t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER."

Transcripción

1 EJERCICIOS DE FORMAS DE ONDA DESARROLLOS EN SERIE DE FOURIER. EJERCICIO. Hallar el valor eficaz,, e las foras e oa repreaas e la figura. RESOLUCIÓN: Los valores eficaces e las res foras e oa so iguales. Para la segua fora e oa se iee que: x [ ],577 EJERCICIO. Hallar el valor eio el valor eficaz e ua oa siusoial aleraa o siérica e períoo.

2 RESOLUCIÓN: Sea la oa siusoial aleraa o siérica e la figura La fució e oa verá aa por: x El valor eio se oberá coo: e x e El valor eficaz se calcula coo: x x x x EJERCICIO. Hallar el valor eficaz e la oa repreaa e la figura. RESOLUCIÓN: Por raarse e ua fució iscoiua habrá que ierar el valor e icha fució e caa iervalo ero el períoo. Así se iee que:, s.

3 ,, s,, s El valor eficaz verá ao por:,,.,,,.,,,,., x x,,,7 EJERCICIO. Calcular los valores eios eficaces e las siguiees foras e oa, uilizao las correspoiee efiicioes: Oa cuaraa: Oa riagular: Oa recificaa: Oa obleee recificaa:

4 RESOLUCIÓN: ONDA CUADRADA La fució e oa, e la oa cuaraa, se puee expresar coo: x x la fució iee u períoo. Valor eio: e e e Valor eficaz:

5 Facor e apliu: F.A. Facor e fora: obleee recificaa F.F. e ONDA RIANGULAR La fució e oa, e la oa riagular, puee veir aa por: cuo períoo es e:. Valor eio: e e e Valor eficaz:

6 Facor e apliu: F.A. / Facor e fora: F.F. e obleee recificaa / 5 / ONDA RECIFICADA La oa recificaa e ua oa oial se expresa por: co u períoo. Valor eio: e e e Valor eficaz: Facor e apliu: F.A. /

7 Facor e fora: F.F. e / 57 / ONDA DOBLEMENE RECIFICADA La fució e oa será: co u períoo. Valor eio: e e e Valor eficaz: Facor e apliu: F.A. / Facor e fora: F.F. e / /

8 EJERCICIO 5. Calcular las expresioes el valor eio el valor eficaz e la oa recificaa e la figura e fució e. RESOLUCIÓN: Dero el iervalo correspoiee al períoo e la fora e oa, se prea res iervalos, e os e los cuales la fució es ula, por ao, solo e el iervalo la fució es isia e cero co u valor e: v v o El valor eio verá ao por la expresió: v V [ ] v V o v V o El valor eficaz se obiee coo: v V v V o v V o

9 v V o EJERCICIO. Hallar el valor eficaz e ua oa coplea oial recificaa coraa e la ia e su valor áxio, al coo se iica e la figura. RESOLUCIÓN: Al corar la oa por la ia e su valor áxio se obiee los os águlos e core que efie los iervalos e iscoiuia e la fució. Así se iee que:,5 por ao: 5 El valor eficaz e la fució se expresará coo:,5 5 5 o,5 5 5,

10 EJERCICIO 7. Obeer los esarrollos rigooéri e érios e series e Fourier e las foras e oa iicaas e el EJERCICIO. RESOLUCIÓN: ONDA CUADRADA La fució e oa, e la oa cuaraa, se puee expresar coo: x x la fució iee u períoo. El esarrollo peio será e la fora: a sieo:, perioo e la fucio a b CÁLCULO DE LOS COEFICIENES: a a Oa sierica aleraa o Por oro lao se sabe que, por ser ua fució ipar los érios a por eer siería e seioa b co ipar. Por ao, el esarrollo sólo erá érios ipares e o. a a a [ ] _ a b b

11 b [ ] b [ ] [ ] Ahora bie, eieo e cuea que: se iee que: [ ] por ao: b... [ ] / / /... / ipar Así pues, b ipar El esarrollo buscao será: Para los prieros arói se iee: para los cuales se verifica que: c c c c5 5 c7 7 coo: c c c... por ao: 97 ONDA RIANGULAR La fució e oa correspoiee a la oa riagular es:

12 cuo períoo es e:. Coo e el caso aerior, se raa e ua fució aleraa siérica por lo que su valor eio es ulo, es ecir, a, es ua fució ipar, por lo cual los érios a, por eer siería e seioa b co ipar. Por ao, el esarrollo sólo erá érios ipares e o. CÁLCULO DE LOS COEFICIENES: a a b / b / / / / / / / / / Operao se iee que: b por ao: ipar par Sieria e seioa así, se obiee: 8 b 8 b para,,5,...

13 El esarrollo buscao es: 8,, 5,... Para los prieros arói se iee: ONDA RECIFICADA La fució e oa se expresa por: co u períoo. CÁLCULO DE LOS COEFICIENES: a a a a a a Para > a Para > a pero para ipar se verifica que, por ao, a a para,,,... b Para > b

14 Para > b El esarrollo buscao es:,,,... Para los prieros arói se iee: 5... ONDA DOBLEMENE RECIFICADA La fució e oa será: co u períoo. CÁLCULO DE LOS COEFICIENES: a a a a a a De la abla e valores: se obiee: Para ipar > a b Para par > a

15 b b El esarrollo buscao es:,,,... Para los prieros arói se iee: Ulia revisió: 9// F Bugallo Siegel.

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

TEMA 8 OPERACIONES FINANCIERAS SIMPLES

TEMA 8 OPERACIONES FINANCIERAS SIMPLES Facula e.ee. Dpo. e Ecoomía Fiaciera I Diaposiiva 1 Maemáica Fiaciera TEMA 8 OPERAIONES FINANIERAS SIMPLES 1. Plaeamieo geeral 2. Operacioes a coro y largo plazo 3. Valor fiaciero e la operació 4. Aplicacioes:

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

La Serie de Fourier Trigonométrica

La Serie de Fourier Trigonométrica La Serie de Fourier Trigoomérica Dr. Luis Javier Morales Medoza FIEC Uiversidad Veracruzaa Poza Rica Tuxpa Ídice 5.. Iroducció 5.. La serie rigoomérica de Fourier 5.3. Relació ere los coeiciees de Fourier

Más detalles

Fourier. Series de Fourier

Fourier. Series de Fourier Series de Fourier. Fucioes Periódicas oeido. Serie rigoomérica de Fourier 3. ompoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. álculo de los coeficiees de la Serie de Fourier

Más detalles

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X Jorge E. Heráez, Eih C. e Heráez Uiversia e Paamá, Cero Regioal Uiversiario De Veraguas, Deparameo e Maemáica. RESUMEN E el presee rabajo esuiamos la ecuació

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Trace dos arcos iguales sobre el segmento AB. Marque la intersección con la letra P. Este punto equidista de A y de B

Trace dos arcos iguales sobre el segmento AB. Marque la intersección con la letra P. Este punto equidista de A y de B 0 ostruir u segeto e recta igual a otro ao. Trace el segeto Trace seirrecta co orige Toe la eia co el copás o cetro e corte la seirrecta y arque el puto co la letra 0 iiir u segeto e os partes iguales.

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

Tema 1: Inferencia Estadística

Tema 1: Inferencia Estadística ETADÍTICA II Notas e Clases Tema : Iferecia Estaística LUI NAVA PUENTE Itroucció Geeralmete las poblacioes so emasiao graes como para poer ser estuiaas e su totalia. Por lo tato es ecesario tomar e la

Más detalles

LEYES EMPIRICAS DE LOS GASES

LEYES EMPIRICAS DE LOS GASES uxiliar: Uiv. IGUEL NGEL GUIERREZ FISIOQUII (Q 6) LEYES EIRIS DE LOS GSES LEY DE OYLE RIOE (ROESO ISOERIO) eperaura y uero e oles cosae, el volue el gas varia iversaee proporcioal a la presió o sea si

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

Circuitos Eléctricos II Series de Fourier

Circuitos Eléctricos II Series de Fourier Circuios Elécricos II Series de Fourier Coeido. Fucioes Periódicas. Serie rigoomérica de Fourier 3. Compoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. Cálculo de los coeficiees

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos Méodos y écicas de iegració El siguiee ema sugerido para raar e clases es el méodo de iegració por pares veamos de dode surge y alguos ejemplos propuesos ( º ) Méodo de Iegració por pares:. dv u. v u =

Más detalles

Problema 2: Vibraciones

Problema 2: Vibraciones Exae ial de Meáia Raioal osae Problea : Vibraioes El uerpo D de la igura pesa W = 85. 9N esá soporado por u resore de N = 151. 4. El uerpo B e el exreo superior del resore posee u rad oviieo verial ipreso

Más detalles

3.7 DEFINICIÓN DE UNA RECTA

3.7 DEFINICIÓN DE UNA RECTA Página 40 3.7 DEFINICIÓN DE UNA RECTA Existen os foras para ejar bien efinia a una recta, pero antes e señalarlas es inispensable coprener bien el significao e la frase quear bien efinio. Un objeto quea

Más detalles

6. Intervalos de confianza

6. Intervalos de confianza 6. Iervalos de cofiaa Curso 0-0 Esadísica Coceo de iervalo de cofiaa Se ha realiado ua ecuesa a 400 ersoas elegidas al aar ara esimar la roorció de voaes de u arido olíico.? Resulado Ecuesa Sí 0 ooros

Más detalles

[ ] [ m] [ ] [ ] [ ] [ ]

[ ] [ m] [ ] [ ] [ ] [ ] Ejercicio: Ona. El eiicio Sear, ubicao en Chicago, e ece con una recuencia aproxiaa a 0,0 Hz. Cuál e el perioo e la ibración? Dao: 0, [Hz]? 0,Hz 0. Una ola en el océano iene una longiu e 0. Una ona paa

Más detalles

Superficie dada en forma explícita.

Superficie dada en forma explícita. Prof. Anrea Capillo Análisis Mateático II Interales e superficie Recoreos la efinición e área e una superficie alabeaa. 3 ea la superficie sieno siple reular iaen e la función f : R R cuplieno la función

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

REGULACIÓN AUTOMATICA (5)

REGULACIÓN AUTOMATICA (5) EGULACIÓN AUTOMATICA 5 Aálii e la repuea raioria y eacioaria Ecuela Poliécica Superior Profeor: Darío García oríguez ..- Obega la repuea ecaló uiario e u iema realimeao uiariamee, cuya fució e raferecia

Más detalles

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables MATEMÁTICAS II Valores etremos Curso - e unciones e varias variables EJERCICIOS ) Calcular el volumen e la caja rectangular más grane situaa en el primer octante con tres e sus caras en los planos coorenaos

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Activiaes iniciales 1. Calcula las matrices inversas e las siguientes matrices: 1 1 2-3 1 2 1 1 1 1 0 1 2 2 5 1 1 1 1 0 0 1 1 1 1 1 Las matrices buscaas son: 1/4 1/4 1/4 1/4 1

Más detalles

Qué es la Cinética Química?

Qué es la Cinética Química? Tema 4. La velocidad de Cambio Químico I. Velocidad de reacció.. Ecuació de velocidad y orde de reacció. 3. álisis de los daos ciéicos: ecuacioes iegradas de ciéicas secillas. 4. Ciéicas complejas.. Velocidad

Más detalles

A y B

A y B TIVIDDES DE MTRIES. º HILLERTO Hallar el rango e la matriz: 7 8 7 9 8 Se observa que el menor e oren formao por la primera y tercera filas y columnas no es nulo sino igual a 8, veamos: 8 Luego rg () es

Más detalles

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

NOMENCLATOR DE LAS VÍAS PÚBLICAS DE LA VILLA. Marzo

NOMENCLATOR DE LAS VÍAS PÚBLICAS DE LA VILLA. Marzo A A ÍA ÚA A A arzo 2016 A A ÍA ÚA A A A 1 101 A A 102 A 103 AAA 104 A 105 A A 106 AA 107 A 2 A 201 AA 202 A 203 A A 204 A 205 AA 206 AAA 207 A 3 AAA - AA 301 AAA 302 AA 303 A AA A A (1,79 ) 2 4 A 401 A

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

TEMA 12. RECTIFICADORES NO CONTROLADOS

TEMA 12. RECTIFICADORES NO CONTROLADOS NODUCCÓN EMA. ECFCADOE NO CONOLADO..NODUCCÓN..ECFCADO MONOFÁCO... ecificaor Meia Ona... Puene Copleo... Conuación nsanánea... Conuación no nsanánea...3. ipo ensión Consane..3. Conexión en ees rifásicas.

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. EXAMEN FINAL 5 02-2003. PROBLEMAS

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. EXAMEN FINAL 5 02-2003. PROBLEMAS Págia e 6 04/0/004 FUNDAMENTOS FÍSICOS DE A INFORMÁTICA. EXAMEN FINA 5 0-003. PROBEMAS - q D - P.- Cuatro cargas iguales os a os e valores q y (q y > 0) está colocaas e los vértices e u rombo e iagoales

Más detalles

El Método euleriano lagrangiano localizado adjunto para problemas no lineales: El caso de la ecuación de Richards

El Método euleriano lagrangiano localizado adjunto para problemas no lineales: El caso de la ecuación de Richards El Méodo euleriao lagragiao localiado adjuo para probleas o lieales: El caso de la ecuació de Richards Álvaro A. Aldaa y Vícor Arroyo Isiuo Mexicao de Tecología del Agua Paseo Cuauháhuac 853, Jiuepec,

Más detalles

LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Aterirmete se ha ich que la itegral efiia equivale a ectrar el valr el área cmpreia etre la gráfica e ua fució y el eje, la cual puee ser calculaa pr mei el

Más detalles

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3 Pruebas de Acceso a Eseñazas Uiverarias Oiciales de Grado Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá coesar a ua de las dos opcioes propuesas A ób. Se podrá uilizar cualquier

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano Área de Mateáticas. Curso 05/06 TEMA 8 Geoetría Aalítica e el Plao Ejercicio º a Escribe la ecuació de la recta r que pasa por los putos. b Obté la ecuació de la recta s que pasa por tiee pediete. c Halla

Más detalles

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos.

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos. Solució Problea xiste varios otajes experietales que perite la deteriació del oeto agético. Aquí discutireos tres de ellos. 1) Atracció frotal etre iaes La figura uestra el otaje experietal que propoeos

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1 Facultad de Igeiería Sisteas de Cotrol (67.) Uiversidad de Bueos Aires INTRODUCCIÓN AL CLASE INTRODUCCIÓN DE FUNCIONES DE TRANSFERENCIA Para la itroducció de fucioes de trasferecia polióicas se utiliza

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

x 1; Soluciones dobles

x 1; Soluciones dobles EJERCICIOS TIPO EXAMEN ECUACIONES INECUACIONES Y SISTEMAS.- Resuelve las ecuaciones siguienes, facorizando previamene en los casos que eso sea posible: a) Solución: Por raarse de una ecuación de grado

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

Estos ejercicios, consisten en determinar el número máximo de figuras (triángulo, cuadrados, cuadriláteros, pentágonos, etc).

Estos ejercicios, consisten en determinar el número máximo de figuras (triángulo, cuadrados, cuadriláteros, pentágonos, etc). Estos ejercicios, consisten en determinar el número máximo de figuras (triángulo, cuadrados, cuadriláteros, pentágonos, etc). EJEMPLOS ) En la figura, cuántos triángulos como máximo observas. ) Cuantos

Más detalles

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados NÚMEROS COMPLEJOS 0.- INTRODUCCIÓN Represetareos por reales: el cojuto de todos los pares ordeados Dicho cojuto se deoia plao cartesiao. xy, : xy, x, y de úeros Recuerda que sabeos suar pares ordeados

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001 Eamen Final e Precálculo (Mate 7) Nombre e iciembre e 00 Escriba la letra que correspone a la mejor alternativa en el espacio provisto. (os puntos caa uno) ) Si la gráfica e f es la e la erecha entonces

Más detalles

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013 El Marge de Riesgo México Por: Pedro Aguilar B. paguilar@csf.gob.mx paguilar@ifiium.com.mx Sepiembre 2013 Coeido 1. Aspecos Geerales sobre Marge de Riesgo 2. La Problemáica 3. Plaeamieo de ua Posible Solució

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

EJERCICIOS DE HIDROSTÁTICA

EJERCICIOS DE HIDROSTÁTICA EJERIIOS DE HIDROSTÁTI.- En la figura e uetra un reciiente que contiene tre inicible. Deterina la reión hirotática que oorta el fono el reciiente abieno que la eniae el, el y el ercurio on, reectivaente,

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

ESTIMACION POR MÍNIMOS CUADRADOS Y MÁXIMA VEROSIMILITUD (MODELOS INTRÍNSECAMENTE NO LINEALIZANTES)

ESTIMACION POR MÍNIMOS CUADRADOS Y MÁXIMA VEROSIMILITUD (MODELOS INTRÍNSECAMENTE NO LINEALIZANTES) EIMACION POR MÍNIMO CUADRADO Y MÁXIMA VEROIMIIUD (MODEO INRÍNECAMENE NO INEAIZANE). INRODUCCIÓN. MINIMO CUADRADO. GAU NEWON. NEWON RAPHON 3. MÁXIMA VEROIMIIUD 3. NEWON RAPHON 3. MÉODO DE CORING 3.3 AGORIMO

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 21 RECTA. 1) abscisa (del latín, abscissa = cortada, que corta. Se refiere a que corta a la vertical): Es

INSTITUTO VALLADOLID PREPARATORIA Página 21 RECTA. 1) abscisa (del latín, abscissa = cortada, que corta. Se refiere a que corta a la vertical): Es INSTITUTO VALLADOLID PREPARATORIA Página LA RECTA. DEFINICIONES Y CONCEPTOS PRELIMINARES ) abscisa (el latín, abscissa cortaa, que corta. Se refiere a que corta a la vertical): Es el valor nuérico e la

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

Ejercicios Resueltos T.P. Nº 4: SERIE DE FOURIER

Ejercicios Resueltos T.P. Nº 4: SERIE DE FOURIER Ejeriios Resuelos P Nº 4: SERIE DE FOURIER Ejeriio L señl dd es x( Se pide lulr los oefiiees de l Serie rigooméri de Fourier, es deir,, b y Como l señl o iee igú ipo de simerí, ls iegrles pr hllr los oefiiees

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

Capítulo III. Beneficios por fallecimiento.

Capítulo III. Beneficios por fallecimiento. Capíulo III. Beeficios por falleciieo. Vereos las écicas acuariales que peria deeriar el coso de pagos que depeda del falleciieo de las persoas, coo ejeplos eeos la deeriació de pagos de prias de u seguro

Más detalles

GUIA DE MATEMÁTICAS 2 Bloque 2

GUIA DE MATEMÁTICAS 2 Bloque 2 GUIA DE MATEMÁTICAS 2 Bloque 2 Eje teático: SN y PA Coteido: 8.2. Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti ES Mediterráeo de Málaga Juio Jua Carlos loso Giaoatti UNVERSDD DE CTLUÑ PRUES DE CCESO L UNVERSDD CONVOCTOR DE JUNO Resoda a CNCO de las siguietes seis cuestioes. E las resuestas, elique siere qué quiere

Más detalles

Capitulo II. Capitulo II

Capitulo II. Capitulo II Cieáica y Diáica de Máquias. II.2 Teoría de la curvaura Capiulo II Teoría de curvaura 1 Cieáica y Diáica de Máquias. II.2 Teoría de la curvaura Capiulo II Moviieo lao II.1 specos geerales del oviieo plao.

Más detalles

Régimen transitorio. Respuesta a funciones elementales

Régimen transitorio. Respuesta a funciones elementales Régie rasiorio Vibració Trasioria: Desaparece co el paso el iepo, pero puee ser iporae e respuesa a fuerzas o perióicas (golpes, explosioes...). Respuesa a fucioes eleeales c () x ució escaló ució rapa

Más detalles

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1 Demostracioes de Regresió Simple. Estimació La distribució de y es y i N 0 x i, Estimació Máximo Verosímil La fució de verosimilitud, sabiedo que y i es ua variable ormal será L exp y i 0 x i ya que la

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS º DE BACHILLERATO MÉTODO DE GAUSS Soluciones -- SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS. Resolver los siguienes siseas de ecuaciones aplicando el éodo de Gauss. a) 8 8 b) c) -- SOLUCIONES MÉTODO DE GAUSS

Más detalles

Apuntes de Matemática Discreta 12. Ecuaciones Diofánticas

Apuntes de Matemática Discreta 12. Ecuaciones Diofánticas Apuntes e Matemática Discreta 2. Ecuaciones Diofánticas Francisco José González Gutiérrez Cáiz, Octubre e 2004 Universia e Cáiz Departamento e Matemáticas ii Lección 2 Ecuaciones Diofánticas Contenio 2.

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

Bárbara Cánovas Conesa. Clasificación Números Reales. Números Racionales. Números Irracionales

Bárbara Cánovas Conesa. Clasificación Números Reales. Números Racionales. Números Irracionales Bárbara Cáovas Coesa 67 70 Clasificació Números Reales www.clasesalacarta.com Números Reales Reales (R) Naturales (N) Eteros (Z) { Negativos Racioales (Q) Decimales Exactos Fraccioarios { Decimales Periódicos

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

SESIÓN 7. Biprisma de Fresnel.

SESIÓN 7. Biprisma de Fresnel. SESÓN 7. Biprisa e Fresnel. TRABAJO PREVO. Conceptos funaentales. Cuestiones. Conceptos funaentales nterferencia óptica: Cuano os haces e luz se cruzan pueen interferir, lo que afecta a la istribución

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos.

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos. Meáis (hillero e ieis) Soluioes e los proles propuesos Te wwweisjo José Mrí Mríez Meio TEM Mries Proles Resuelos Operioes o ries Ds, y, hll os úeros y pr que se verifique que Soluió Esriieo l euió exei

Más detalles

Para medir la pendiente de una recta, o sea su inclinación, se mide cuánto subió verticalmente en qué distribución horizontal.

Para medir la pendiente de una recta, o sea su inclinación, se mide cuánto subió verticalmente en qué distribución horizontal. página 9 4.1 DEFINICIONES Y CONCEPTOS PRELIMINARES 1) abscisa (el latín, abscissa cortaa, que corta. Se refiere a que corta a la vertical): Es el valor nuérico e la coorenaa x en el plano cartesiano. )

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

Criterios de convergencia para series.

Criterios de convergencia para series. Criterios de covergecia para series. Para series e geeral, existe ua serie de criterios de covergecia:. Primer criterio de comparació.- Si ( ) y (b ) so dos sucesioes de úmeros reales tales que m N, tal

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012 Tema 2: Aálisis gráfico y esadísico de relacioes Uiversidad Compluese de Madrid Febrero de 202 Aálisis gráfico y descripivo de ua variable (I) Daos de series emporales: Rea per c pia EEUU Cosumo per c

Más detalles

Universidad Politécnica de Cartagena. Universidad Politécnica de Cartagena

Universidad Politécnica de Cartagena. Universidad Politécnica de Cartagena Escuela Técnica Superior e Ingeniería e Telecomunicación CAMOS ELECTOMAGNÉTICOS ráctica 3. La Teoría e Imágenes..-rofesores: ero Vera Castejón Alejanro Álvare Melcón Fernano Quesaa ereira 1 1. Introucción

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Evolución de Galaxias. Morfológica Dinámica Luminosa o pasiva Química

Evolución de Galaxias. Morfológica Dinámica Luminosa o pasiva Química Evoución e Gaaias Morfoóica Dináica uinosa o pasiva Quíica Hay cuaro ipos e evoución en as aaias: Evoución orfoóica Evoución ináica Evoución uinosa o pasiva Evoución quíica Evoución Morfoóica a evoución

Más detalles