La abeja tampoco rehuye la informática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La abeja tampoco rehuye la informática"

Transcripción

1 La abeja tampoco rehuye la informática Dra. Pilar Carrión n Pardo Universidad de Vigo Escuela Superior de Ingeniería Informática Coloquios Abiertos 1

2 Qué queremos hacer? Tipo de polen Sistema de Visión por Computador Tarjeta de de Calidad 2

3 Sistema de clasificación del polen apícola? Rubus Pelotilla a clasificar Cytisus Castanea... 3

4 Colaboradores Universidad de Vigo Grupo de Palinología Aplicada y Viticultura (Facultad de Ciencias). Grupo Sistemas Informáticos III (Escuela Superior de Ingeniería Informática). Financiación Xunta de Galicia. "Estudio de la selección cotidiana de plantas poliníferas en apis meliferal e influencia del contenido proteico del pollenkitt y textura de la pelotilla curbicular". 4

5 Cómo actuar? (Método científico) Conocimiento del problema a resolver. Conocimiento de las propuestas existentes en el mundo. Diseño de las hipótesis de experimentación. Desarrollo de modelos matemáticos. Evaluación del sistema propuesto. 5

6 El polen apícola El polen apícola es un producto elaborado por las abejas. Rubus Cytisus Castanea 6

7 Importancia Producto comercial apreciado por: Complemento alimenticio. Fines terapéuticos. En cosmética. Posible fuente de aminoácidos y ácidos grasos esenciales. Su composición química se debe a su procedencia floral. Su origen floral será diferente en función de la vegetación del lugar en el que estén situadas las colmenas. 7

8 Elaboración Cada especie de planta produce granos de polen específicos en su forma, color, tamaño, estructura, simetría, polaridad, sistema apertural y propiedades químicas. Vernonia Citrus Senecio Pseudobombax Acacia 8

9 Elaboración Las abejas confeccionan pelotillas con polen de una única especie de planta (fidelidad de la abeja a la especie de planta). Diferentes abejas de una misma colmena, en el mismo periodo de tiempo, llevan a la colmena pelotillas de polen monoespecíficas de especies de plantas distintas. Producto final = Conjunto de pelotillas diversas 9

10 Identificación del origen floral Se necesita determinar el origen floral de los diferentes granos de polen agregados en forma de pelotillas, así como la cantidad relativa de polen de cada especie de planta. METODOS TRADICIONALES: Análisis a microscopía óptica. De preparaciones de granos de polen. Método fiable, pero requiere tiempo y personal especializado. Análisis colorimétrico. Identificación por color de pelotillas de polen. Método poco preciso y requiere personal cualificado. MÉTODO PROPUESTO: Identificación de la clase de planta de procedencia de los granos de polen por la textura de las pelotillas monoespecíficas. 10

11 Hipótesis Identificar el origen floral del polen apícola a partir de la textura de la superficie de las pelotillas de polen. Las pelotillas de polen son monoespecíficas. La morfología del grano de polen es característica de cada especie. 11

12 Hipótesis Ceanothus Sphraeraleca Polygonella Callirhoe Granos de polen: Forma, Tamaño y Ornamentación distinta. Helianthus 12

13 Aplicación a la Palinología No existen aproximaciones computacionales al análisis del polen apícola. Identificación de granos de polen (utilizando microscopía óptica o electrónica). 13

14 Sistema de reconocimiento de patrones en imágenes 14

15 Adquisición de las imágenes 15

16 Muestras de pelotillas de polen Cytisus Quercus Raphanus Eficiencia. Imágenes en niveles de grises 16

17 Muestras de pelotillas de polen Rubus Castanea 17

18 Problemas encontrados (1) Zonas desenfocadas en la imagen 18

19 Problemas encontrados (2) Tonalidad dependiente del sistema de procesado del polen y adquisición de la imagen Cytisus de Viana Cytisus de Pontevedra 19

20 Sistema de clasificación del polen apícola Preprocesamiento Imagen digital de pelotilla de polen Normalización Reconocimiento de de regiones enfocadas Generación de de características de de textura Género de la pelotilla de polen Diseño Diseño del del clasificador Selección de de características Clasificador 20

21 Normalización de imágenes Proceso de recolección del polen. Diferencias en la iluminación en la adquisición de las imágenes. Influencia en la intensidad del nivel de gris de la imagen Creencia: la estructura espacial de la imagen se mantiene. Función de normalización f out (x, y) = f in (x, y) E µ Media Energía 21

22 Normalización de imágenes Normalización 22

23 Reconocimiento de regiones enfocadas Definición de métricas basadas en: entropía de la imagen, bordes o frecuencias espaciales altas. Cuarto Momento Estadístico (CME). Regiones con valores más altos de CME representarán a zonas más enfocadas. Estimador de la Agudeza de los Bordes (EAB). Cálculo de la varianza sobre una imagen de puntos de borde (operador Sobel). Estimador de las Frecuencias Espaciales Altas (EFEA). Es una medida de la fortaleza de las altas frecuencias. 23

24 Reconocimiento de regiones enfocadas Procedimiento de extracción de regiones enfocadas: Recorrido de la imagen Se seleccionan regiones de NxN píxeles (N=256). Para cada ROI calcular la métrica correspondiente (CME, EAB, EFEA). Selección de las ROIs que alcanzan los valores más altos para las métricas. 24

25 Etapa de preprocesado CME EAB EFEA 25

26 Extracción de características X1 1.5 X X3 3.3 X X1 1.4 X X3 3.2 X X1 2 X X3 3.2 X X1 3.2 X2 9.7 X3 0.5 X

27 Extracción de características Caracterizar la superficie de la pelotilla de polen apícola TEXTURA Aproximaciones clásicas Estadísticas Estadísticos de primer orden (11 características) Matriz de co-ocurrencia de niveles de grises (7 características) Matriz de dependencias en un vecindario (5 características) Matriz de hileras de niveles de gris (5 características) De filtrado Análisis multirresolución utilizando ondículas (wavelets) Esquema de filtrado multiescalar 27

28 Extracción de características Esquema de filtrado multiescalar * Máscaras de filtrado Convolución Árbol de Canales Filtrados (FCT) Diagrama de versiones filtradas de la imagen Nivel i, L=2i+3 (i=0,1,2,... L=3,5,7,9,...) Características: Estadísticos de primer orden calculados sobre cada nodo del árbol (varianza, energía, entropía, tercer y cuarto momento estadístico). 28

29 Extracción de características Esquema de filtrado multiescalar Vectores de características: Estadísticos para los canales filtrados de un nivel del árbol. Primer nivel: 9 imágenes x 5 estadísticos = 45 características Un estadístico calculado sobre todos los canales filtrados de todos los niveles. 3 niveles: imágenes x 1 estadístico= 70 características Formar vectores con alguna fórmula de hibridación de las dos anteriores. 29

30 Selección de características Escalar Máxima sensibilidad individual (MSI) Factor de discriminación de Fisher (FDR) Vectorial Método de búsqueda flotante (FSM) Global Análisis de componentes principales (PCA) 30

31 Clasificador 98% X1 1.5 X X3 3.3 X X1 1.4 X X3 3.2 X % 0,5% X1 2 X X3 3.2 X X1 3.2 X2 9.7 X3 0.5 X

32 Diseño del clasificador Lineales Clasificadores de mínima distancia (MDC). Distancia Euclídea. Distancia de Mahalanobis. Clasificador k-nn (KNN). No Lineales Redes neuronales (Perceptron Multicapa, MLP). Máquinas de Soporte Vectorial (SVM). 32

33 Validación Cruzada Evaluación del sistema Conjunto de entrenamiento Cálculo % acierto sobre el conjunto test 1 pelotilla para test N-1 pelotillas para entrenar N veces Ideal: porcentaje de acierto del 100% 33

34 Base de imágenes Colmenas Géneros Marcón Lobios Viana Totales Castanea Cytisus Quercus Castanea Raphanus Cytisus Castaño Rubus Totales Quercus Raphanus Rubus Retama Roble Rábano Zarza 34

35 Etapas Experimentales Imagen digital bolita polen Preprocesamiento Preprocesamiento Generación Generación de de características características de de textura textura Clasificación Clasificación Género de la bolita de polen Estudio de viabilidad Extracción de características Etapa de preprocesado Etapa de clasificación 35

36 Estudio de viabilidad Cytisus y Rubus Marcón y Viana 80 Generación de Ene_O, de Preprocesado Ent_O, Var_O, TM_O, CM_O (4 nodos*4niveles=16) características Estad_nivel_i_O (i=1,2,3,4) (5 estadísticos*4 de de textura nodos=20) Estad_O (5 estadísticos *16 nodos=80) Daubechies 20 Estadísticos Métrica CME de Primer Orden (EPO) (11) Coeficientes de Haralick (CH) (7) Coeficientes a partir de la matriz de dependencia de niveles de grises en vecindarios (NGLDS) (5) Coeficientes a partir de la matriz de longitudes de hileras de niveles de grises (GLRLS) (5) Filtrados basados en ondículas (Mallat) Características Estadísticas (CE) (28) 36

37 Estudio de viabilidad Generación de de características de de textura Selección de de características Análisis de componentes principales (PCA) Máxima Sensibilidad Individual (MSI) Factor de Discriminación de Fisher (FDR) Método de Búsqueda Flotante (FSM) Validación cruzada Clasificador de mínima distancia (MDC) Distancia de Mahalanobis 37

38 Estudio de viabilidad CH 38 GLRLS CE Ene_O Ent_O Var_O TM_O CM_O Estad_nivel_1_O Estad_nivel_2_O Estad_nivel_3_O Estad_nivel_4_O Estad_O Vectores de características de textura PCA MIS FDR FSM NGLDS EPO Porcentaje de acierto (%)

39 Estudio de viabilidad EPO CH NGLDS GLRLS CE Ondículas PCA MIS FDR FSM Sensibilidad 80% Rubus 90% Cytisus 70% 39

40 Etapa de clasificación Cytisus, Rubus, Castanea, Quercus y Raphanus (Lobios, Viana y Pontevedra) 260 muestras Selección de de características Diseño Diseño del del clasificador Clasificador Clasificador de Mínima Distancia (CMD) Clasificador K-NN Red Neuronal (MLP) Máquinas de Soporte Vectorial (SVM) 40

41 Etapa de clasificación Estadísticos Ondículas TM_FCT Ene_FCT FCT_niv_i Var_FCT CM_FCT Ent_FCT MDC KNN MLP SVM Métrica EAB 41

42 Etapa de clasificación Porcentaje de acierto (%) EPO MDC KNN MLP SVM EPO CH NGLDS GLRLS CE Estad_O FCT_niv_ FCT_niv_ FCT_niv_ Var_FCT TM_FCT CM_FCT Ene_FCT Ent_FCT CH NGLDS GLRLS CE Estad_O FCT_niv_0 FCT_niv_1 FCT_niv_2 Var_FCT TM_FCT CM_FCT Ene_FCT Ent_FCT MDC KNN MLP SVM Vectores de características de textura 42

43 Etapa de clasificación Clase Clase Observada Real Cytisus Rubus Castanea Quercus Raphanus Cytisus 83,4 13,3 3,3 0 0 Rubus 21,7 78, Castanea 1,7 1,7 85 8,3 3,3 Quercus 2,5 2,5 7, ,5 Raphanus

44 Evaluación del sistema Primer estudio científico de la aplicación de la visión por computador a la clasificación del polen apícola. Clasificación correcta del 81% con los 5 géneros de plantas cuyo polen es más abundante en el polen apícola de Galicia y tres lugares geográficos de procedencia (EAB +FCT+SVM). La metodología propuesta presenta un comportamiento uniforme con todas las clases. Estos resultados presentan gran interés por su posible aplicación sistemática en la determinación del origen geográfico del polen apícola. 44

45 Líneas futuras La incorporación sobre el color, morfología y tamaño de las pelotillas de polen pueden ayudar a construir un espacio de características donde la separabilidad entre las clases sea mayor. 45

46 La abeja tampoco rehuye la informática Gracias por la asistencia Pilar Carrión 46

LÍNEAS DE INVESTIGACIÓN: Redes neuronales (I)

LÍNEAS DE INVESTIGACIÓN: Redes neuronales (I) LÍNEAS DE INVESTIGACIÓN: Redes neuronales (I) Objetivo: Usar técnicas neuronales para resolver problemas: * Modelado de sistemas mediante aprendizaje automático a partir de ejemplos * No se conoce ningún

Más detalles

CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS

CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS CAPÍTULO 3 RED NEURONAL PARA EL RECONOCIMIENTO DE ROSTROS Descripción de la base de datos Como datos de entrenamiento, en este proyecto, se utilizó la base de datos ORL [1], la cual contiene un conjunto

Más detalles

ES 2 432 479 A2 ESPAÑA 11. Número de publicación: 2 432 479. Número de solicitud: 201200635 G06K 1/00 (2006.01) G06K 1/00 01.06.

ES 2 432 479 A2 ESPAÑA 11. Número de publicación: 2 432 479. Número de solicitud: 201200635 G06K 1/00 (2006.01) G06K 1/00 01.06. 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 2 432 479 Número de solicitud: 201200635 51 Int. CI.: G06K 1/00 (2006.01) G06K 1/00 (2006.01) 12 SOLICITUD DE PATENTE A2 22

Más detalles

Texturas. Descripción y aplicaciones

Texturas. Descripción y aplicaciones Texturas Descripciónyaplicaciones Motivación Segmentación de texturas. Clasificación de texturas. Síntesis de texturas. Extracción de características. Reconocimiento de patrones. Reconocimiento de objetos.

Más detalles

MC ENRIQUE MARTINEZ PEÑA. Maestría en Ingeniería. Introducción al PDI Representación de la imagen Operaciones básicas con imágenes

MC ENRIQUE MARTINEZ PEÑA. Maestría en Ingeniería. Introducción al PDI Representación de la imagen Operaciones básicas con imágenes Maestría en Ingeniería Procesamiento Digital de Imágenes Contenido Introducción al PDI Representación de la imagen Operaciones básicas con imágenes 2 1 Inteligencia artificial La inteligencia artificial

Más detalles

SISTEMA DE VISION ARTIFICIAL PARA RECONOCIMIENTO DE OBJETOS APLICADO A UN BRAZO ROBÓTICO

SISTEMA DE VISION ARTIFICIAL PARA RECONOCIMIENTO DE OBJETOS APLICADO A UN BRAZO ROBÓTICO PROCESAMIENTO DIGITAL DE IMÁGENES Dr. Johnson Garzón SISTEMA DE VISION ARTIFICIAL PARA RECONOCIMIENTO DE OBJETOS APLICADO A UN BRAZO ROBÓTICO Realizado por : Carlos Pillajo Introducción En este proyecto,

Más detalles

Academia de Ingeniería XVII Coloquio de Ingreso 26 de Marzo de 2015 Palacio de Minería de la Ciudad de México

Academia de Ingeniería XVII Coloquio de Ingreso 26 de Marzo de 2015 Palacio de Minería de la Ciudad de México Academia de Ingeniería XVII Coloquio de Ingreso 26 de Marzo de 2015 Palacio de Minería de la Ciudad de México Tecnología FPGA para el monitoreo y diagnóstico de fallas en maquinaria industrial Dr. Universidad

Más detalles

Control de calidad en mieles

Control de calidad en mieles Control de calidad en mieles Qué medir? Por Antonio G. Pajuelo El control de calidad en las mieles es una necesidad ineludible: quien pone un producto alimenticio en el mercado es responsable de su composición.

Más detalles

Capítulo III Procesamiento Digital de Imágenes

Capítulo III Procesamiento Digital de Imágenes Capítulo III Procesamiento Digital de Imágenes Contenido Introducción al Procesamiento digital de imágenes Orígenes del procesamiento digital de imágenes. Aplicaciones del Procesamiento de Imágenes Componentes

Más detalles

Detección de perfiles de liderazgo en Sistemas Colaborativos Soportados por Computadoras

Detección de perfiles de liderazgo en Sistemas Colaborativos Soportados por Computadoras Detección de perfiles de liderazgo en Sistemas Colaborativos Soportados por Computadoras María Florencia Bugarini Directora: Dra. Silvia Schiaffino Codirector: Mg. Patricio García UNICEN Abril 2011 Motivación

Más detalles

Trabajo Final de Reconocimiento de Patrones: Identifiación utilizando PCA, ICA y LDA.

Trabajo Final de Reconocimiento de Patrones: Identifiación utilizando PCA, ICA y LDA. Trabajo Final de Reconocimiento de Patrones: Identifiación utilizando PCA, ICA y LDA. Mauricio Delbracio, Matías Mateu 8 de marzo de 2006 Resumen En este documento, se presenta los resultados del trabajo

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

Tema 7. Introducción al reconocimiento de objetos

Tema 7. Introducción al reconocimiento de objetos Tema 7. Introducción al reconocimiento de objetos En resumen, un sistema de reconocimiento de patrones completo consiste en: Un sensor que recoge las observaciones a clasificar. Un sistema de extracción

Más detalles

Detección de bordes: metodos lineales de cálculo de gradientesk, etc. Detección de bordes. Métodos basados en operadores lineales de gradiente

Detección de bordes: metodos lineales de cálculo de gradientesk, etc. Detección de bordes. Métodos basados en operadores lineales de gradiente Detección de bordes Métodos basados en operadores lineales de gradiente 1 Bordes Variaciones fuertes de la intensidad que corresponden a las fronteras de los objetos visualizados Métodos basados en el

Más detalles

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Introducción La visión artificial, también conocida como visión por computador

Más detalles

Que el estudiante sepa aplicar las principales técnicas que sirven para resaltar características en imágenes

Que el estudiante sepa aplicar las principales técnicas que sirven para resaltar características en imágenes 1 Facultad: Ingeniería. Escuela: Biomédica Asignatura: Imágenes Médicas Realce de Características Objetivos Que el estudiante sepa aplicar las principales técnicas que sirven para resaltar características

Más detalles

Enfoque propuesto para la detección del humo de señales de video.

Enfoque propuesto para la detección del humo de señales de video. Capítulo 3 Enfoque propuesto para la detección del humo de señales de video. 3.1 Comportamiento del enfoque propuesto. Una visión general del método propuesto se muestra en la figura 2. El método genera

Más detalles

Qué es una imágen digital?

Qué es una imágen digital? Qué es una imágen digital? Una imagen digital es una fotografía, un dibujo, un trabajo artístico o cualquier otra imagen que es convertida en un fichero de ordenador. Qué es una imágen digital? Una imagen

Más detalles

Términos Generales Algorithms, Documentation, Human Factors, Languages.

Términos Generales Algorithms, Documentation, Human Factors, Languages. Reconocimiento Óptico de Caracteres (OCR) Carlos Javier Sánchez Fernández Ingeniería de telecomunicaciones Universidad Carlos III Av. De la Universidad, 30 28911 Leganés (Madrid) cjsanchez@tsc.uc3m.es

Más detalles

Fundamentos de la Visión Artificial. Prof. Dr. Francisco Gómez Rodríguez Prof. Manuel J. Domínguez Morales 1

Fundamentos de la Visión Artificial. Prof. Dr. Francisco Gómez Rodríguez Prof. Manuel J. Domínguez Morales 1 Fundamentos de la Visión Artificial Prof. Dr. Francisco Gómez Rodríguez Prof. Manuel J. Domínguez Morales 1 Índice 1. Introducción a lavisión Artificial 2. Adquisición y representación de imágenes 3. Filtrado

Más detalles

Mapas Autoorganizados

Mapas Autoorganizados Mapas Autoorganizados 1 Mapas Autoorganizados S.O.M (Self organized Maps) Mapas de características similar a la organización topológica de la corteza cerebral. Kohonen :dada una estructura y una descripción

Más detalles

EL PROCESO DE DESARROLLO DE SOFTWARE: UNA TAREA SOCIAL DE MEJORA CONTINUA

EL PROCESO DE DESARROLLO DE SOFTWARE: UNA TAREA SOCIAL DE MEJORA CONTINUA EL PROCESO DE DESARROLLO DE SOFTWARE: UNA TAREA SOCIAL DE MEJORA CONTINUA Dra. Pilar Gómez Gil Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE). Coordinación de Ciencias Computacionales

Más detalles

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales Elkin García, Germán Mancera, Jorge Pacheco Presentación Los autores han desarrollado un método de clasificación de música a

Más detalles

MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER

MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER MEJORA DE LA IMAGEN EN EL DOMINIO DE LA FRECUENCIA: TRANSFORMADA DE FOURIER M.C. CAROLINA ROCÍO SÁNCHEZ PÉREZ 01 DE ABRIL DE 2011 Operaciones en el dominio de la frecuencia Una imagen digital es una representación

Más detalles

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Álvaro J. Méndez Services Engagement Manager IBM SPSS / Profesor Econometría UAM Jecas, 22 Oct 2010 Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Business Analytics software Agenda Minería

Más detalles

Una investigación australiana reveló que posiblemente la disminución

Una investigación australiana reveló que posiblemente la disminución CIENTÍFICOS TRABAJAN EN DETECCIÓN DE CÁNCER DE MAMA A TRAVÉS DE REDES NEURONALES ARTIFICIALES Constituye un apoyo para el médico y los radiólogos para evitar falsos diagnósticos Fernando Álvarez Una investigación

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

FILTRADO DE IMÁGENES

FILTRADO DE IMÁGENES FILTRADO DE IMÁGENES 1 INDICE RUIDO Qué es el ruido? Tipos de ruido TECNICAS DE FILTRADO EN DOMINIO ESPACIAL Promediado de imágenes Filtros de orden Filtros de medias DOMINIO FRECUENCIAL FUNCIONES EN MATLAB

Más detalles

PI121-06 DIFERENCIACIÓN VISUAL DE NIÑOS Y ADULTOS A PARTIR DE IMÁGENES FACIALES RICARDO ALBERTO SUÁREZ FUENTES

PI121-06 DIFERENCIACIÓN VISUAL DE NIÑOS Y ADULTOS A PARTIR DE IMÁGENES FACIALES RICARDO ALBERTO SUÁREZ FUENTES PI121-06 DIFERENCIACIÓN VISUAL DE NIÑOS Y ADULTOS A PARTIR DE IMÁGENES FACIALES RICARDO ALBERTO SUÁREZ FUENTES PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE INGENIERÍA MAESTRÍA EN INGENIERÍA DE SISTEMAS

Más detalles

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del 33 En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del sistema de procesamiento de imágenes para controlar un robot manipulador y se describen en la forma como serán

Más detalles

Redes Neuronales Celulares Aplicadas al Procesamiento de Imágenes Presenta: Luis Eduardo Morán López

Redes Neuronales Celulares Aplicadas al Procesamiento de Imágenes Presenta: Luis Eduardo Morán López Redes Neuronales Celulares Aplicadas al Procesamiento de Imágenes Presenta: Luis Eduardo Morán López Universidad de Colima Diplomado para la Actualización del profesorado I. Introducción Las Redes Neuronales

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE 1. Introducción 2. Etapas 3. Caso práctico Análisis de dependencias introducción varias relaciones una relación 1 variable dependiente > 1 variable dependiente

Más detalles

PROGRAMA DE ESTUDIO. Horas de Práctica

PROGRAMA DE ESTUDIO. Horas de Práctica PROGRAMA DE ESTUDIO Nombre de la asignatura: MODELADO Y SIMULACIÓN DE PROCESOS Clave: IQM12 Ciclo Formativo: Básico ( ) Profesional (X) Especializado ( ) Fecha de elaboración: 7 DE MARZO DE 2015 Horas

Más detalles

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Francisco J. Martín Mateos Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Qué es la (KE)? Definición de Wikipedia: La es una disciplina cuyo objetivo es integrar conocimiento

Más detalles

Reconocimiento de imágenes

Reconocimiento de imágenes Capítulo 4 Reconocimiento de imágenes En la actualidad, el reconocimiento de imágenes es una herramienta de gran utilidad en el área de control y automatización. Varias empresas usan el reconocimiento

Más detalles

Tema 4:Segmentación de imágenes

Tema 4:Segmentación de imágenes Tema 4:Segmentación de imágenes La segmentación de imágenes divide la imagen en sus partes constituyentes hasta un nivel de subdivisión en el que se aíslen las regiones u objetos de interés. Los algoritmos

Más detalles

ASIGNATURA DE GRADO: VISIÓN ARTIFICIAL

ASIGNATURA DE GRADO: VISIÓN ARTIFICIAL ASIGNATURA DE GRADO: VISIÓN ARTIFICIAL Curso 2015/2016 (Código:71014046) 1.PRESENTACIÓN DE LA ASIGNATURA Esta asignatura pretende ofrecer al alumno una panorámica del problema de la percepción visual a

Más detalles

Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones.

Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones. Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones. 2.1 Revisión sistema reconocimiento caracteres [9]: Un sistema de reconocimiento típicamente esta conformado por

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS MATERIA: CARTOGRAFÍA Y GEODESIA CODIGO: 10651 CARRERA: INGENIERÍA GEOGRÁFICA Y DESARROLLO SUSTENTABLE, CON MENCIÓN EN ORDENAMIENTO TERRITORIAL. NIVEL: PRIMERO No. CRÉDITOS: CINCO

Más detalles

Taxonomía de los principales temas de I A Por: Luis Guillermo Restrepo Rivas

Taxonomía de los principales temas de I A Por: Luis Guillermo Restrepo Rivas Taxonomía de los principales temas de I A Por: Luis Guillermo Restrepo Rivas 1. DEFINICIONES, UBICACIÓN CONCEPTUAL E HISTORIA DE LA I.A. 2. COMPLEJIDAD COMPUTACIONAL, EXPLOSIÓN COMBINATORIA, DOMINIOS NO

Más detalles

Operaciones Morfológicas en Imágenes Binarias

Operaciones Morfológicas en Imágenes Binarias Operaciones Morfológicas en Imágenes Binarias Introducción La morfología matemática es una herramienta muy utilizada en el procesamiento de i- mágenes. Las operaciones morfológicas pueden simplificar los

Más detalles

TIMSS 11.2 DESCRIPCIÓN DE LO EVALUADO EN LOS DOMINIOS DE CONTENIDO MATEMÁTICA Números Incluye la comprensión del proceso de contar, de las maneras de representar los números, de las relaciones entre éstos

Más detalles

8 PROCESAMIENTO DIGITAL DE IMÁGENES USANDO MATLAB & SIMULINK RA-MA

8 PROCESAMIENTO DIGITAL DE IMÁGENES USANDO MATLAB & SIMULINK RA-MA ÍNDICE PRÓLOGO...19 CAPÍTULO 1. INTRODUCCIÓN...25 1.1 SISTEMA DE VISIÓN Y PROCESAMIENTO DE IMÁGENES...25 1.2 PROCESAMIENTO DIGITAL DE IMÁGENES...26 1.3 RELACIONES BÁSICAS ENTRE PÍXELES...27 1.3.1 Vecinos

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2.

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. 1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. GENERALIDADES SOBRE LAS TÉCNICAS DE INVESTIGACIÓN SOCIAL Y DE MERCADOS

Más detalles

Competencias Tecnológicas Adicionales (CTA) Competencias del Módulo de Formación Específica de Trabajo Fin de Grado (CTG)

Competencias Tecnológicas Adicionales (CTA) Competencias del Módulo de Formación Específica de Trabajo Fin de Grado (CTG) COMPETENCIAS A continuación se detallan las competencias, organizadas por grupos de acuerdo a la siguiente nomenclatura: - Competencias básicas o generales (CBG) - Competencias específicas del Título:

Más detalles

Tema 3. MODELOS. 2.1 Apoyo Informático a la investigación experimental. 2.2 Modelos del cerebro: A. Realistas biológicos.

Tema 3. MODELOS. 2.1 Apoyo Informático a la investigación experimental. 2.2 Modelos del cerebro: A. Realistas biológicos. Tema 3. MODELOS 011 0 01 01 FUNDAMENTOS 1. Modelos computacionales. 2. Computación y Neurociencia. CONTENIDOS 2.1 Apoyo Informático a la investigación experimental. 2.2 Modelos del cerebro: A. Realistas

Más detalles

MÁQUINA DE VECTORES DE SOPORTE

MÁQUINA DE VECTORES DE SOPORTE MÁQUINA DE VECTORES DE SOPORTE La teoría de las (SVM por su nombre en inglés Support Vector Machine) fue desarrollada por Vapnik basado en la idea de minimización del riesgo estructural (SRM). Algunas

Más detalles

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS PARTE III OBTENCIÓN DE MODELOS 1. INFORMACIÓN SOBRE EL SISTEMA 1. EL PROPIO SISTEMA (OBSERVACIÓN, TEST) 2. CONOCIMIENTO TEÓRICO (LEYES DE LA NATURALEZA, EXPERTOS, LITERATURA, ETC.)

Más detalles

REDES NEURONALES APLICADAS AL ANÁLISIS DE IMÁGENES PARA EL DESARROLLO DE UN PROTOTIPO DE UN SISTEMA DE SEGURIDAD GABRIEL FELIPE JARAMILLO GONZÁLEZ

REDES NEURONALES APLICADAS AL ANÁLISIS DE IMÁGENES PARA EL DESARROLLO DE UN PROTOTIPO DE UN SISTEMA DE SEGURIDAD GABRIEL FELIPE JARAMILLO GONZÁLEZ REDES NEURONALES APLICADAS AL ANÁLISIS DE IMÁGENES PARA EL DESARROLLO DE UN PROTOTIPO DE UN SISTEMA DE SEGURIDAD GABRIEL FELIPE JARAMILLO GONZÁLEZ UNIVERSIDAD TECNOLÓGICA DE PEREIRA PROGRAMA DE INGENIERÍA

Más detalles

Práctica 2 - Procesamiento de Imágenes

Práctica 2 - Procesamiento de Imágenes Práctica 2 - Procesamiento de Imágenes En esta práctica veremos diferentes técnicas de tratamiento que suelen ser aplicadas a las imágenes obtenidas desde satélites. Muchos de los procedimientos que aprendamos

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Sistemas Conexionistas

Sistemas Conexionistas 1 Objetivo Sistemas Conexionistas Curso 2011/2012 El objetivo de esta práctica es usar un conjunto de redes de neuronas artificiales para abordar un problema de reconocimiento de figuras sencillas en imágenes

Más detalles

Acerca del Libro. Información básica. Título: Visión Artificial y Procesamiento Digital de Imágenes usando Matlab Autor: Iván Danilo García Santillán

Acerca del Libro. Información básica. Título: Visión Artificial y Procesamiento Digital de Imágenes usando Matlab Autor: Iván Danilo García Santillán Acerca del Libro Información básica Título: Visión Artificial y Procesamiento Digital de Imágenes usando Matlab Autor: Iván Danilo García Santillán ISBN: 978-9942-01-790-1. 8 capítulos. 133 páginas. Ibarra

Más detalles

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II BASE DE DATOS Comenzar presentación Base de datos Una base de datos (BD) o banco de datos es un conjunto

Más detalles

UNIVERSIDAD DE ALMERÍA ESCUELA SUPERIOR DE INGENIERÍA TITULACIÓN DE INGENIERÍA TÉCNICA AGRÍCOLA ESPECIALIDAD MECANIZACIÓN Y CONSTRUCCIONES RURALES

UNIVERSIDAD DE ALMERÍA ESCUELA SUPERIOR DE INGENIERÍA TITULACIÓN DE INGENIERÍA TÉCNICA AGRÍCOLA ESPECIALIDAD MECANIZACIÓN Y CONSTRUCCIONES RURALES UNIVERSIDAD DE ALMERÍA ESCUELA SUPERIOR DE INGENIERÍA TITULACIÓN DE INGENIERÍA TÉCNICA AGRÍCOLA ESPECIALIDAD MECANIZACIÓN Y CONSTRUCCIONES RURALES OPTIMIZACIÓN DE LA CLASIFICACIÓN SUPERVISADA BASADA EN

Más detalles

RECONOCIMIENTO E IDENTIFICACIÓN DE LOGOTIPOS EN IMÁGENES CON TRANSFORMADA SIFT

RECONOCIMIENTO E IDENTIFICACIÓN DE LOGOTIPOS EN IMÁGENES CON TRANSFORMADA SIFT UNIVERSIDAD CARLOS III DE MADRID ESCUELA POLITÉCNICA SUPERIOR INGENIERÍA TÉCNICA DE TELECOMUNICACIÓN (ESPECIALIDAD EN SONIDO E IMAGEN) PROYECTO FIN DE CARRERA RECONOCIMIENTO E IDENTIFICACIÓN DE LOGOTIPOS

Más detalles

CAPÍTULO 2 PROCESAMIENTO DIGITAL DE IMÁGENES

CAPÍTULO 2 PROCESAMIENTO DIGITAL DE IMÁGENES CAPÍTULO PROCESAMIENTO DIGITAL DE IMÁGENES En este capítulo se presentan de manera breve, una explicación de la visión, las imágenes digitales y como son capturadas por medios electrónicos, el campo encargado

Más detalles

INFORME TÉCNICO DE MATERIALES Y COLOR DE LA FACHADA

INFORME TÉCNICO DE MATERIALES Y COLOR DE LA FACHADA INFORME TÉCNICO DE MATERIALES Y COLOR DE LA FACHADA El estudio de color y materiales de los distintos elementos arquitectónicos que configuran las fachadas del edificio se aborda desde la perspectiva de

Más detalles

PLAN DE ESTUDIOS. Grado en Ingeniería en Tecnologías Industriales PRIMER CURSO SEGUNDO CURSO TERCER CURSO CUARTO CURSO SEMESTRE 1 SEMESTRE 5

PLAN DE ESTUDIOS. Grado en Ingeniería en Tecnologías Industriales PRIMER CURSO SEGUNDO CURSO TERCER CURSO CUARTO CURSO SEMESTRE 1 SEMESTRE 5 PRIMER CURSO SEGUNDO CURSO TERCER CURSO CUARTO CURSO SEMESTRE 1 SEMESTRE 3 SEMESTRE 5 SEMESTRE 7 Álgebra Lineal Cálculo Física I Informática Química Ciencia e Ingeniería de Materiales Ingeniería Eléctrica

Más detalles

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Septiembre de 2005

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Septiembre de 2005 Filtrado Espacial Introducción El filtrado espacial es la operación que se aplica a una imagen para resaltar o atenuar detalles espaciales con el fin de mejorar la interpretación visual o facilitar un

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS

INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS INSTITUTO MATEMÁTICO Y ACTUARIAL MEXICANO DIPLOMADO EN MINERÍA DE DATOS Por qué es importante la Minería de Datos? 2 La Minería de Datos es un proceso que permite obtener conocimiento a partir de los datos

Más detalles

U IVERSIDAD DE EXTREMADURA. Proyecto Fin de Carrera

U IVERSIDAD DE EXTREMADURA. Proyecto Fin de Carrera U IVERSIDAD DE EXTREMADURA Escuela Politécnica Ingeniería Informática Proyecto Fin de Carrera Caracterización de imágenes hiperespectrales utilizando Support Vector Machines y técnicas de extracción de

Más detalles

CAPITULO III MARCO METODOLÓGICO. La presente investigación plantea como objetivo el diseño de un prototipo

CAPITULO III MARCO METODOLÓGICO. La presente investigación plantea como objetivo el diseño de un prototipo CAPITULO III MARCO METODOLÓGICO 1. Tipo de Investigación La presente investigación plantea como objetivo el diseño de un prototipo de robot industrial para la automatización del proceso de conformado de

Más detalles

Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico

Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico Emilio Soria Olivas! Antonio José Serrano López! Departamento de Ingeniería Electrónica! Escuela Técnica Superior de Ingeniería!

Más detalles

Tema 1. Sistemas de Visión Artificial

Tema 1. Sistemas de Visión Artificial 1 Div. Ingeniería de de Sistemas y Automática Universidad Miguel Hernández Tema 1. Sistemas de Visión Artificial GRUPO DE TECNOLOGÍA INDUSTRIAL Tabla de Contenidos 2 Definición Transformación Información

Más detalles

Tema 1. Sistemas de Visión Artificial

Tema 1. Sistemas de Visión Artificial 1 Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández Tema 1. Sistemas de Visión Artificial GRUPO DE TECNOLOGÍA INDUSTRIAL Tabla de Contenidos 2 Definición Transformación Información

Más detalles

Detección de bordes en una imagen.

Detección de bordes en una imagen. Detección de bordes en una imagen. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Utilizar distintas máscaras empleadas para

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles

SUMILLAS DE ASIGNATURAS DE ESPECIALIDAD INFORMÁTICA I

SUMILLAS DE ASIGNATURAS DE ESPECIALIDAD INFORMÁTICA I SUMILLAS DE ASIGNATURAS DE ESPECIALIDAD INFORMÁTICA (Reestructurado a partir del 2006) PRIMER CICLO INFORMÁTICA I Esta asignatura tiene por objeto en conocer los elementos básicos de la informática. Unidades

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

INGENIERÍA EN AUTOMATIZACIÓN Y ROBÓTICA

INGENIERÍA EN AUTOMATIZACIÓN Y ROBÓTICA INGENIERÍA EN AUTOMATIZACIÓN Y ROBÓTICA ( D.U.Nº 7 8 5 2 0 0 4 ) Facultad de Ingeniería Sede Santiago, Campus República Sazié 2315, Santiago Tel: (56-2) 661 82 55 www.unab.cl DECANO Cristian Millán Fuentes

Más detalles

VALOR AGREGADO EN PRODUCTOS DE LA COLMENA. 7 de Junio de 2014

VALOR AGREGADO EN PRODUCTOS DE LA COLMENA. 7 de Junio de 2014 VALOR AGREGADO EN PRODUCTOS DE LA COLMENA AZUL 7 de Junio de 2014 Es el valor adicional que adquieren los bienes y servicios al ser transformados durante el proceso productivo. Generalmente se trata de

Más detalles

APLICACIÓN DE TÉCNICAS DE IMAGEN ARTIFICIAL Y REDES NEURONALES PARA EL SEGUIMIENTO DEL REMONTE DE FAUNA PISCÍCOLA

APLICACIÓN DE TÉCNICAS DE IMAGEN ARTIFICIAL Y REDES NEURONALES PARA EL SEGUIMIENTO DEL REMONTE DE FAUNA PISCÍCOLA Curso sobre Técnicas de Visualización CEH-CEDEX, 10 junio de 2011 APLICACIÓN DE TÉCNICAS DE IMAGEN ARTIFICIAL Y REDES NEURONALES PARA EL SEGUIMIENTO DEL REMONTE DE FAUNA PISCÍCOLA Aplicación de técnicas

Más detalles

Evaluación de modelos para la predicción de la Bolsa

Evaluación de modelos para la predicción de la Bolsa Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 10003975@alumnos.uc3m.es Rico Hario

Más detalles

Realce o aumento del contraste (enhancement). Suavizado o eliminación del ruido (denoising) Detección de bordes (edge detection)

Realce o aumento del contraste (enhancement). Suavizado o eliminación del ruido (denoising) Detección de bordes (edge detection) 4 Técnicas de preprocesado Las técnicas de procesado pretenden mejorar o realzar las propiedades de la imagen para facilitar las siguientes operaciones de la Visión Artificial, tales como las etapas de

Más detalles

Reconocimiento de patrones utilizando técnicas estadísticas y conexionistas aplicadas a la clasificación de dígitos manuscritos

Reconocimiento de patrones utilizando técnicas estadísticas y conexionistas aplicadas a la clasificación de dígitos manuscritos UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Computación Reconocimiento de patrones utilizando técnicas estadísticas y conexionistas aplicadas a la clasificación

Más detalles

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI)

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) OFERTAS TECNOLÓGICAS 1) GESTIÓN ORGANIZACIONAL Y LOGÍSTICA INTEGRADA: TÉCNICAS Y SISTEMAS DE INFORMACIÓN 2) GESTIÓN

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

Minera de datos aplicada a la detección de Cáncer de Mama

Minera de datos aplicada a la detección de Cáncer de Mama Minera de datos aplicada a la detección de Cáncer de Mama Eugenio Hernández Martínez Universidad Carlos III de Madrid 100039081@alumnos.uc3m.es Rodrigo Lorente Sanjurjo Universidad Carlos III de Madrid

Más detalles

GRADO EN INGENIERÍA EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA

GRADO EN INGENIERÍA EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA COMPETENCIAS DEL GRADO EN: COMPETENCIAS GRADO EN INGENIERÍA EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA A continuación se enumeran las 17 competencias (tanto las 11 específicas de la titulación como las 6 generales)

Más detalles

2.1 Soluciones Comerciales Existentes

2.1 Soluciones Comerciales Existentes 21 Capítulo 2 Estado del arte Existen métodos de reconocimiento de gestos tanto comerciales con sensores especializados como métodos aún en desarrollo e investigación académica. En este análisis me enfocaré

Más detalles

CLASIFICACIÓN DE IMÁGENES

CLASIFICACIÓN DE IMÁGENES CLASIFICACIÓN DE IMÁGENES Cesar Juárez Megías I.T.T. Imagen y sonido Carlos III de Madrid 100061832@alumnos.uc3m.es OBJETIVO. El objetivo principal de nuestro programa se basaría en la clasificación de

Más detalles

Documento de Competencias. Facultad de Informática, UPV/EHU. 1 Estructura general del Grado TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8

Documento de Competencias. Facultad de Informática, UPV/EHU. 1 Estructura general del Grado TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 Documento de Competencias Grado en INGENIERÍA INFORMÁTICA Facultad de Informática, UPV/EHU 1 Estructura general del Grado 1.1 Fundamentos de Tecnología de los Principios de Diseño de Sistemas Digitales

Más detalles

Práctica 11 SVM. Máquinas de Vectores Soporte

Práctica 11 SVM. Máquinas de Vectores Soporte Práctica 11 SVM Máquinas de Vectores Soporte Dedicaremos esta práctica a estudiar el funcionamiento de las, tan de moda, máquinas de vectores soporte (SVM). 1 Las máquinas de vectores soporte Las SVM han

Más detalles

GRADO EN INGENIERÍA MECÁNICA

GRADO EN INGENIERÍA MECÁNICA COMPETENCIAS DEL GRADO EN: COMPETENCIAS GRADO EN INGENIERÍA MECÁNICA A continuación se enumeran las 17 competencias (tanto las 11 específicas de la titulación como las 6 generales) que se desarrollarán

Más detalles

Soluciones de Cartografía, GIS y Teledetección www.tycgis.com CURSO DE ESPECIALISTA EN TELEDETECCIÓN Y GIS APLICADO AL MEDIO AMBIENTE

Soluciones de Cartografía, GIS y Teledetección www.tycgis.com CURSO DE ESPECIALISTA EN TELEDETECCIÓN Y GIS APLICADO AL MEDIO AMBIENTE CURSO DE ESPECIALISTA EN TELEDETECCIÓN Y GIS APLICADO AL MEDIO AMBIENTE MODALIDAD ONLINE Profesionales formando a Profesionales 2015 formacion@tycgis.com Calle Rodríguez San Pedro 13, 3ª Planta, Oficina

Más detalles

CURSO SUPERIOR DE GIS Y TELEDETECCIÓN APLICADO A ESTUDIOS AMBIENTALES

CURSO SUPERIOR DE GIS Y TELEDETECCIÓN APLICADO A ESTUDIOS AMBIENTALES CURSO SUPERIOR DE GIS Y TELEDETECCIÓN APLICADO A ESTUDIOS AMBIENTALES 1.-CONCEPTO DE TELEDETECCIÓN Podemos definir La Teledetección, como La ciencia y Arte de obtener información acerca de la superficie

Más detalles

8. Concentración en la industria

8. Concentración en la industria 8. Concentración en la industria Cuál es el grado de concentración de la industria española? Qué actividades destacan por su mayor o menor concentración? Se han producido cambios significativos en el periodo

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

PROPUESTA DE SERVICIO Características y ejemplos Marzo de 2010. Tesys. Marketing D2D

PROPUESTA DE SERVICIO Características y ejemplos Marzo de 2010. Tesys. Marketing D2D PROPUESTA DE SERVICIO Características y ejemplos Marzo de 2010 Tesys CARACTERISTICAS DE LA PROPUESTA VISION : Dar soporte a la organización en las tareas de inteligencia comercial y manejo de datos. MISION

Más detalles

El análisis estadístico de datos composicionales

El análisis estadístico de datos composicionales El análisis estadístico de datos composicionales Vera Pawlowsky-Glahn Dept. d Informàtica i Matemàtica Aplicada Universitat de Girona vera.pawlowsky@udg.es 1 ejemplo 1: hipótesis genéticas genotipos en

Más detalles

VISION ARTIFICIAL APOYADA EN SISTEMAS HÍBRIDOS NEURO-SIMBÓLICOS

VISION ARTIFICIAL APOYADA EN SISTEMAS HÍBRIDOS NEURO-SIMBÓLICOS VISION ARTIFICIAL APOYADA EN SISTEMAS HÍBRIDOS NEURO-SIMBÓLICOS Dr. Gerardo Reyes Salgado Profesor-Investigador / Instituto Tecnológico de Cuautla gerardo.reyes@itcuautla.edu.mx www.itcuautla.edu.mx 1

Más detalles

Simulación. Carrera: SCD-1022 SATCA 1

Simulación. Carrera: SCD-1022 SATCA 1 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Simulación Ingeniería en Sistemas Computacionales Clave de la asignatura: SATCA 1 SCD-1022 2 3 5 2.- PRESENTACIÓN Caracterización de la asignatura.

Más detalles

Control interno de los métodos de análisis

Control interno de los métodos de análisis Aseguramiento de la Calidad Control interno de los métodos de análisis Universidad Nacional Sede Medellín Facultad de Ciencias Escuela de Geociencias Orlando Ruiz Villadiego, Químico MSc. Coordinador Laboratorio

Más detalles

PROGRAMA DE CAPACITACIÓN AÑO 2013 GERENCIA Y PLANIFICACIÓN DE PRODUCCIÓN

PROGRAMA DE CAPACITACIÓN AÑO 2013 GERENCIA Y PLANIFICACIÓN DE PRODUCCIÓN PROGRAMA DE CAPACITACIÓN AÑO 2013 GERENCIA Y PLANIFICACIÓN DE PRODUCCIÓN GERENCIA Y PLANIFICACIÓN DE PRODUCCIÓN DISEÑADO PARA Ingenieros de Producción, completación, yacimientos y perforación; geólogos

Más detalles

Empresa o Entidad C.A Electricidad de Valencia. Autores del Trabajo Nombre País e-mail Jimmy Martínez Venezuela jmartinez@eleval.

Empresa o Entidad C.A Electricidad de Valencia. Autores del Trabajo Nombre País e-mail Jimmy Martínez Venezuela jmartinez@eleval. Título Estudio Estadístico de Base de Datos Comercial de una Empresa Distribuidora de Energía Eléctrica. Nº de Registro 231 Empresa o Entidad C.A Electricidad de Valencia Autores del Trabajo Nombre País

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador DATOS INFORMATIVOS: MATERIA O MÓDULO: APLICACIONES DIFUSAS CÓDIGO: IS -10344 CARRERA: NIVEL: INGENIERIA DE SISTEMAS OCTAVO No. CRÉDITOS: 4 CRÉDITOS TEORÍA: 2 CRÉDITOS PRÁCTICA: 2 SEMESTRE / AÑO ACADÉMICO:

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles