] 100% = 75.0% de las observacioes debe estar coteidas detro de distacias de ± 2 desviacioes estádar alrededor de la media. 2) Al meos [1- (1/3 2 ] 100% = 88.89% de las observacioes debe estar coteidas detro de distacias de ± 3 desviacioes estádar alrededor de la media. 3) Al meos [1- (1/4 2 ] 100% = 93.75% de las observacioes debe estar coteidas detro de distacias de ± 4 desviacioes estádar alrededor de la media. Auque la regla de Bieaymé-Chebyshev es geeral e aturaleza y se aplica a cualquier tipo de distribució de datos, se verá que si los datos forma la distribució ormal de "campaa"o gaussiaa, 68.26% de todas las observacioes estará 7

8 coteidas detro de distacias de ± 1 desviacioes estádar alrededor de la media, mietras que 95.44%, 99.73% y 99.99% de las observacioes estará icluidas, respectivamete, detro de distacias de ± 2, ± 3 y ± 4 desviacioes estádar alrededor de la media. Estos resultados se resume e la tabla siguiete: Tabla: Cómo varía los datos alrededor de la media. Porcetaje de observacioes coteidas etre la media y k desviacioes estádar basadas e Número de uidades de Regla de Bieaymé-Chebyshev Distribució Datos establecimietos desviacioes estádar k para cualquier distribució gaussiaa de gaado 1 No calculable Exacta 68.26% Exacta 64.4% 2 Al meos 75.00% Exacta 95.44% Exacta 96.7% 3 Al meos 88.89% Exacta 99.73% Exacta 100.0% 4 Al meos 93.75% Exacta 99.99% Exacta 100.0% Específicamete, si se supiera que u feómeo aleatorio particular sigue el patró de la distribució de campaa, como muchos lo hace, al meos aproximadamete, etoces se sabría exactamete qué ta probable es que cualquier observació particular estuviera cerca o lejos de su media. Por lo geeral, si embargo, para cualquier tipo de distribució, la regla de Bieaymé-Chebyshev os dice al meos qué ta posible debe ser que cualquier observació particular caiga detro de ua distacia dada alrededor de la media. De la tabla aterior recordar que para la població de 40 establecimietos de cría de gaado caprio, lo posesió media de los mismos es 617 cabezas y la desviació estádar, es Resulta importate destacar que auque los datos de los establecimietos está sesgados a la derecha e forma, los porcetajes de los establecimietos que cae detro de ua o más desviacioes estádar alrededir de 8

9 ua media o so muy distitos de lo que se esperaría si los datos se distribuyera como ua distribució gaussiaa de campaa, simétrica. El coeficiete de variació A diferecia de las medicioes previas que se ha mostrado, el coeficiete de variació es ua medició relativa de variació. Se expresa como u porcetaje ates que e térmios de las uidades de los datos pricipales. El coeficiete de variació, deotado por el símbolo CV, mide la dispersió e los datos relativa a la media. Puede calcularse mediate: CV = S. 100% X dode S = desviació estádar e ua serie de datos uméricos X = media aritmética e ua serie de datos uméricos Regresado a los datos de los establecimietos de cría de gaado caprio, e el caso de la muestra de 6 de ellos, el coeficiete de variació es CV = S. 100% = % = X 617 Es decir, para esta muestra el tamaño relativo de la propagació promedio alrededor de la media" co respecto a la media es %. 9

10 Como ua medició relativa, el coeficiete de variació es particularmete útil al comparar la variabilidad de dos o más series de datos que se expresa e distitas uidades de medició. El coeficiete de variació tambié es muy útil al comparar dos o más cojutos de datos que so medidos e las mismas uidades pero difiere hasta tal puto que ua comparació directa de las respectivas desviacioes estádar o es muy útil. Como ejemplo, supoga que u iversioista potecial estuviera cosiderado comprar accioes de valores e ua de dos compañías, A o B, que se eumera e la Bolsa de Valores de Bueos Aires. Si igua compañía ofreciera dividedos a sus accioistas y si ambas compañías estuviera igualmete calificadas (por diversos servicios de iversió) e térmios de crecimieto potecial, el iversioista potecial podría desear cosiderar la volatilidad (variabilidad) de los dos valores para ayudar e la decisió de iversió. Ahora supoga que cada acció de valores de la compañía A ha promediado $50 durate los meses pasados co ua desviació estádar de $10. Además, supoga que e ese mismo periodo, el precio por acció de los valores de la compañía B promedió $12 co ua desviació estádar de $4. E térmios de las desviacioes estádar reales, el precio de las accioes de la compañía A parece ser más volátil que el de las accioes de la compañía B. Si embargo, puesto que los precios promedio por acció de los dos valores so ta diferetes, sería más apropiado para el iversioista potecial cosiderar la variabilidad e el precio relativa al precio promedio co el fi de examiar la volatilidad/estabilidad de los dos valores. Para la compañía A el coeficiete de variació es CV = ($10/$50)100% = 20.0%; Para la compañía B el coeficiete de variació es CV= ($4/$12)100% = 33.3%. Por tato, e cuato a la media, el precio del valor B es mucho más variable que el precio del valor A. Forma: Asimetría y putiagudes Ua tercera propiedad importate de ua serie de datos es "forma, la maera e que los datos se distribuye. Ya sea que la distribució sea simétrica o que o lo sea. Si la distribució de los datos o es simétrica, se deomia simétrica o sesgada. Para describir la forma sólo ecesitamos comparar la media y la mediaa. Si estas dos medicioes so iguales, por lo geeral podemos cosiderar, que los datos 10

11 so simétricos (o de sesgo cero). Por otra parte, si la media excede la mediaa, los datos puede escribirse por lo comú como de sesgo positivo o sesgados a la derecha. Si la media es excedida por la mediaa, esos datos geeralmete puede llamarse de sesgo egativo o sesgados a la izquierda. Esto es, Media > Mediaa: sesgo positivo o derecho Media = Mediaa: simetría o de sesgo cero Media < Mediaa: sesgo egativo o izquierdo El sesgo positivo surge cuado la media se icremeta e alguos valores iusualmete altos; el sesgo egativo ocurre cuado la media se reduce e alguos valores extremos reales e ua direcció particular de forma tal que los valores bajos y altos se compesa etre sí. 11

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

3. Las medidas de centralización

3. Las medidas de centralización FUOC XP00/71004/00017 21 Las medidas de cetralizació 3. Las medidas de cetralizació La mediaa y la media aritmética Los diagramas de tallos y hojas y los histogramas proporcioa ua descripció geeral de

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

Figura 10. No se satisface el supuesto de linealidad.

Figura 10. No se satisface el supuesto de linealidad. Regresió Lieal Simple Dra. Diaa Kelmasky 04 Figura 8 Figura 9. No se satisface el supuesto de homoscedasticidad Si graficáramos los residuos cotra los valores de X los putos debería estar distribuidos

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

MEDIDAS DE DISTRIBUCION

MEDIDAS DE DISTRIBUCION MEDIDAS DE DISTRIBUCION ASIMETRIA Y CURTOSIS Dr. EDGAR APAZA ZUÑIGA UNIVERSIDAD NACIONAL DEL ALTIPLANO MEDIDAS DE DISTRIBUCIÓN Las Medidas de Distribució permite idetificar y caracterizar la forma e que

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

La Estadística y el Mejoramiento Genético

La Estadística y el Mejoramiento Genético La Estadística y el Mejoramieto Geético. Itroducció 2. Valores idividuales y parámetros poblacioales 3. La distribució ormal 4. La media 5. Variació Importacia Medidas: - Variaza - Desvío estádar 6. Covariació

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL I.E.S. Virge de la Paz. Alcobedas DEPARTAMETO DE MATEMÁTICAS Itroducció ESTADÍSTICA UIDIMESIOAL El ombre de Estadística alude al eorme iterés de esta rama matemática para los asutos del Estado y su itroducció

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Ley de Grandes Números y Teorema Central del

Ley de Grandes Números y Teorema Central del Ley de Grades Números y Teorema Cetral del Límite 25 de mayo de 2017 2 Capítulo 1 Ley de grades úmeros y Teorema cetral del límite 1.1. Sucesioes i.i.d. E el capítulo aterior cosideramos variables X 1,...,X

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Tema 1 Estadística descriptiva: Medidas de centralización y dispersión

Tema 1 Estadística descriptiva: Medidas de centralización y dispersión Tema 1 Estadística descriptiva: Medidas de cetralizació y dispersió Curso 2017/18 Grados e biología saitaria Departameto de Física y Matemáticas Marcos Marvá Ruiz A partir de los valores de ua variable

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla ETUDIO OBRE EL EXCEO DE AMPLITUD EN LA CONTRUCCIÓN DE INTERVALO DE CONFIANZA PARA LA MEDIA POBLACIONAL CON VARIANZA DECONOCIDA EN UNA POBLACIÓN NORMAL Luis Gozález Abril y Luis M. áchez-reyes {luisgo,

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra.

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra. Capítulo 6 Muestreo Estadístico E esta tema setaremos las bases del muestreo estadístico y estudiaremos las distribucioes de alguos estadísticos a partir de ua muestra. 6.1. Coceptos básicos Auque e el

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos Departameto de Matemáticas Guía Iducció Matemática Objetivos: Eteder el pricipio del bue orde Realizar demostracioes matemáticas por medio del pricipio de iducció matemática El pricipio del bue orde: iducció

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadísticos I Prof. Gudberto J. Leó R. I- 46 Medidas Descriptivas Numéricas Frecuetemete ua colecció de datos se puede reducir a ua o uas cuatas medidas uméricas secillas que resume

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

/ n 0 N / D(f) = {n N / n n 0 }

/ n 0 N / D(f) = {n N / n n 0 } Liceo Nº 10 016 SUCESIONES Primera defiició Ua sucesió de úmeros reales es ua fució cuyo domiio es el cojuto de los úmeros aturales (N) y cuyo recorrido está coteido e el cojuto de los úmeros reales (R).

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles