[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx"

Transcripción

1 Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de coodenadas. [a] Escibe la ecuación de la elongación, en función del tiempo, paa este movimiento. [b] Deduce la ecuación de la velocidad, en función del tiempo, y epeséntala gáficamente en la figua anteio. [c] Calcula las enegías cinética, potencial y mecánica de la patícula en el instante t =,2 s. [a] La elongación, en función del tiempo, está dada po una función del tipo: x(t) =A sen( t + o ). En este caso, de la gáfica se deduce que A =,2 m y que el peiodo T = 2 s, po lo que la fecuencia angula vale: = 2 T = ad s ; en la gáfica también se obseva que, paa t=, x =,2 m; llevando esta condición a la ecuación de la elongación queda:,2 =,2 sen o ; sen o =;. En consecuencia, la ecuación de la elongación es: x(t) =,2 sen t + 2 (m). [b] La ecuación de la velocidad se obtiene al deiva la elongación con especto al tiempo: v(t) = dx dt =,2 cos t + 2 (m/s). Paa epesenta esta función nos fijamos en algunos instantes de inteés, tal como se ecoge en la siguiente tabla: t (s) v (m/s),5 -,2π,5,2π 2 [c] La constante ecupeadoa es k =,5 2 ( N M ). Se calcula el valo de la elongación en ese instante: x(,2) =,2$sen(,7 ) =,6(m), con lo que la enegía potencial elástica es: E p = 2 kx2 = 2,5 2 (,6) 2 =6,32$ 2 (J). Po oto lado, la velocidad en ese instante es: v(,2) =,2 $cos(,7 ) =,37( m s) y la enegía cinética, E c = 2 mv2 = 2,5$,372 =3.42$ 2 (J). La enegía mecánica es la suma de ambas: E M =E c +E p =9,74$ 2 (J). Este esultado debe coincidi con el calculado mediante: E M = 2 ka2 = 2,5 2,2 2 =9,87$ 2 (J). {Página }

2 2. Las ondas amónicas también se suman Una onda amónica tansvesal está epesentada po la ecuación: y(x, t) =, 5sen(992t 6x), donde las distancias están dadas en m y el tiempo en s. [a] Deduce los valoes de la amplitud, la fecuencia y la longitud de onda de las vibaciones. [b] Halla la distancia ecoida po la onda en 3, s. [c] Escibe la ecuación de una onda idéntica a la anteio, peo que se popague en sentido contaio. [d] Halla la amplitud de la onda esultante de la intefeencia de las dos ondas anteioes: la del enunciado y la del apatado [c]. {AYUDA: sena + senb = 2sen A+B } 2 cos A B 2 [a] La expesión geneal de una onda amónica es: y(x,t) =A sen( t kx). Al compaala con la del enunciado, vemos que A =,5 m, =992( ad s ) y k =6(m ). La fecuencia es, entonces, = 2 = =37(Hz) y la longitud de onda, = 2 6 =,5(m). k = 2 [b] Se calcula la velocidad de popagación de la onda: v p = k = =332( m s), esultado al que también se llega mediante la expesión: v = $. La distancia ecoida po la onda en 3 s es, po lo tanto, x = vt = = 996 m. [c] La ecuación pedida se obtiene sencillamente cambiando el signo de la fase: y (x,t) =,5 sen(992t +6x). [d] La onda esultante se obtiene sumando las dos ondas: y T =y +y =,5[sen(992t 6x) +sen(992t +6x)]; paa utiliza la elación tigonomética de la ayuda, sea =992t A B ; po lo tanto, la ecuación de la A =992t 6x A+B 2 B =992t +6x 2 = 6x onda esultante es: y T (x,t) =,cos( 6x)sen(992t). Se ha obtenido un conjunto de MAS de amplitud vaiable: A T =, cos(6x) (ecueda que los cosenos de ángulos opuestos son iguales). Se tata de una onda estacionaia. {Página 2}

3 3. El pime satélite atificial [A] Desaolla el siguiente tema: Momento angula de una patícula. Momento de una fueza. Relación ente ambas. Incluye esquemas aclaatoios. [B] El 5 de octube de 957, la URSS lanzó el pime satélite atificial de la Tiea. Se infomó que daía vueltas alededo de la misma a una altua de 94 km sobe la supeficie teeste. Suponiendo que la óbita fuese cicula, calcula: [a] la apidez del satélite; [b] el peiodo del mismo; [c] el peso obital de una pieza del satélite de 7 kg de masa; [d] el momento angula (en módulo, diección y sentido) de dicha pieza del satélite. {DATOS: GM T = 4, 4 N m² kg - ; R T = 637 km} [A] Véase el libo y los apuntes de Física. [B] [a] La fueza gavitatoia se compota como fueza centípeta, po lo que, aplicando la 2ª ley de Newton al movimiento del satélite, queda: G MTm =m v2, de donde se deduce que. 2 v 2 =G MT El adio de la óbita es = =73(km) =7,3$ 6 (m). La apidez del satélite 4$ es, entonces, v = 4 7,3$ =7,4$ 3 ( m s). 6 [b] El peiodo del satélite se puede calcula también mediante la 2ª ley de Newton escibiendo la aceleación centípeta de foma adecuada. Sin embago, el pocedimiento más sencillo es: T = 2 v = 2 $7,3$6 7,4$ =6,2$ 3 (s)j,72(h). 3 [c] El peso es igual al poducto de la masa po la intensidad del campo gavitatoio a esa distancia: P =mg =m GMT 4$ =7$ 4. 2 (7,3$ 6)2 =524(N) [d] El momento angula de una patícula especto a un punto es igual al poducto vectoial del vecto de posición po el momento lineal, esto es, L O =%mv. Al se la óbita cicula, los vectoes y p son pependiculaes, po lo que el módulo del momento angula vale: L O =mv =7,3$ 6 $7$7,4$ 3 kg$m2 2 =3,79$ s. La diección y el sentido se muestan en la figua siguiente: z L O Cento de la Tiea x O m Satélite v y p {Página 3}

4 4. Qué pasa con los macianos? [A] Relaciona la enegía de un satélite y las óbitas que descibe. Velocidad de escape. [B] El adio del planeta Mate es de 3,32 6 m y la aceleación de la gavedad en un punto de su supeficie vale 3,87 m/s². [a] Halla la masa de Mate. [b] Cuál es la velocidad de escape de Mate? [c] Si se lanza desde la supeficie de Mate un poyectil con la velocidad de escape, cuál seá su apidez cuando diste del cento del planeta 7 m? {DATO: G = 6,67 - N m² kg -2 } [A] Véase el libo y los apuntes de Física. [B] [a] La intensidad del campo gavitatoio en la supeficie de Mate está dada po: g o = GM R, de 2 donde se deduce que la masa de Mate seá: M = gor2 6,67$ =6,4$ 23 (kg). G = 3,87$(3,32$6 ) 2 [b] La expesión matemática de la velocidad de escape puede se deducida de la ley de consevación de la enegía mecánica: E M, supeficie maciana = E M,infinito ; G Mm R + 2 mv 2 esc =, de donde se deduce, tas simplifica la masa del objeto, que: v esc = 2GM R = 2$6,67$ $6,4$ 23 3,32$ =5.7$ 3 ( m s). 6 [c] Se cumple que la enegía mecánica pemanece constante: E M,inicial = E M,final ; G Mm R + 2 mv 2 esc = G Mm + 2 mv2. El miembo de la deecha es nulo, como se acaba de ve en el apatado anteio. Si se simplifica la masa del poyectil, queda: G M + 2 v2 =, de donde se deduce que la apidez buscada es: v = 2GM = 2$6,67$ $6,4$ 23 7 =2,92$ 3 ( m s) v esc v 7 m (El dibujo no está hecho a escala) {Página 4}

5 5. Fueza ejecida po un dipolo [A] Ley de Coulomb: expesión y significado. [B] Un dipolo está fomado po dos cagas puntuales, +q y -q, que se encuentan fijas en los puntos (-2, ) m y (2, ) m, espectivamente. Calcula la fueza esultante sobe una tecea caga puntual +q en los puntos M (, ) m y N (2, 3) m. Se supone conocido el valo de k. [A] Véase el libo y los apuntes de Física. [B] En pime luga, se taza un esquema con la situación descita. F F + y N(2,3) θ +q F + F +x 5 m F - +q +q F θ + F - (-2,) (2,) M(,) -q Punto M Se dibuja las fuezas y se calcula sus módulos: F + =k q2 ( 9 N) ; F =k q2 ( N). Dado que estas dos fuezas tienen la misma diección y el mismo sentido, la fueza esultante, hoizontal y hacia la deecha, tiene como módulo la suma de los módulos: F T =k q2 9 +k q2 = 9 kq 2 (N). Punto N Se dibuja las fuezas y se calcula sus módulos: F + =k q2 ( 25 N)F ; =k q2 ( 9 N). Se deducen los módulos de las componentes de la pimea de ellas: F +,x =F + $cos =k q = 4kq2 ( 25 N) F +,y =F + $sen =k q = 3kq2 ( 25 N) Las componentes de la fueza esultante son, entonces, F T,x = 4kq2 ( 25 N) F T,y = 3kq2 25 k q2 9 = 25kq 98 2 (N) F T =,32kq 2 i,87kq 2 j(n) El módulo de esta fueza es: F T =kq 2,32 2 +(,87) 2 =,93kq 2 (N). La diección y el sentido puede establecese a pati del ángulo que foma la diección de la fueza con el semieje +OX: tg =,87,32 = 2,72; = 7 o =29 o. {Página 5}

6 6. Consevación de la enegía con fuezas elécticas Un positón (la antipatícula del electón) tiene una masa de 9, -3 kg y una caga de +,6-9 C. Imagina que un positón se desplaza en las cecanías de una patícula alfa, cuya caga es de +3,2-9 C. La masa de la patícula alfa es vaios miles de veces mayo que la del positón, po lo que consideaemos que está en eposo y que sive como sistema de efeencia. Cuando el positón está a, - m de la patícula alfa, se aleja diectamente de ésta con una apidez de 3, 6 m/s. [a] Cuál es la apidez del positón cuando las dos patículas están a 2, - m y cuando se encuentan a 3, - m una de la ota? [b] Cuál es la apidez del positón cuando está muy, muy lejos de la patícula alfa? DATO: Constante de Coulomb: K = 9 9 N.m².C -2 } [a] Se hace un esquema del fenómeno descito. Patícula α m Positón A B C 2 m 3 m El positón evoluciona en un campo consevativo, po lo que la enegía mecánica pemanece constante. Así, E M (A) = E M (B), esto es, 2mv 2 A +k q qp A = 2mv 2 B +k q qp B ; 29,$ 3 $ (3$ 6 ) 2 +9$ 95,2$ 38 = 29,$ 3 v ; B2 +9$ 95,2$ 38 2$ 4,$ 8 +4,6$ 8 =4,56$ 3 v 2 B +2,3$ 8 ; 6,4$ 8 6,4$ 8 =4,56$ 3 v 2 B ; v B = 4,56$ =3,75$ 6 ( m s). 3 De manea análoga, E M (A) = E M (C), po lo que: 2mv 2 A +k q qp A = 2mv 2 C +k q qp ; 29,$ 3 $ (3$ 6 ) 2 +9$ 95,2$ 38 = 29,$ 3 v 2 C +9$ 95,2$ 38 3$ 4,$ 8 +4,6$ 8 =4,56$ 3 v 2 C +,54$ 8 7,7$ 8 7,7$ 8 =4,56$ 3 v C2 ; v C = 4,56$ =3,97$ 6 ( m s). 3 Estos esultados son coheentes con el hecho de que las patículas se epelen. C ; [b] Hay que entende ahoa que cuando el positón se encuenta muy, muy lejos, su enegía potencial eléctica es nula; po lo tanto, E M (A) = E M ( ), 2mv 2 A +k q qp A = 2 2mv. Apovechando los cálculos anteioes, 8,7$ 8 =4,56$ 3 2 v B ; v = 8,7$ 8 4,56$ =4,37$ 6 ( m s). 3 {Página 6}

[b] La ecuación de la velocidad se obtiene derivando, con respecto al tiempo, la ecuación de la

[b] La ecuación de la velocidad se obtiene derivando, con respecto al tiempo, la ecuación de la Nombe y apellidos: Puntuación: 1. Pimeo vetical, luego hoizontal Un muelle, de masa despeciable, se defoma 20 cm cuando se le cuelga un cuepo de 1,0 kg de masa (figua 1). A continuación, se coloca sin

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt

L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt EOEA DE CONSEVACIÓN DE OENO ANGUA: El momento angula se define como: p CASE 4.- EYES DE CONSEVACIÓN eniendo en cuenta que p es el momento lineal (masa po el vecto velocidad) la expesión anteio nos queda:

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDAD DE ALCALÁ PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (Mayoes 5 años) Cuso 009-010 MATERIA: FÍSICA INSTRUCCIONES GENERALES Y VALORACIÓN La pueba consta de dos pates: La pimea pate consiste en

Más detalles

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CATALUÑA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponde a las cuestiones C1 y C Escoge una de las opciones (A o B) y esuelva el poblema P y esponda a las cuestiones C3

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA. . UCIA / UNIO 04. OGS / FÍSICA / XAN COPO XAN COPO PUBAS D ACCSO A A UNIVSIDAD PAA AUNOS D BACHIAO OGS. (PAN 00 unio 004 FÍSICA. OINACIONS: Comente sus planteamientos de tal modo que demueste que entiende

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla Situaciones 1: Dada una caga eléctica puntual, detemine el campo eléctico en algún punto dado. E = k q 2 u 1.- Una caga puntual positiva, situada en el punto P, cea un campo eléctico E v en el punto, epesentado

Más detalles

1. Los planetas describen órbitas elípticas planas en uno de cuyos focos está el sol.

1. Los planetas describen órbitas elípticas planas en uno de cuyos focos está el sol. LEYES DE KEPLE 1. Los planetas desciben óbitas elípticas planas en uno de cuyos focos está el sol. Esta ley esulta evidente si tenemos en cuenta que las fuezas gavitatoias son fuezas centales y que se

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

FÓRMULAS Y DEDUCCIONES QUE HAY QUE SABER. Mm v GM

FÓRMULAS Y DEDUCCIONES QUE HAY QUE SABER. Mm v GM CLASE : LEY DE LA GRAVIACIÓN UNIVERSAL. SAÉLIES I FÓRMULAS Y DEDUCCIONES QUE HAY QUE SABER VELOCIDAD ORBIAL DE UN SAÉLIE: g c gr Mm v 0 F F G m v PERIODO DE UN SAÉLIE: v g0r PESO DE UN SAÉLIE EN UNA ÓRBIA:

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

a) Datos extraídos: = m R m =3, = 9, = h s R s + R m g 0m = 3,7 m s -2

a) Datos extraídos: = m R m =3, = 9, = h s R s + R m g 0m = 3,7 m s -2 P1.- Un satélite de 500 kg de asa se ueve alededo de Mate, descibiendo una óbita cicula a 6 10 6 de su supeficie. abiendo que la aceleación de la gavedad en la supeficie de Mate es 3,7 /s y que su adio

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

CONTROL 1 2ªEVAL 2ºBACH

CONTROL 1 2ªEVAL 2ºBACH ONROL 1 ªEL ºH NO Nobe: echa: INSRUIONES Y RIERIOS ENERLES DE LIIIÓN La pueba consta de una opción, que incluye cuato peguntas. Se podá hace uso de calculadoa científica no pogaable. LIIIÓN: ada pegunta

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

1. Las gráficas nos informan

1. Las gráficas nos informan Nombre y apellidos: Puntuación: 1. Las gráficas nos informan Una partícula de 50 g de masa está realizando un movimiento armónico simple. La figura representa la elongación en función del tiempo. 0,6 0,5

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

5. ROTACION; CINEMATICA Y DINAMICA

5. ROTACION; CINEMATICA Y DINAMICA 73 5. OTACION; CINEMATICA Y DINAMICA Los movimientos cuvilíneos se dan en el plano o en el espacio, son, po tanto, movimientos bi o incluso tidimensionales. Ello hace que paa expesa la posición sea necesaio

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

2º de Bachillerato Interacción Gravitatoria

2º de Bachillerato Interacción Gravitatoria Física EA º de Bacilleato Inteacción avitatoia.- Aveiua cuál seía la duación del año teeste en el caso supuesto que la iea se acecaa al Sol de manea que la distancia fuea un 0 % meno que la eal. Y si se

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

Soluciones ejercicios

Soluciones ejercicios Soluciones ejecicios Capítulo 1 adie es pefecto, luego si encuenta eoes, tenga la gentileza de infomanos Ejecicio 1.1 Un cuepo descibe una óbita cicula de adio R =100 m en tono a un punto fijo con apidez

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

CLASE 1. Fuerza Electrostática LEY DE COULOMB

CLASE 1. Fuerza Electrostática LEY DE COULOMB CLASE Fueza Electostática LEY DE COULOMB FQ Fisica II Sem.0- Definiciones Qué es ELECTRICIDAD?. f. Fís. Popiedad fundamental de la mateia que se manifiesta po la atacción o epulsión ente sus pates, oiginada

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

r r r dicha fuerza vale en módulo:

r r r dicha fuerza vale en módulo: Exaen de Física Magnetiso 3//4 ) a) Explique cóo es la fueza agnética que expeienta una caga La fueza agnética que expeienta una caga es: dicha fueza vale en ódulo: q v qvsen( α) donde: q es la caga de

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA CAO GAVIAOIO FCA 07 ANDAUCÍA 1. Un satélite atificial de 500 kg obita alededo de la una a una altua de 10 km sobe su supeficie y tada hoas en da una uelta completa. a) Calcule la masa de la una, azonando

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: a) Se dibujan las fuezas que actúan sobe el sistema. b) Se calcula cada fueza o vecto intensidad de campo. c) Se calcula la esultante

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física Física SOLUCIÓN DE LA RUEBA DE ACCESO AUTOR: Tomás Caballeo Rodíguez Opción A oblemas a) La aceleación de la gavedad en la supeficie del planeta seá: GM 6,67 0 Nm /kg 3 0 4 kg g p R p (3 0 6 m),

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

Interacción Electromagnética

Interacción Electromagnética Inteacción lectomagnética Campo léctico Campo Magnético Inducción lectomagnética Coulomb mpèe Faaday Lenz Maxwell La Fueza con que se ataen o epelen dos cagas es: Campo eléctico c. eléctico q 3 F 1 Una

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

Contenidos de Clases Dictadas. Grupo G2. Prof. F.H. Sánchez. Martes 25/03/2014

Contenidos de Clases Dictadas. Grupo G2. Prof. F.H. Sánchez. Martes 25/03/2014 Contenidos de Clases Dictadas. Gupo G. Pof. F.H. Sánchez. Mates 5/3/4 Beve intoducción a la Física. Conceptos antiguos y enacentistas. Sujeto de estudio de la Física. Ámbitos de validez de las teoías físicas.

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

2º de Bachillerato Óptica Física

2º de Bachillerato Óptica Física Física TEMA 4 º de Bacilleato Óptica Física.- Aveigua el tiempo que tadaá la luz oiginada en el Sol en llega a la Tiea si el diámeto de la óbita que ésta descibe alededo del Sol es de 99350000 Km. Y en

Más detalles

BOLETÍN DE PROBLEMAS Campo Gravitatorio Segundo de Bachillerato

BOLETÍN DE PROBLEMAS Campo Gravitatorio Segundo de Bachillerato http://www.juntadeandalucia.es/aveoes/copenico/fisica.ht onda de las Huetas. Écija. e-ail: ec@tiscali.es BOLÍN D POBLMAS Capo Gavitatoio Seundo de Bachilleato POBLMAS SULOS. º Si se considea que la iea

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación

PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación OPCIÓN A FÍSICA PAEG UCLM- JUNIO 06 PROBLEMA.- Una onda viajea que se popaga po un medio elástico está descita po la ecuación y x, t = 0 sin 5πx 4000πt + π/6 Las unidades de x son metos, las de t son segundos

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Campos eléctricos y Magnéticos

Campos eléctricos y Magnéticos Campos elécticos y Magnéticos Fueza eléctica: es la fueza de atacción ejecida ente dos o más patículas cagadas. La fueza eléctica no sólo mantiene al electón ceca del núcleo, también mantiene a los átomos

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actiidades del final de la unidad. Una patícula de masa m, situada en un punto A, se muee en línea ecta hacia oto punto B, en una egión en la que existe un campo gaitatoio ceado po una masa. Si el alo

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

Te has casado y estas buscando comprar un terreno. Where? Why? Cuidado con la suegra..

Te has casado y estas buscando comprar un terreno. Where? Why? Cuidado con la suegra.. Cuso: FISIC II C 31U 1 I Pofeso: JOUIN SLCEDO jsalcedo@uni.edu.pe Te has casado y estas uscando compa un teeno. Whee? Why? Cuidado con la suega.. Imagina estas llevando una pieda hacia el ceo. Conta quien

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

FÍSICA II: 1º Curso Grado de QUÍMICA

FÍSICA II: 1º Curso Grado de QUÍMICA FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula

Más detalles

Trabajo y energía. Introducción

Trabajo y energía. Introducción Tabajo y enegía. Intoducción En los temas anteioes hemos analizado el movimiento de los cuepos (cinemática) y las causas que lo poducen (leyes de Newton). Desde un punto de vista fundamental, con estos

Más detalles

PAU SETEMBRO 2012 FÍSICA

PAU SETEMBRO 2012 FÍSICA PAU Código: 25 SETEMBRO 2012 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teóica o páctica). Poblemas 6 puntos (1 cada apatado). No se valoaá la simple anotación de un ítem cómo solución

Más detalles

Ley de Gravitación de Newton. Ley de Gravitación Universal

Ley de Gravitación de Newton. Ley de Gravitación Universal Ley de Gavitación de Newton Ley de Gavitación Univesal La fueza gavitacional ente dos masas m 1 y m 2, sepaadas po una distancia es F 12 = G m 1m 2 2 12 G = 6.67 10 11 Nm 2 /kg 2 es la constante de gavitación

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

[a] La aceleración en función de la elongación está dada por: ; al compararla con a = 9 2 x, se deduce que 2 =9 2 y =3 ( rad s ).

[a] La aceleración en función de la elongación está dada por: ; al compararla con a = 9 2 x, se deduce que 2 =9 2 y =3 ( rad s ). Nombre y apellidos: Puntuación: 1. La partícula describe un MAS Una partícula de 100 g de masa describe un movimiento armónico simple, a lo largo del eje X, con una amplitud de 20 cm y una aceleración

Más detalles

2º de Bachillerato Campo Eléctrico

2º de Bachillerato Campo Eléctrico Física TEM 6 º de achilleato ampo Eléctico.- Tes cagas elécticas puntuales iguales, de n, están situadas en el vacío ocupando los puntos cuyas coodenadas en metos son (,, (,4 y (,. alcula la fueza que

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1.- Halla la velocidad con que peneta un electón pependiculamente en un campo magnético de 5 x 10-6 T, si descibe una tayectoia cicula de 40 cm. Sol.: 3,5 x 10 5 m/s. 2.- Un

Más detalles

Expresión que permite despejar la masa del planeta en función de g y R. 2

Expresión que permite despejar la masa del planeta en función de g y R. 2 UNVESDADES ÚBLCAS DE LA COUNDAD DE ADD UEBA DE ACCESO A ESTUDOS UNVESTAOS (LOGSE) FÍSCA Septiembe 05 NSTUCCONES Y CTEOS GENEALES DE CALFCACÓN Después de lee atentamente todas las peguntas, el alumno debeá

Más detalles

MOVIMIENTO CIRCULAR UNIFORME. = t

MOVIMIENTO CIRCULAR UNIFORME. = t C U S O: FÍSICA Mención MATEIAL: FM-08 MOVIMIENTO CICULA UNIFOME Una patícula se encuenta en movimiento cicula, cuando su tayectoia es una cicunfeencia, como, po ejemplo, la tayectoia descita po una pieda

Más detalles

87. Un cierto campo de fuerzas viene dado por la expresión F 4y

87. Un cierto campo de fuerzas viene dado por la expresión F 4y Campos 5 81. El témino potencial, es elativamente modeno, dado que tampoco existía el de enegía potencial, que Helmholtz, denominaba tensión. Fue Rankine el que en 1842 (algunos histoiadoes de la ciencia,

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal 1 Poyecto PMME - Cuso 007 Instituto de Física Facultad de Ingenieía UdelaR TITULO MÁQUINA DE ATWOOD AUTORES Calos Anza Claudia Gacía Matín Rodiguez INTRODUCCIÓN: Se nos fue planteado un ejecicio

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles