[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

Tamaño: px
Comenzar la demostración a partir de la página:

Download "[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx"

Transcripción

1 Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de coodenadas. [a] Escibe la ecuación de la elongación, en función del tiempo, paa este movimiento. [b] Deduce la ecuación de la velocidad, en función del tiempo, y epeséntala gáficamente en la figua anteio. [c] Calcula las enegías cinética, potencial y mecánica de la patícula en el instante t =,2 s. [a] La elongación, en función del tiempo, está dada po una función del tipo: x(t) =A sen( t + o ). En este caso, de la gáfica se deduce que A =,2 m y que el peiodo T = 2 s, po lo que la fecuencia angula vale: = 2 T = ad s ; en la gáfica también se obseva que, paa t=, x =,2 m; llevando esta condición a la ecuación de la elongación queda:,2 =,2 sen o ; sen o =;. En consecuencia, la ecuación de la elongación es: x(t) =,2 sen t + 2 (m). [b] La ecuación de la velocidad se obtiene al deiva la elongación con especto al tiempo: v(t) = dx dt =,2 cos t + 2 (m/s). Paa epesenta esta función nos fijamos en algunos instantes de inteés, tal como se ecoge en la siguiente tabla: t (s) v (m/s),5 -,2π,5,2π 2 [c] La constante ecupeadoa es k =,5 2 ( N M ). Se calcula el valo de la elongación en ese instante: x(,2) =,2$sen(,7 ) =,6(m), con lo que la enegía potencial elástica es: E p = 2 kx2 = 2,5 2 (,6) 2 =6,32$ 2 (J). Po oto lado, la velocidad en ese instante es: v(,2) =,2 $cos(,7 ) =,37( m s) y la enegía cinética, E c = 2 mv2 = 2,5$,372 =3.42$ 2 (J). La enegía mecánica es la suma de ambas: E M =E c +E p =9,74$ 2 (J). Este esultado debe coincidi con el calculado mediante: E M = 2 ka2 = 2,5 2,2 2 =9,87$ 2 (J). {Página }

2 2. Las ondas amónicas también se suman Una onda amónica tansvesal está epesentada po la ecuación: y(x, t) =, 5sen(992t 6x), donde las distancias están dadas en m y el tiempo en s. [a] Deduce los valoes de la amplitud, la fecuencia y la longitud de onda de las vibaciones. [b] Halla la distancia ecoida po la onda en 3, s. [c] Escibe la ecuación de una onda idéntica a la anteio, peo que se popague en sentido contaio. [d] Halla la amplitud de la onda esultante de la intefeencia de las dos ondas anteioes: la del enunciado y la del apatado [c]. {AYUDA: sena + senb = 2sen A+B } 2 cos A B 2 [a] La expesión geneal de una onda amónica es: y(x,t) =A sen( t kx). Al compaala con la del enunciado, vemos que A =,5 m, =992( ad s ) y k =6(m ). La fecuencia es, entonces, = 2 = =37(Hz) y la longitud de onda, = 2 6 =,5(m). k = 2 [b] Se calcula la velocidad de popagación de la onda: v p = k = =332( m s), esultado al que también se llega mediante la expesión: v = $. La distancia ecoida po la onda en 3 s es, po lo tanto, x = vt = = 996 m. [c] La ecuación pedida se obtiene sencillamente cambiando el signo de la fase: y (x,t) =,5 sen(992t +6x). [d] La onda esultante se obtiene sumando las dos ondas: y T =y +y =,5[sen(992t 6x) +sen(992t +6x)]; paa utiliza la elación tigonomética de la ayuda, sea =992t A B ; po lo tanto, la ecuación de la A =992t 6x A+B 2 B =992t +6x 2 = 6x onda esultante es: y T (x,t) =,cos( 6x)sen(992t). Se ha obtenido un conjunto de MAS de amplitud vaiable: A T =, cos(6x) (ecueda que los cosenos de ángulos opuestos son iguales). Se tata de una onda estacionaia. {Página 2}

3 3. El pime satélite atificial [A] Desaolla el siguiente tema: Momento angula de una patícula. Momento de una fueza. Relación ente ambas. Incluye esquemas aclaatoios. [B] El 5 de octube de 957, la URSS lanzó el pime satélite atificial de la Tiea. Se infomó que daía vueltas alededo de la misma a una altua de 94 km sobe la supeficie teeste. Suponiendo que la óbita fuese cicula, calcula: [a] la apidez del satélite; [b] el peiodo del mismo; [c] el peso obital de una pieza del satélite de 7 kg de masa; [d] el momento angula (en módulo, diección y sentido) de dicha pieza del satélite. {DATOS: GM T = 4, 4 N m² kg - ; R T = 637 km} [A] Véase el libo y los apuntes de Física. [B] [a] La fueza gavitatoia se compota como fueza centípeta, po lo que, aplicando la 2ª ley de Newton al movimiento del satélite, queda: G MTm =m v2, de donde se deduce que. 2 v 2 =G MT El adio de la óbita es = =73(km) =7,3$ 6 (m). La apidez del satélite 4$ es, entonces, v = 4 7,3$ =7,4$ 3 ( m s). 6 [b] El peiodo del satélite se puede calcula también mediante la 2ª ley de Newton escibiendo la aceleación centípeta de foma adecuada. Sin embago, el pocedimiento más sencillo es: T = 2 v = 2 $7,3$6 7,4$ =6,2$ 3 (s)j,72(h). 3 [c] El peso es igual al poducto de la masa po la intensidad del campo gavitatoio a esa distancia: P =mg =m GMT 4$ =7$ 4. 2 (7,3$ 6)2 =524(N) [d] El momento angula de una patícula especto a un punto es igual al poducto vectoial del vecto de posición po el momento lineal, esto es, L O =%mv. Al se la óbita cicula, los vectoes y p son pependiculaes, po lo que el módulo del momento angula vale: L O =mv =7,3$ 6 $7$7,4$ 3 kg$m2 2 =3,79$ s. La diección y el sentido se muestan en la figua siguiente: z L O Cento de la Tiea x O m Satélite v y p {Página 3}

4 4. Qué pasa con los macianos? [A] Relaciona la enegía de un satélite y las óbitas que descibe. Velocidad de escape. [B] El adio del planeta Mate es de 3,32 6 m y la aceleación de la gavedad en un punto de su supeficie vale 3,87 m/s². [a] Halla la masa de Mate. [b] Cuál es la velocidad de escape de Mate? [c] Si se lanza desde la supeficie de Mate un poyectil con la velocidad de escape, cuál seá su apidez cuando diste del cento del planeta 7 m? {DATO: G = 6,67 - N m² kg -2 } [A] Véase el libo y los apuntes de Física. [B] [a] La intensidad del campo gavitatoio en la supeficie de Mate está dada po: g o = GM R, de 2 donde se deduce que la masa de Mate seá: M = gor2 6,67$ =6,4$ 23 (kg). G = 3,87$(3,32$6 ) 2 [b] La expesión matemática de la velocidad de escape puede se deducida de la ley de consevación de la enegía mecánica: E M, supeficie maciana = E M,infinito ; G Mm R + 2 mv 2 esc =, de donde se deduce, tas simplifica la masa del objeto, que: v esc = 2GM R = 2$6,67$ $6,4$ 23 3,32$ =5.7$ 3 ( m s). 6 [c] Se cumple que la enegía mecánica pemanece constante: E M,inicial = E M,final ; G Mm R + 2 mv 2 esc = G Mm + 2 mv2. El miembo de la deecha es nulo, como se acaba de ve en el apatado anteio. Si se simplifica la masa del poyectil, queda: G M + 2 v2 =, de donde se deduce que la apidez buscada es: v = 2GM = 2$6,67$ $6,4$ 23 7 =2,92$ 3 ( m s) v esc v 7 m (El dibujo no está hecho a escala) {Página 4}

5 5. Fueza ejecida po un dipolo [A] Ley de Coulomb: expesión y significado. [B] Un dipolo está fomado po dos cagas puntuales, +q y -q, que se encuentan fijas en los puntos (-2, ) m y (2, ) m, espectivamente. Calcula la fueza esultante sobe una tecea caga puntual +q en los puntos M (, ) m y N (2, 3) m. Se supone conocido el valo de k. [A] Véase el libo y los apuntes de Física. [B] En pime luga, se taza un esquema con la situación descita. F F + y N(2,3) θ +q F + F +x 5 m F - +q +q F θ + F - (-2,) (2,) M(,) -q Punto M Se dibuja las fuezas y se calcula sus módulos: F + =k q2 ( 9 N) ; F =k q2 ( N). Dado que estas dos fuezas tienen la misma diección y el mismo sentido, la fueza esultante, hoizontal y hacia la deecha, tiene como módulo la suma de los módulos: F T =k q2 9 +k q2 = 9 kq 2 (N). Punto N Se dibuja las fuezas y se calcula sus módulos: F + =k q2 ( 25 N)F ; =k q2 ( 9 N). Se deducen los módulos de las componentes de la pimea de ellas: F +,x =F + $cos =k q = 4kq2 ( 25 N) F +,y =F + $sen =k q = 3kq2 ( 25 N) Las componentes de la fueza esultante son, entonces, F T,x = 4kq2 ( 25 N) F T,y = 3kq2 25 k q2 9 = 25kq 98 2 (N) F T =,32kq 2 i,87kq 2 j(n) El módulo de esta fueza es: F T =kq 2,32 2 +(,87) 2 =,93kq 2 (N). La diección y el sentido puede establecese a pati del ángulo que foma la diección de la fueza con el semieje +OX: tg =,87,32 = 2,72; = 7 o =29 o. {Página 5}

6 6. Consevación de la enegía con fuezas elécticas Un positón (la antipatícula del electón) tiene una masa de 9, -3 kg y una caga de +,6-9 C. Imagina que un positón se desplaza en las cecanías de una patícula alfa, cuya caga es de +3,2-9 C. La masa de la patícula alfa es vaios miles de veces mayo que la del positón, po lo que consideaemos que está en eposo y que sive como sistema de efeencia. Cuando el positón está a, - m de la patícula alfa, se aleja diectamente de ésta con una apidez de 3, 6 m/s. [a] Cuál es la apidez del positón cuando las dos patículas están a 2, - m y cuando se encuentan a 3, - m una de la ota? [b] Cuál es la apidez del positón cuando está muy, muy lejos de la patícula alfa? DATO: Constante de Coulomb: K = 9 9 N.m².C -2 } [a] Se hace un esquema del fenómeno descito. Patícula α m Positón A B C 2 m 3 m El positón evoluciona en un campo consevativo, po lo que la enegía mecánica pemanece constante. Así, E M (A) = E M (B), esto es, 2mv 2 A +k q qp A = 2mv 2 B +k q qp B ; 29,$ 3 $ (3$ 6 ) 2 +9$ 95,2$ 38 = 29,$ 3 v ; B2 +9$ 95,2$ 38 2$ 4,$ 8 +4,6$ 8 =4,56$ 3 v 2 B +2,3$ 8 ; 6,4$ 8 6,4$ 8 =4,56$ 3 v 2 B ; v B = 4,56$ =3,75$ 6 ( m s). 3 De manea análoga, E M (A) = E M (C), po lo que: 2mv 2 A +k q qp A = 2mv 2 C +k q qp ; 29,$ 3 $ (3$ 6 ) 2 +9$ 95,2$ 38 = 29,$ 3 v 2 C +9$ 95,2$ 38 3$ 4,$ 8 +4,6$ 8 =4,56$ 3 v 2 C +,54$ 8 7,7$ 8 7,7$ 8 =4,56$ 3 v C2 ; v C = 4,56$ =3,97$ 6 ( m s). 3 Estos esultados son coheentes con el hecho de que las patículas se epelen. C ; [b] Hay que entende ahoa que cuando el positón se encuenta muy, muy lejos, su enegía potencial eléctica es nula; po lo tanto, E M (A) = E M ( ), 2mv 2 A +k q qp A = 2 2mv. Apovechando los cálculos anteioes, 8,7$ 8 =4,56$ 3 2 v B ; v = 8,7$ 8 4,56$ =4,37$ 6 ( m s). 3 {Página 6}

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

1. Las gráficas nos informan

1. Las gráficas nos informan Nombre y apellidos: Puntuación: 1. Las gráficas nos informan Una partícula de 50 g de masa está realizando un movimiento armónico simple. La figura representa la elongación en función del tiempo. 0,6 0,5

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Soluciones ejercicios

Soluciones ejercicios Soluciones ejecicios Capítulo 1 adie es pefecto, luego si encuenta eoes, tenga la gentileza de infomanos Ejecicio 1.1 Un cuepo descibe una óbita cicula de adio R =100 m en tono a un punto fijo con apidez

Más detalles

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA CAO GAVIAOIO FCA 07 ANDAUCÍA 1. Un satélite atificial de 500 kg obita alededo de la una a una altua de 10 km sobe su supeficie y tada hoas en da una uelta completa. a) Calcule la masa de la una, azonando

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación

PROBLEMA 1.- Una onda viajera que se propaga por un medio elástico está descrita por la ecuación OPCIÓN A FÍSICA PAEG UCLM- JUNIO 06 PROBLEMA.- Una onda viajea que se popaga po un medio elástico está descita po la ecuación y x, t = 0 sin 5πx 4000πt + π/6 Las unidades de x son metos, las de t son segundos

Más detalles

BOLETÍN DE PROBLEMAS Campo Gravitatorio Segundo de Bachillerato

BOLETÍN DE PROBLEMAS Campo Gravitatorio Segundo de Bachillerato http://www.juntadeandalucia.es/aveoes/copenico/fisica.ht onda de las Huetas. Écija. e-ail: ec@tiscali.es BOLÍN D POBLMAS Capo Gavitatoio Seundo de Bachilleato POBLMAS SULOS. º Si se considea que la iea

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actiidades del final de la unidad. Una patícula de masa m, situada en un punto A, se muee en línea ecta hacia oto punto B, en una egión en la que existe un campo gaitatoio ceado po una masa. Si el alo

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

Expresión que permite despejar la masa del planeta en función de g y R. 2

Expresión que permite despejar la masa del planeta en función de g y R. 2 UNVESDADES ÚBLCAS DE LA COUNDAD DE ADD UEBA DE ACCESO A ESTUDOS UNVESTAOS (LOGSE) FÍSCA Septiembe 05 NSTUCCONES Y CTEOS GENEALES DE CALFCACÓN Después de lee atentamente todas las peguntas, el alumno debeá

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U. -- 0 - - 03. N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea:

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

i + 5 j ( 2) b) El trabajo para desplazar una masa de 2 kg desde el punto O al punto P será: ) = J U P = 6,

i + 5 j ( 2) b) El trabajo para desplazar una masa de 2 kg desde el punto O al punto P será: ) = J U P = 6, 1. (Andalucía, Jun. 016) Dos patículas de masas m 1 3 kg y m 5 kg se encentan situadas en los puntos P 1 (-,1) y P (3,0), espectivamente. a) Repesente el campo gavitatoio esultante en el punto O (0,0)

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal 1 Poyecto PMME - Cuso 007 Instituto de Física Facultad de Ingenieía UdelaR TITULO MÁQUINA DE ATWOOD AUTORES Calos Anza Claudia Gacía Matín Rodiguez INTRODUCCIÓN: Se nos fue planteado un ejecicio

Más detalles

[a] La aceleración en función de la elongación está dada por: ; al compararla con a = 9 2 x, se deduce que 2 =9 2 y =3 ( rad s ).

