Unidad N 2. Medidas de dispersión

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad N 2. Medidas de dispersión"

Transcripción

1 Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos pueda diferir tato e la tedecia cetral como e la variació o puede darse el caso que dos series puede teer la misma tedecia cetral, pero diferir grademete e térmios de variació. Las medicioes de variació so la variaza, la desviació estádar y el coeficiete de variació. 2.1 La variaza Ua medició de variació comúmete usada que toma e cueta cómo se distribuye todos los valores e los datos es la variaza. Esta medició evalúa la forma e que los valores fluctúa alrededor de la media. Defiició de la variaza de muestra: La variaza de muestra es aproximadamete (o casi) el promedio de las diferecias cuadradas etre cada ua de las observacioes e ua serie de datos y la media. Así, para ua muestra que cotiee observacioes, X, X,..., X, la variaza de muestra (dada por el símbolo S 2 ) puede escribirse como _ (X l -X) 2 + (X 2 -X) (X -X) 2 S 2 = -1 Usado uestra otació de sumatoria, la formulació aterior puede expresarse de maera más simple como: 1

2 S 2 = Σ (Xi -X) 2 i = 1-1 dode _ X = media aritmética de muestra = tamaño de muestra X = iésimo valor de la variable aleatoria X Σ (X -X ) 2 = sumatoria de todas las-diferecias cuadradas i=1 etre los valores Xi y X Si el deomiador hubiera sido e lugar de -1, se hubiera obteido el promedio de las diferecias cuadradas alrededor de la media. Si embargo, -1 se usa aquí debido a ciertas propiedades matemáticas deseables que la estadística S 2 posee que la hace apropiada para la iferecia estadística. Si tamaño de muestra es grade, la divisió etre o -1 realmete o hace mucha diferecia. La variació de la població o Variaza Poblacioal está dada por el símbolo σ 2 x, la letra griega sigma, subídice x cuadrada, es decir: dode: N: tamaño de la població X i : iésimo valor de la variable aleatoria N 2

3 Σ (X i -µ x ) 2 : sumatoria de todas las diferecias etre los valores X i y µ x. i = 1 Σ X i Sumatoria de todos los valores X i de la població 2.2 Desviació Estádar Se dijo ateriormete que ua medició de variació comúmete usada que toma e cueta cómo se distribuye todos los valores e los datos es la variaza, a ella le sumamos la Desviació Estádar, ya que esta medició evalúa tambié la forma e que los valores fluctúa alrededor de la media. Defiició de la desviació estádar de muestra: La desviació estádar de muestra (dada por el símbolo S) es simplemete la raíz cuadrada de la variaza de muestra. Esto es: S = Σ (Xl -X) 2 i = 1-1 Cálculo de S 2 y de S: Para calcular la variaza 1) Obteemos la diferecia etre cada observació y la media 2) Elevamos al cuadrado cada diferecia 3) Sumamos los resultados cuadrados 4) Dividimos la sumatoria etre -1 Para calcular la desviació estádar simplemete tomamos la raíz cuadrada de la variaza. Para uestra muestra de seis establecimietos de cría de gaado caprio, los datos si procesar (e cabezas de gaado) so

4 _ y X = 617 cabezas La variaza de muestra se calcula como S 2 = Σ (Xi -X) 2 i = 1-1 = ( ) 2 + ( ) ( ) = y la desviació estádar se calcula como S = S 2 = es: La desviació estádar de la població está dado por el símbolo griego σ x. Esto Obteció de S 2 y de S: Puesto que e los cálculos ateriores elevamos al cuadrado las diferecias, i la variaza i la desviaci6 estádar puede ser egativas. La úica vez e que S 2 y S podría ser cero sería cuado o hubo variació algua e los datos, cuado cada observació de la muestra fuera exactamete igual. E este iusual caso el alcace tambié sería cero. 4

5 Pero los datos uméricos so iheretemete variables, o costates. Cualquier feómeo de iterés aleatorio que pudiéramos imagiar geeralmete toma ua variedad de valores. Lo que idica la variaza y la desviació estádar: La variaza y la desviació estádar mide la dispersió "promedio" alrededor de la media, es decir, cómo las observacioes mayores fluctúa por ecima de ésta y cómo las observacioes meores se distribuye por debajo de ésta. La variaza posee ciertas propiedades matemáticas útiles. Si embargo, su cálculo da como resultado uidades, cuadradas, miles de pesos cuadrados, pesos cuadrados, metros cuadrados, etc. Por lo tato, para u trabajo práctico, uestra pricipal medició de variació será la desviació estádar, cuyo valor está e las uidades origiales de los datos, miles de pesos, pesos, metros, etcétera. Por qué cuadramos las desviacioes: Las fórmulas para variaza desviació estádar o podría simplemete usar Σ (Xi-X) = i=1 como umerador, porque tal vez recuerde que la media actúa como u puto de equilibrio para observacioes mayores y meores que ésta. Por tato, la suma de las desviacioes alrededor de la media siempre es cero; es decir Σ (Xi-X) = 0 i=1 Para demostrar esto, refirámoos uevamete a los datos de las cabezas de gaado de los establecimietos 678,1199,408, 233, 224, 960: E cosecuecia, Σ (Xi-X) = ( ) + ( ) + ( ) + i=1 ( ) + ( ) + ( ) = 0 5

6 Como ya se observó tres de las observacioes so meores que la media y tres so mayores. Auque la suma de las seis desviacioes es cero, la suma de las desviacioes cuadradas os permite estudiar la variació e los datos. Por tato, usamos Σ (Xi-X) 2 = i=1 al calcular la variaza y la desviació estádar. E el proceso de elevació al cuadrado, las observacioes que está más allá de la media obtiee más peso que las observacioes que está más cerca de la media. Por tato, podemos geeralizar de la siguiete maera: 1) Mietras más propagados o dispersos esté los datos, mayor será la variaza y la desviació estádar. 2) Mietras más cocetrados u homogéeos sea los datos, meor será la variaza y la desviació estádar. 3) Si las observacioes so todas iguales (de tal forma que o hay variació e los datos), la variaza y la desviació estádar so todas cero. Uso de la desviació estádar: La regla empírica E la mayor parte de las series de datos, ua gra porció de las observacioes tiede a agruparse de algua maera cerca de la mediaa. E las series de datos sesgadas a la derecha este agrupamieto ocurre a la izquierda (es decir, debajo) de la mediaa y e series de datos sesgadas a la izquierda las observacioes tiede a agruparse a la derecha (es decir, arriba) de la mediaa. E series de datos simétricas, dode la mediaa y la media so iguales, las observacioes tiede a distribuirse igualmete alrededor de estas medicioes de tedecia cetral. Cuado el sesgado extremo o se preseta y tal agrupamieto se observa e ua serie de datos, podemos usar la deomiada regla empírica para examiar la propiedad de variabilidad de datos y obteer ua mejor idea de lo que la desviació estádar está midiedo. La regla empírica establece que e la mayoría de las series de datos ecotraremos que aproximadamete dos de cada tres observacioes (es decir, 67%) 6

7 está coteidas e ua distacia de ua desviació estádar alrededor de la media y aproximadamete 90 a 95% de las observacioes está coteidas e ua distacia de 2 desviacioes estádar alrededor de la media. Así pues, la desviació estádar, como ua medició de la variació promedio alrededor de la media, os ayuda a compreder cómo se distribuye las observacioes por ecima y por debajo de la media y os ayuda a efocar y señalar observacioes iusuales (es decir, exteras) al aalizar ua serie de datos uméricos. Uso de la desviació estádar: La regla de Bieaymé Chebyshev Hace más de u siglo, los matemáticos Bieriaymé y Chebyshev examiaro de maera idepediete la propiedad de variabilidad de los datos alrededor de la media. Ecotraro que, si importar cómo se distribuye ua serie de datos, el porcetaje de observacioes que está coteidas detro de las distacias de k desviacioes estádar alrededor de la media debe ser al meos: ( 1-1 )100% K 2 Por tato, para datos co cualquier forma: 1) Al meos [1- (1/2 2 ] 100% = 75.0% de las observacioes debe estar coteidas detro de distacias de ± 2 desviacioes estádar alrededor de la media. 2) Al meos [1- (1/3 2 ] 100% = 88.89% de las observacioes debe estar coteidas detro de distacias de ± 3 desviacioes estádar alrededor de la media. 3) Al meos [1- (1/4 2 ] 100% = 93.75% de las observacioes debe estar coteidas detro de distacias de ± 4 desviacioes estádar alrededor de la media. Auque la regla de Bieaymé-Chebyshev es geeral e aturaleza y se aplica a cualquier tipo de distribució de datos, se verá que si los datos forma la distribució ormal de "campaa"o gaussiaa, 68.26% de todas las observacioes estará 7

8 coteidas detro de distacias de ± 1 desviacioes estádar alrededor de la media, mietras que 95.44%, 99.73% y 99.99% de las observacioes estará icluidas, respectivamete, detro de distacias de ± 2, ± 3 y ± 4 desviacioes estádar alrededor de la media. Estos resultados se resume e la tabla siguiete: Tabla: Cómo varía los datos alrededor de la media. Porcetaje de observacioes coteidas etre la media y k desviacioes estádar basadas e Número de uidades de Regla de Bieaymé-Chebyshev Distribució Datos establecimietos desviacioes estádar k para cualquier distribució gaussiaa de gaado 1 No calculable Exacta 68.26% Exacta 64.4% 2 Al meos 75.00% Exacta 95.44% Exacta 96.7% 3 Al meos 88.89% Exacta 99.73% Exacta 100.0% 4 Al meos 93.75% Exacta 99.99% Exacta 100.0% Específicamete, si se supiera que u feómeo aleatorio particular sigue el patró de la distribució de campaa, como muchos lo hace, al meos aproximadamete, etoces se sabría exactamete qué ta probable es que cualquier observació particular estuviera cerca o lejos de su media. Por lo geeral, si embargo, para cualquier tipo de distribució, la regla de Bieaymé-Chebyshev os dice al meos qué ta posible debe ser que cualquier observació particular caiga detro de ua distacia dada alrededor de la media. De la tabla aterior recordar que para la població de 40 establecimietos de cría de gaado caprio, lo posesió media de los mismos es 617 cabezas y la desviació estádar, es Resulta importate destacar que auque los datos de los establecimietos está sesgados a la derecha e forma, los porcetajes de los establecimietos que cae detro de ua o más desviacioes estádar alrededir de 8

9 ua media o so muy distitos de lo que se esperaría si los datos se distribuyera como ua distribució gaussiaa de campaa, simétrica. El coeficiete de variació A diferecia de las medicioes previas que se ha mostrado, el coeficiete de variació es ua medició relativa de variació. Se expresa como u porcetaje ates que e térmios de las uidades de los datos pricipales. El coeficiete de variació, deotado por el símbolo CV, mide la dispersió e los datos relativa a la media. Puede calcularse mediate: CV = S. 100% X dode S = desviació estádar e ua serie de datos uméricos X = media aritmética e ua serie de datos uméricos Regresado a los datos de los establecimietos de cría de gaado caprio, e el caso de la muestra de 6 de ellos, el coeficiete de variació es CV = S. 100% = % = X 617 Es decir, para esta muestra el tamaño relativo de la propagació promedio alrededor de la media" co respecto a la media es %. 9

10 Como ua medició relativa, el coeficiete de variació es particularmete útil al comparar la variabilidad de dos o más series de datos que se expresa e distitas uidades de medició. El coeficiete de variació tambié es muy útil al comparar dos o más cojutos de datos que so medidos e las mismas uidades pero difiere hasta tal puto que ua comparació directa de las respectivas desviacioes estádar o es muy útil. Como ejemplo, supoga que u iversioista potecial estuviera cosiderado comprar accioes de valores e ua de dos compañías, A o B, que se eumera e la Bolsa de Valores de Bueos Aires. Si igua compañía ofreciera dividedos a sus accioistas y si ambas compañías estuviera igualmete calificadas (por diversos servicios de iversió) e térmios de crecimieto potecial, el iversioista potecial podría desear cosiderar la volatilidad (variabilidad) de los dos valores para ayudar e la decisió de iversió. Ahora supoga que cada acció de valores de la compañía A ha promediado $50 durate los meses pasados co ua desviació estádar de $10. Además, supoga que e ese mismo periodo, el precio por acció de los valores de la compañía B promedió $12 co ua desviació estádar de $4. E térmios de las desviacioes estádar reales, el precio de las accioes de la compañía A parece ser más volátil que el de las accioes de la compañía B. Si embargo, puesto que los precios promedio por acció de los dos valores so ta diferetes, sería más apropiado para el iversioista potecial cosiderar la variabilidad e el precio relativa al precio promedio co el fi de examiar la volatilidad/estabilidad de los dos valores. Para la compañía A el coeficiete de variació es CV = ($10/$50)100% = 20.0%; Para la compañía B el coeficiete de variació es CV= ($4/$12)100% = 33.3%. Por tato, e cuato a la media, el precio del valor B es mucho más variable que el precio del valor A. Forma: Asimetría y putiagudes Ua tercera propiedad importate de ua serie de datos es "forma, la maera e que los datos se distribuye. Ya sea que la distribució sea simétrica o que o lo sea. Si la distribució de los datos o es simétrica, se deomia simétrica o sesgada. Para describir la forma sólo ecesitamos comparar la media y la mediaa. Si estas dos medicioes so iguales, por lo geeral podemos cosiderar, que los datos 10

11 so simétricos (o de sesgo cero). Por otra parte, si la media excede la mediaa, los datos puede escribirse por lo comú como de sesgo positivo o sesgados a la derecha. Si la media es excedida por la mediaa, esos datos geeralmete puede llamarse de sesgo egativo o sesgados a la izquierda. Esto es, Media > Mediaa: sesgo positivo o derecho Media = Mediaa: simetría o de sesgo cero Media < Mediaa: sesgo egativo o izquierdo El sesgo positivo surge cuado la media se icremeta e alguos valores iusualmete altos; el sesgo egativo ocurre cuado la media se reduce e alguos valores extremos reales e ua direcció particular de forma tal que los valores bajos y altos se compesa etre sí. 11

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadísticos I Prof. Gudberto J. Leó R. I- 46 Medidas Descriptivas Numéricas Frecuetemete ua colecció de datos se puede reducir a ua o uas cuatas medidas uméricas secillas que resume

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill. GLOSARIO ESTADÍSTICO Fuete: Murray R. Spiegel, Estadística,, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio cietífico de los La estadística posee tres campos métodos para recoger, orgaizar,

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Tema 1. Estadística Descriptiva

Tema 1. Estadística Descriptiva Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 1 Estadística Descriptiva 1 Itroducció 1 2 Coceptos geerales 2 3 Distribucioes de frecuecias 3 4 Represetacioes

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

2.- Estudio Poblacional y Muestral Univariante

2.- Estudio Poblacional y Muestral Univariante .- Estudio Poblacioal y Muestral Uivariate Població: Colectivo de persoas o elemetos co ua característica comú, objeto de estudio. Imposibilidad de estudio de esta característica e toda la població - Coste

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente.

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente. º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA.- ESTADÍSTICA DESCRIPTIVA.- TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística : Es la ciecia que estudia cojutos de datos obteidos de la realidad. Estos datos

Más detalles

Técnicas experimentales de Física General 1/11

Técnicas experimentales de Física General 1/11 La distribució de Itroducció. Ejemplo. Defiició geeral de. Grados de libertad. reducido. La distribució de. Probabilidades de. Ejemplos: 1. Distribució de Poisso.. Bodad de u ajuste. Técicas eperimetales

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

Generalidades. Esta publicación presenta información de 95 estaciones meteorológicas activas en el 2014, manejadas por las siguientes entidades:

Generalidades. Esta publicación presenta información de 95 estaciones meteorológicas activas en el 2014, manejadas por las siguientes entidades: Geeralidades I. Defiició de meteorología Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

BIOESTADÍSTICA I 1. DEFINICIONES

BIOESTADÍSTICA I 1. DEFINICIONES BIOESTADÍSTICA I 1. DEFINICIONES 1.1 ESTADÍSTICA. Es ua disciplia, que hace parte de la matemática aplicada, que provee métodos y procedimietos para colectar, clasificar, resumir y aalizar iformació (datos)

Más detalles

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza.

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza. FCEyN - Estadística para Química do. cuat. 006 - Marta García Be Coceptos geerales de iferecia estadística. Estimació de parámetros. Itervalos de cofiaza. Iferecia estadística: Dijimos e la primera clase

Más detalles

Significado de la media y desviación estándar poblacional

Significado de la media y desviación estándar poblacional REV. OBSTET. GINECOL. - HOSP. SANTIAGO ORIENTE DR. LUIS TISNÉ BROUSSE 015; VOL 10 (1): 17-1 ARTÍCULO DE REVISIÓN Sigificado de la media y desviació estádar poblacioal Sócrates Aedo M 1, Gabriel Cavada

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse.

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse. ANEXO 1. MUESTREO Y TOLERANCIAS DE PRODUCTOS PREMEDIDOS 2. APLICACIÓN El presete reglameto se aplicará para la verificació de los coteidos etos de los productos promedios, etiquetados, co coteido omial

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

TEOREMA DE PITAGORAS

TEOREMA DE PITAGORAS TEOREMA DE PITAGORAS INTRODUCCION El Teorema de Pitágoras lleva este ombre porque su descubrimieto recae sobre la escuela pitagórica. Ateriormete, e Mesopotamia y el Atiguo Egipto se coocía teras de valores

Más detalles

Óptica geométrica Espejos y lentes

Óptica geométrica Espejos y lentes 0-03-04 U i v e r s i d a d C a t ó l i c a d e l N o r t e D e p a r t a m e t o d e E s e ñ a z a d e l a s C i e c i a s B á s i c a s. Óptica geométrica Espejos y letes Uidad. Óptica geométrica La

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

TEMA 1: Cruzamientos Mendelianos

TEMA 1: Cruzamientos Mendelianos TEM 1: Cruzamietos Medeliaos Compredidos y aalizados los pricipios fudametales que describe cada ua de las leyes Medeliaas; e el presete tema se aplicará los coceptos básicos abordados e el tema aterior

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO .- Itroducció: TEMA MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO Los aálisis estadísticos que se realiza e el mudo real tiee como objetivo estudiar las propiedades características de las poblacioes

Más detalles