MEDIDAS DE DISPERSION

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MEDIDAS DE DISPERSION"

Transcripción

1 MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada. La variación o diperión de un conjunto e reere a la variedad que exhiben la obervacione, i todo lo valore on iguale no hay diperión, i no todo lo valore on iguale exite diperión de lo dato. La diperión erá pequeña cuando lo valore etén próximo entre i y erá muy grande i lo valore e hayan ampliamente dieminado. La variabilidad de un conjunto puede medire a travé de la iguiente medida: Rango, Deviación media, Varianza, Deviación etándar y el Coeciente de variación, de eto lo ma uado on la varianza, deviación etándar y el coeciente de variación. RANGO El rango e también llamado recorrido o amplitud, e dene como la diferencia entre lo valore máximo y mínimo de un conjunto de obervacione, ya ea población o muetra, e repreenta por la letra R mayúcula y u ecuación e: R XN Xn Ejemplo: Un contructor para aegurare de la calidad de la obra tomo ei muetra de concreto y obtuvo lo iguiente reultado en reitencia en Kgr/cm: 358, 369, 363, 358, 336, 341. R En una ditribución de frecuencia la amplitud e dene como la diferencia entre el límite uperior de la última clae y el límite inferior de la primera clae. El Rango no olo e la medida de diperión má imple ino también la ma bruto, porque tiene lo defecto de er influenciada por un valor no uual en la muetra. No e una medida de variación de lo dato intermedio con relación al valor típico, e muy enible al tamaño de la muetra pue tiende a cambiar en forma no proporcional repecto a eta. Debido a u fácil cálculo e uada comúnmente en ingeniería y en informe médico. DESVIACION MEDIA Fue la medida de diperión ma uada hata ne del iglo XIX, cuando fue deplazada por otra medida de variación. Aun cuando haya caído en deuo e conveniente etudiarla debido a que facilita la comprenión de la deviación etándar. La deviación media e dene como la deviación media de la deviacione de lo dato de una variable con repecto a u media y e exprea en la mima unidade de la variable de que e trate, u modelo matemático e:

2 (Xi X) DM n Por ejemplo: Tenemo el conjunto 5, 10, 15, 0, 5, 30, 35, que tiene como media aritmética un valor igual a 0, tenemo la iguiente deviacione: Xi X d d 0 y DM 0 / 7 0 Obervemo que lo valore mayore que la media tienen deviacione poitiva y lo valore menore tienen deviacione negativa, aimimo que para ete cao la umatoria de la deviacione e igual a 0 y por tanto la deviación media e también igual a 0. Para calcular la Deviación media para dato reumido en una ditribución de frecuencia, la deviacione que e conideran on lo devío de la marca de clae repecto a la media aritmética y e utiliza la ecuación: Ejemplo: DM CLASES Mi d d TOTAL n DM

3 VARIANZA La varianza e la uma de lo cuadrado de lo devío de lo dato, entre el número total de obervacione meno uno, iendo u modelo matemático: ( Xi x ) Para dato donde e incluye el número de vece que el mimo e repite: ( Xi x ) El porque utilizar como divior n 1 e debido a que la varianza aí denida tiene mejore propiedade teórica. La varianza tiene una gran aplicación en análii etadítico avanzado pero que tiene el inconveniente de que u unidade on la mima que la variable al cuadrado. Para dato agrupado el modelo matemático para calcular la varianza e: ( mi x) n 1 DESVIACIÓN ESTANDAR La deviación etándar e por u propiedade algebraica la medida de diperión ma uada, también recibe el nombre de deviación típica. E la medida de diperión que trabaja con la mima unidade que la variable en cuetión. Para dato originale el modelo matemático e: Si e incluye el número de vece que el mimo valor e repite el modelo cambia a: O bien para dato agrupado:

4 ( mi x ) Ejemplo de calculo de varianza y deviación etándar para dato originale. Xi x d d Ejemplo: El tabular iguiente contiene lo alario de 80 empleado del Ingenio El Molino de Menchaca. Obtenga la varianza y la deviación etándar. CLASES mi d d , , , , ,31.80 TOTALES 80 9, , COEFICIENTE DE VARIACIÓN

5 El coeciente de variación e un índice exento de unidade expreado en porcentaje, irve para comparar ditribucione y aí determinar cual tiene má o meno variabilidad aun cuando la unidade ean diferente. El modelo matemático uado para determinar el coeciente de variación e: x ( 100 ) Ejemplo 1: Sea un conjunto con una media aritmética de y una deviación etándar igual a Calcule el coeciente de variación del conjunto ( 100 ).38% Ejemplo : Un conjunto de dato tiene una media aritmética de y una deviación etándar igual a 8. Calcule el coeciente de variación ( 100 ) 10.76% CALCULO DE LAS MEDIDAS DE VARIABILIDAD PARA DATOS NO AGRUPADOS. Si retomamo el ejemplo de lo empleado de la cadena de Motele Candida, que etudiaron un curo de primero auxilio, tenemo: Xi Xi x d d d *

6 ( Xi x) n x ( 100 ) ( 100 ) 11.5% CALCULO DE LAS MEDIDAS DE VARIABILIDAD PARA DATOS AGRUPADOS EN UNA TABLA DE DISTRIBUCION DE FRECUENCIAS. Lo dato correponden a la etatura de 150 alumno de la Ecuela Preparatoria No. en Santiago Ixcuintla, Nayarit en el periodo ecolar Con la información calcule la medida de variación. CLASES Mi mi x d d d * , , , , TOTAL 150 1, , x ,

7 ( 100 ) 5.6%

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES DISTRIBUCIOES BIDIMESIOALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIOES BIDIMESIOALES RESULTA DE ESTUDIAR FEÓMEOS E LOS QUE PARA CADA OBSERVACIÓ SE OBTIEE U PAR DE MEDIDAS Y, E COSECUECIA,

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

Segmento: Sustituye a: --- Procedimiento para el cálculo de la Garantía Inicial. Se detalla el cálculo de la Garantía Inicial.

Segmento: Sustituye a: --- Procedimiento para el cálculo de la Garantía Inicial. Se detalla el cálculo de la Garantía Inicial. Número: Segmento: C-IRS-04/2015 IRS Circular Fecha: 30 de julio de 2015 Fecha entrada en vigor: 30 de noviembre de 2015 Sutituye a: --- Aunto Procedimiento para el cálculo de la Garantía Inicial. Reumen

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO)

MEDIDAS DE CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN. Matemáticas PAI 5 (4ºESO) CENTRALIZACIÓN, POSICIÓN Y DISPERSIÓN Matemáticas PAI 5 (4ºESO) Ejercicio 2 Actividad de aula 3 Medidas estadísticas Recupera la tabla de frecuencias que realizaste en el ejercicio 2 de la actividad de

Más detalles

Unidad Nº 3. Medidas de Dispersión

Unidad Nº 3. Medidas de Dispersión Unidad Nº 3 Medidas de Dispersión 1.-Definición.- Las medidas de tendencia central nos enseñaban a localizar el centro de la información en una serie de observaciones o distribución, pero no a realizar

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

Medidas de centralización

Medidas de centralización 1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese

Más detalles

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1.

REFRACTARIOS Y HORNOS ///// Problemas de combustibles. Combustión -----------------// HOJA 1. REFRACTARIOS Y HORNOS ///// Problema de combutible. Combutión -----------------// HOJA 1. P1.- Un combutible que contiene un 80 % de butano y un 20 % de propano, e quema con un 20 % de exceo del aire teórico

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Líneas de Espera: Teoría de Colas. Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro

Líneas de Espera: Teoría de Colas. Curso Métodos Cuantitativos Prof. Lic. Gabriel Leandro ínea de Epera: Teoría de Cola Curo Método Cuantitativo Prof. ic. Gabriel eandro a cola a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Medidas descriptivas I. Medidas de tendencia central A. La moda

Medidas descriptivas I. Medidas de tendencia central A. La moda Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Y accedemos al cuadro de diálogo Descriptivos

Y accedemos al cuadro de diálogo Descriptivos SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859

SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann. Noviembre, 1859 SOBRE EL NÚMERO DE NÚMEROS PRIMOS MENORES QUE UNA MAGNITUD DADA. Bernhard Riemann Noviembre, 859 No creo poder exprear mejor mi agradecimiento por la ditinción que la Academia me ha hecho al nombrarme

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

Z i

Z i Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda

Más detalles

DETERMINACIÓN DEL COMPORTAMIENTO DE LAS POBLACIONES DE PECES E INVERTEBRADOS MEDIANTE LA VARIACIÓN DE CAUDALES A TRAVÉS UNA SIMULACIÓN EN SIMULINK

DETERMINACIÓN DEL COMPORTAMIENTO DE LAS POBLACIONES DE PECES E INVERTEBRADOS MEDIANTE LA VARIACIÓN DE CAUDALES A TRAVÉS UNA SIMULACIÓN EN SIMULINK DETERMINACIÓN DEL COMPORTAMIENTO DE LA POBLACIONE DE PECE E INERTEBRADO MEDIANTE LA ARIACIÓN DE CAUDALE A TRAÉ UNA IMULACIÓN EN IMULINK ÁREA TEMÁTICA: ECOHIDRÁULICA MODALIDAD DE PREENTACIÓN: PREENTACIÓN

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Son valores numéricos que localizan e informan sobre los valores medios de una serie o conjunto de datos, se les considera como indicadores debido a que resumen la información

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

Revista Dugandia, Ciencias Básicas, Uniatlántico Volumen 1, No. 1, Enero-Junio 2005

Revista Dugandia, Ciencias Básicas, Uniatlántico Volumen 1, No. 1, Enero-Junio 2005 TAMAÑO DE MUESTRA PARA POBLACIONES MULTINOMIALES EN MUESTREO BIETÁPICO Svetlana Ivanovna Rudnykh. Departamento de Fíica Univeridad del Atlántico Km 7 antigua vía a Puerto Colombia, A.A. 1890, Barranquilla,

Más detalles

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL

LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Etructura de Materiale Compueto Reitencia de lámina Ing. Gatón Bonet - Ing. Critian Bottero - Ing. Marco ontana Introducción Etructura de Materiale Compueto - Reitencia de lámina La lámina de compueto

Más detalles

La desviación típica y otras medidas de dispersión

La desviación típica y otras medidas de dispersión La desviación típica y otras medidas de dispersión DISPERSIÓN O VARIACIÓN La dispersión o variación de los datos intenta dar una idea de cuan esparcidos se encuentran éstos. Hay varias medidas de tal dispersión,

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

CAPITULO IV Teoría del Portafolio

CAPITULO IV Teoría del Portafolio 4 Teoría de l C O N T E N I D O 1. Concepto Báico 1.1.Selección de Cartera 1.2.Cartera Eficiente (Frontera Eficiente) 1.3.Pao en la Selección de Cartera 2. Razone para la Diverificación 3. Medida del Riego

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

REGRESIÓN Y CORRELACIÓN Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

REGRESIÓN Y CORRELACIÓN Métodos Estadísticos Aplicados a las Auditorías Sociolaborales REGRESIÓN CORRELACIÓN Método Etadítico Aplicado a la Auditoría Sociolaborale Francico Álvarez González http://www.uca.e/erv/fag/fct/ francico.alvarez@uca.e DISTRIBUCIONES BIVARIANTES El etudio de la relación

Más detalles

S s. S s. focaclipart.net23.net focaclipart.wordpress.com. actiludis.com

S s. S s. focaclipart.net23.net focaclipart.wordpress.com. actiludis.com actiludi.com focaclipart.wordpre.com MÉTODO DE LECTO ECRITUR CTILUDI NOT: Ete método e autoría de Joé Miguel de la Roa ánchez y etá bajo licencia Creative Common BY-NC-.0. De ete método e pueden hacer

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tendencia central Medidas de tendencia central Medidas de Posición: son aquellos valores numéricos que nos permiten o bien dar alguna medida de tendencia central, dividiendo el recorrido de

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

Serie Documentos Especiales

Serie Documentos Especiales Serie Documento Epeciale Nº 168 ENCUESTA DE SATISFACCIÓN DE USUARIOS DE LAS COLONIAS MUNICIPALES DE VERANO 2009 Septiembre 2009 Í N D I C E Página 1. CONCLUSIONES... 1 2. CUADROS DE RESULTADOS... 2 FICHA

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

Problemas Primera Sesión

Problemas Primera Sesión roblema rimera Seión 1. Demuetra que ax + by) ax + by para cualequiera x, y R y cualequiera a, b R con a + b = 1, a, b 0. n qué cao e da la igualdad? Solución 1. Nótee que ax + by ax + by) = a1 a)x + b1

Más detalles

Tema VI: Referencias de tensión y reguladores de tensión.

Tema VI: Referencias de tensión y reguladores de tensión. ESUELA ÉNA SUPEO DE NGENEOS NDUSALES Y DE ELEOMUNAÓN UNESDAD DE ANABA NSUMENAÓN ELEÓNA DE OMUNAONES (5º uro ngeniería de elecomunicación) ema : eferencia de tenión y reguladore de tenión. Joé María Drake

Más detalles

LEY DE GAUSS. A v. figura 5.1

LEY DE GAUSS. A v. figura 5.1 LY D GAUSS 5.1 INTRODUCCION. l campo eléctrico producido por objeto cargado etático puede obtenere por do procedimiento equivalente: mediante la ley de Coulomb o mediante la ley de Gau, ley debida a Karl

Más detalles

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central.

GRUPO A GRUPO B Total = 225 Total = 250. Medidas de tendencia central. Medidas de dispersión o variabilidad Tema 5 Profesor Tevni Grajales G. A dos grupos diferentes de estudiantes se les preguntó cuánto deseaban pagar como cuotas de graduación. En ambos casos el promedio

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Tema 9: Tasas y números índices

Tema 9: Tasas y números índices Estadística I Universidad de Salamanca Curso 2010/2011 Outline Tasas de variación 1 Tasas de variación 2 3 Índice de precios al consumo: IPC 4 Tasas de variación Definición Las tasas de variación son instrumentos

Más detalles

CAPITULO 3: DIFERENCIACIÓN

CAPITULO 3: DIFERENCIACIÓN CAPITULO 3: DIFERENCIACIÓN 3.1 Cociente de la diferencia En mucho cao, e de interé la taa de cambio en la variable dependiente de una función cuando hay un cambio en la variable independiente. Por ejemplo,

Más detalles

Universidad de Panamá. Centro Regional Universitario de Bocas del Toro

Universidad de Panamá. Centro Regional Universitario de Bocas del Toro Univeridad de Panamá Centro Regional Univeritario de Boca del Toro SISTEMAS DE MEDIDAS Dede la antigüedad el er humano ha utilizado la unidade de medida para realizar comparacione entre magnitude. Báicamente,

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN

Descripción Diagramas de bloques originales CONMUTATIVA PARA LA SUMA. Diagramas de bloques equivalentes MOVIMIENTO A LA IZQUIERDA DE UN Decripción Diagrama de bloue originale ONMUTATIVA AA A SUMA Diagrama de bloue euivalente 8 MOVIMIENTO A A IZUIEDA DE UN UNTO DE BIFUAIÓN DISTIBUTIVA A A SUMA 9 MOVIMIENTO A A DEEA DE UN UNTO DE BIFUAIÓN

Más detalles

PROBLEMAS VISUALES DE FÍSICA PVF13-1**. Contracción de vena líquida

PROBLEMAS VISUALES DE FÍSICA PVF13-1**. Contracción de vena líquida PROBLEMAS VISUALES DE FÍSICA PVF3-**. Contracción de vena líquida Fotografía La fotografía repreenta la trayectoria eguida por el agua que ale en dirección orizontal con una velocidad v o. La regla ituada

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

2. Cálculo de las pérdidas de carga localizadas.

2. Cálculo de las pérdidas de carga localizadas. Cátedra de Ineniería Rural Ecuela Unieritaria de Ineniería Técnica Arícola de Ciudad Real Tema 8. Pérdida de cara localizada o accidentale. Introducción y concepto. Cálculo de la pérdida de cara localizada

Más detalles

Medidas de tendencia central y dispersión

Medidas de tendencia central y dispersión Estadística Aplicada a la Investigación en Salud Medwave. Año XI, No. 3, Marzo 2011. Open Access, Creative Commons. Medidas de tendencia central y dispersión Autor: Fernando Quevedo Ricardi (1) Filiación:

Más detalles

UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión

UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión UNIDAD 4: MEDIDAS DESCRIPTIVAS: Medidas de dispersión Para el desarrollo de este capítulo, vaya revisando conjuntamente con esta guía el capítulo 3 del texto básico, págs. 71 86 y capítulo 4 en las páginas

Más detalles

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.

M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana. Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u

Más detalles

Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel:

Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel: Ejemplos solo con datos cuantitativos o numéricos: Medidas de centralización Para datos a granel: Considere una muestra de notas de un alumno en la asignatura de matemática: Notas 4.5 3.5 6.7 4.6 5.3 4.8

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

UNIDAD 7 Medidas de dispersión

UNIDAD 7 Medidas de dispersión UNIDAD 7 Medidas de dispersión UNIDAD 7 MEDIDAS DE DISPERSIÓN Al calcular un promedio, por ejemplo la media aritmética no sabemos su representatividad para ese conjunto de datos. La información suministrada

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

AMPLIFICADORES CLASE E

AMPLIFICADORES CLASE E AMPIFICADORES CASE E GUÍA DE ABORATORIO Nº 6 Profeor: Ing. Aníbal aquidara. J.T.P.: Ing. Iidoro Pablo Perez. Ay. Diplomado: Ing. Carlo Díaz. Ay. Diplomado: Ing. Alejandro Giordana Ay. Alumno: Sr. Nicolá

Más detalles

El rango de un conjunto de números es la diferencia entre el número mayor y el menor del conjunto.

El rango de un conjunto de números es la diferencia entre el número mayor y el menor del conjunto. La desviación estándar y otras medidas de dispersión CAPÍTULO 4 DISPERSIO O VARIACIO La dispersión o variación de los datos es el grado en que los datos numéricos tienden a esparcirse alrededor de un valor

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE TENDENCIA CENTRAL Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

Estadística I. Presentación de casos N 2

Estadística I. Presentación de casos N 2 Presentación de casos N 2 1. Dados los siguientes datos : 12 3 4 4 10 12 14 09 16 12 8 14 5 17 12 Calcule la Desviación Media Calcule la Desviación Típica o Estándar Calcule la Varianza Si todos los datos

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

DINÁMICA FCA 04 ANDALUCÍA

DINÁMICA FCA 04 ANDALUCÍA 1. Se deja caer un cuerpo de 0,5 kg dede lo alto de una rapa de, inclinada 30º con la horizontal, iendo el valor de la fuerza de rozaiento entre el cuerpo y la rapa de 0,8 N. Deterine: a) El trabajo realizado

Más detalles

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO

INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO Cronograma actividades grado 0 Periodo lectivo: CUARTO Año lectivo 206 DOCENTE RESPONSABLE: Subleyman Ivonne Usman Narváez Asignatura: Estadística SEMANA No. 2 FECHA TEMA ACTIVIDAD 2 6 DE SEPTIEMBRE RECOMENDACIONES

Más detalles

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas:

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: Ejercicio 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: a) Marca de los coches. b) Peso de los coches. c) Número de coches vendidos

Más detalles

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo

U.D.1: Análisis estadístico de una variable Consideraciones iniciales: Propuesta: 1.1 Distribución de frecuencias. Variables Cualitativas: Ejemplo U.D.1: Análisis estadístico de una variable Consideraciones iniciales: - Población: Es el conjunto de todos los elementos que cumplen una determinada característica. Ej.: Alumnos del colegio. - Individuo:

Más detalles

3ra OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA 18va OLIMPIADA BOLIVIANA DE FISICA 2da Etapa (Examen Simultáneo) 6to de Primaria

3ra OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA 18va OLIMPIADA BOLIVIANA DE FISICA 2da Etapa (Examen Simultáneo) 6to de Primaria 18va OLIMPIADA BOLIVIANA DE FISICA da Etapa (Examen Simultáneo) 6to de Primaria NO ESCRIBA NINGUN DATO PERSONAL EN LAS HOJAS DE EXAMEN SOLO EN EL ESPACIO HABILITADO EN LA PARTE INFERIOR Cada pregunta vale

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Guía para maestro. Medidas de dispersión. Guía para el maestro. Compartir Saberes

Guía para maestro. Medidas de dispersión. Guía para el maestro.  Compartir Saberes Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com bperalta@colegioscompartir.org Determinan si la media de la distribución de los datos es

Más detalles

FORMULARIO. Rango intercuartílico: Diferencia entre el tercer y primer cuartil

FORMULARIO. Rango intercuartílico: Diferencia entre el tercer y primer cuartil FORMULARIO Dato: x 1, x 2,..., x N } Media: x = N i=1 x i N Rango intercuartílico: Diferencia entre el tercer y primer cuartil Varianza: 2 = N i=1 (x i x) 2 = N i=1 x2 i N x2 Deviación típica: = N i=1

Más detalles

EJERCICIOS Tema 5 La información que recibimos

EJERCICIOS Tema 5 La información que recibimos EJERCICIOS Tema 5 La información que recibimos 1.- Califica las siguientes preguntas como abiertas o cerradas: a) Elige un lugar para tomar un baño: Playa - Piscina b) Indica que color o colores del arco

Más detalles