[a] La aceleración en función de la elongación está dada por: ; al compararla con a = 9 2 x, se deduce que 2 =9 2 y =3 ( rad s ). Nombre y apellidos: Puntuación: 1. La partícula describe un MAS Una partícula de 100 g de masa describe un movimiento armónico simple, a lo largo del eje X, con una amplitud de 20 cm y una aceleración

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

MOVIMIENTO CIRCULAR UNIFORME. = t

MOVIMIENTO CIRCULAR UNIFORME. = t C U S O: FÍSICA Mención MATEIAL: FM-08 MOVIMIENTO CICULA UNIFOME Una patícula se encuenta en movimiento cicula, cuando su tayectoia es una cicunfeencia, como, po ejemplo, la tayectoia descita po una pieda

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA Cuso 008 Páctico IV Movimiento Cental NOTA: Los siguientes ejecicios están odenados po tema y, dento de cada tema, en un oden que se coesponde con el que los temas

Más detalles

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía Dpto. de Ingenieía Catogáfica la adiación Calos Pinilla Ruiz 1 lección 2 Ingenieía Técnica en Topogafía la adiación Calos Pinilla Ruiz 2 Dpto. de Ingenieía Catogáfica sumaio Ingenieía Técnica en Topogafía

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

Magnetismo Módulo 1. Los imanes son capaces de atraer pequeños pedazos de hierro. Presentan dos polos uno llamado Norte y otro llamado Sur.

Magnetismo Módulo 1. Los imanes son capaces de atraer pequeños pedazos de hierro. Presentan dos polos uno llamado Norte y otro llamado Sur. A.Paniagua-H.Poblete Física 21 Campo Magnético Magnetismo Módulo 1 Los imanes son capaces de atae pequeños pedazos de hieo. Pesentan dos polos uno llamado Note y oto llamado Su. Si el imán está ubicada

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

MOVIMIENTO DE LA PELOTA

MOVIMIENTO DE LA PELOTA MOVIMIENTO DE LA PELOTA Un niño golpea una pelota de 5 gamos de manea que, sale despedida con una elocidad de 12 m/s desde una altua de 1 5 m sobe el suelo. Se pide : a) Fueza o fuezas que actúan sobe

Más detalles

Movimientos planetarios

Movimientos planetarios Movimientos planetaios Teoías geocénticas: La Tiea es el cento del Univeso Aistóteles (384 322 a.c.). Esfeas concénticas. Ptolomeo (100 170 d.c.). Dos movimientos: epiciclo y defeente Teoías heliocénticas:

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1.- Halla la velocidad con que peneta un electón pependiculamente en un campo magnético de 5 x 10-6 T, si descibe una tayectoia cicula de 40 cm. Sol.: 3,5 x 10 5 m/s. 2.- Un

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2007

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2007 I.E.S. Al-Ándalus. Aahal. Sevilla. Dpto. Física y Química. Selectividad Andalucía. Física. Junio 007-1 UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 007 OPCIÓN A: 1. Po dos conductoes

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36

Campo Eléctrico. 4πε. 10 i + 0 j m / s ; +3, J ; 0,21 m;3,36 http://www.educa.aagob.es/iesfgcza/depat/depfiqui.htm I.E.S. Fancisco Gande Covián Campo Eléctico mailto:lotizdeo@hotmail.com 26 de septiembe de 29 Física 2ªBachille Campo Eléctico 1.- Nuesta expeiencia

Más detalles

Introducción a la Física moderna

Introducción a la Física moderna Intoducción a la Física modena A comienzos del siglo XX, dos evoluciones en Física la Teoía de la Relatividad y la Física uántica. La pimea extiende su ámbito de aplicación a la física de las altas velocidades,

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 FÍSICA. CÓDIGO 149

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 FÍSICA. CÓDIGO 149 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERAO LOE Septiembe 01 FÍSICA. CÓDIGO 149 Escoge uno de los dos exámenes popuestos (opción A u opción B) y contesta a todas las peguntas planteadas

Más detalles

CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE

CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE CONTINUACION UNIDAD # II: FÍSICA INTRODUCTORIA TIRO VERTICAL Y CAIDA LIBRE OJETOS QUE CAEN LIBREMENTE En ausencia de esistencia de aie, todos los objetos que se dejan cae ceca de la supeicie de la tiea

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO acultad de Ciencias Cuso 010-011 Gado de Óptica Optoetía SOLUCIONES PROLEMAS ÍSICA. TEMA 4: CAMPO MAGNÉTICO 1. Un electón ( = 9,1 10-31 kg; q = -1,6 10-19 C) se lanza desde el oigen de coodenadas en la

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

TEMA 3. CAMPO MAGNÉTICO.

TEMA 3. CAMPO MAGNÉTICO. Física º Bachilleato TEMA 3. CAMPO MAGNÉTICO. 0. INTRODUCCIÓN. NATURALEZA DEL MAGNETISMO. Hasta ahoa en el cuso hemos estudiado dos tipos de inteacciones: gavitatoia y electostática. La pimea se manifestaba

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

TEMA 1: CAMPO ELÉCTRICO

TEMA 1: CAMPO ELÉCTRICO Concepto de campo eléctico: DIFÍCIL RAZONES: - El se humano no dispone de detectoes Fig 23.0, Tiple 5ª Ed. - Es una magnitud vectoial - diección y sentido - módulo - Es una magnitud vectoial que puede

Más detalles

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Rotaciones Leyes de Newton. III Jaime Feliciano Henández Univesidad Autónoma Metopolitana - Iztapalapa México, D. F. 15 de agosto de 2012 INTRODUCCIÓN. La pimea Ley de Newton explica qué le sucede

Más detalles

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S.

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S. 30/03/016 UNIVRSIDAD AUTONOMA JUAN MISAL SARACHO ACULTAD D CINCIAS Y TCNOLOGIA CARRRA D INGNIRIA CIVIL ISICA III CIV 1 DOCNT: ING. JOL PACO S. Capitulo II L CAMPO LCTRICO 1 30/03/016 CONTNIDO.1. Campos

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

a) Concepto Es toda acción de capaz de cambiar el estado de reposo o movimiento de un cuerpo, o de producir en el alguna deformación.

a) Concepto Es toda acción de capaz de cambiar el estado de reposo o movimiento de un cuerpo, o de producir en el alguna deformación. FUERZAS 1- NAURALEZA DE LAS FUERZAS a) Concepto Es toda acción de capaz de cambia el estado de eposo o movimiento de un cuepo, o de poduci en el alguna defomación. b) Caácte vectoial Los efectos de una

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

Dinámica del movimiento circular uniforme

Dinámica del movimiento circular uniforme Dinámica del moimiento cicula unifome 1 5.1 Moimiento cicula unifome Definición: el moimiento cicula unifome es el moimiento de un objeto desplazándose con apidez constante en una tayectoia cicula. 5.1

Más detalles

Fuerza conservativa Una fuerza es conservativa si el trabajo total que realiza sobre una partícula es nulo al realizar una trayectoria cerrada

Fuerza conservativa Una fuerza es conservativa si el trabajo total que realiza sobre una partícula es nulo al realizar una trayectoria cerrada Cuso: ISICA I CB 3 I ueza consevativa na fueza es consevativa si el tabajo total que ealiza sobe una patícula es nulo al ealiza una tayectoia ceada Altenativa na fueza es consevativa si es independiente

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

Interacción gravitatoria

Interacción gravitatoria Capítulo 1 Inteacción gavitatoia 1.1. Conceptos pevios. Ley de Gavitación Univesal: La fueza con que se ataen dos masas viene expesada po: GMm F = donde u es un vecto unitaio adial. En el caso de quee

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles