PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR"

Transcripción

1 PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR. MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR.... OBJETIOS....2 MODELIZACIÓN....3 IDENTIFICACIÓN EXPERIMENTACIÓN PRECAUCIONES BIBLIOGRAFÍA... 4 Asignur: Siss Linls. Ingnirí n Auoáic y Elcrónic Indusril. ESIDE. Ár d Auoáic. Curso 26-27

2

3 Prácic Nº4. Modlizción idnificción d los práros d un srvooor. MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR. OBJETIOS Objivos globls Modlizr l srvooor d cc conroldo por rdur Idnificr los práros crcrísicos dl iso rificr los rsuldos din Siulink.2 MODELIZACIÓN S pud obnr un odlo áico pr l srvooor cc conroldo por rdur considrndo l circuio quivln d l figur., dond v () i () rprsnn, rspcivn, l nsión d nrd y l corrin n l circuio d rdur, ω() s l vlocidd d giro y J y f son, rspcivn, l inrci d crg y l fricción. No s difícil dosrr (Dorf, 2) qu: Ω( = ( τ s )( τ s ) ( R f ) R f ( ( τ s ) f T ( τ s )( τ s ) ( R f ) d dond τ = L R, τ = J f, s l pr consn, y T d rprsn l pr d prurbción. L odlizción s pud siplificr l digr d bloqus osrdo n l figur.2. () i R L v () () ω() J f Figur.. Circuio quivln d un oor cc conroldo por rdur. Lbororio d Siss d Mdid y Rgulción 4-

4 Siss Linls. Cudrno d Prácics. Prurbción ( T d ( R L s T ( T L ( Js b locidd Ω( s Posición Θ( b Por no, Figur.2. Digr dl srvooor cc conroldo por rdur. G Ω( ( ( = =, sin brgo pr l yorí d ( R L ( [ Js b) ] los srvooors cc, l consn d ipo d l rdur τ = L R s dsprcibl, y por no, Ω( G( = = ( quivln s = R J ( R b ) τ. b b ( R b ) τs Finln, un odlo ás sipl dl sis pud sr: d Ω( = ( Td ( τs τs b, dond l consn d ipo.3 IDENTIFICACIÓN El odlo prsndo n l figur.3 su qu l pln s linl. Sin brgo, n gnrl, so no s ciro pr odos los vlors d v () y por lo no priro db sudirs l coporino sáico dl sis y coo conscunci obnr l rngo d v () pr l qu l sis s linl. Prurbción T d ( ( τs locidd Ω( ( Figur.3. Digr d bloqus dl srvooor cc conroldo. 4-2 ESIDE. Dprno d Auoáic

5 Prácic Nº4. Modlizción idnificción d los práros d un srvooor Exprino pr nconrr l rgión linl d oprción y l gnnci sáic L rgión linl s pud drinr d l siguin nr: Aplicr nsions consns ( ) ls rinls d l rdur y rgisrr los corrspondins vlors n sdo scionrio ( ) n los rinls dl córo. Rprsnr los punos (, ) y obnr un rc din l éodo d ínios cudrdos. El rngo linl srá qul qu jor s proxi l rc. Por no l odlo no linl incluy l zon ur d l figur.4. Prurbción T d ( ( τs locidd Ω( ( Figur.4. Digr d bloqus con un bloqu no linl. Máicn, l zon ur s pud xprsr coo: v ( ) = [ v ( ) ] v ( ) > v ( ) < L conscunci d l inroducción d l zon ur s qu l odlo linl d l figur.3 s sólo válido n l rgión linl y, por lo no, un jor dscripción dl sis srá proporciond por l digr d bloqus d l figur.4. Pr clculr l vlor d s pud uilizr l siguin xprsión: = n i= n i i Exprino pr drinr l práro Dividir l gnnci sáic nr l vlor d l snsibilidd d l codino Lbororio d Siss d Mdid y Rgulción 4-3

6 Siss Linls. Cudrno d Prácics. Idnificción d τ prir d l rspus rnsiori un nrd sclón L rspus d un sis d prir ordn n un nrd sclón sá dd por: v ( ) = τ τ s l ipo qu rd l sis n lcnzr l 63% dl vlor finl.4 EXPERIMENTACIÓN Obng l odlo dl sis Coprub los rsuldos xprinls con l odlo obnido n Siulink.5 PRECAUCIONES Alinr dcudn odos los ódulos. No ncndr ls funs d linción hs sgurrs d qu odo sá bin concdo y los práros d los lnos bin jusdos. Concr ods ls rfrncis d los lnos concdos..6. BIBLIOGRAFÍA Jcob, Doiniqu. Régulion PID n gni lécriqu. Éuds d cs. Ed. Ellipss, 2. Dorf, Richrd. Modrn Conrol Syss, 9 h diion, Prnic Hll, ESIDE. Dprno d Auoáic

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr

Más detalles

PRÁCTICA 3 LEYES DE NEWTON

PRÁCTICA 3 LEYES DE NEWTON Fundmenos Físicos de l Inenierí Inenierí Indusril Prácics de Lbororio PRÁCTIC 3 LEYES DE NEWTON 3 OJETIVO- Deerminr ls leyes que rien l relciones espcio-iempo y velocidd-iempo en movimienos uniformemene

Más detalles

Observabilidad. U.P.M.-DISAM P. Campoy Control en el Espacio de Estado 2

Observabilidad. U.P.M.-DISAM P. Campoy Control en el Espacio de Estado 2 Observbilidd Inroducción Definiciones Observbilidd en sisems lineles Observbilidd en sisems lineles e invrines. Subespcio no-observble Subsisem observble Seprción del subsisem conrolble y observble U.P.M.-DISAM

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

Medicamentos de liberación modificada

Medicamentos de liberación modificada Mdicmnos d librción modificd Inroducción l frmcocinéic d los Sisms d Librción onrold Dr. Mónic Millán Jiménz Mdicmnos d librción modificd FORMAS FARMAÉUTIAS DE LIBERAIÓN INMEDIATA DOSIS ÚNIA DOSIS MÚLTIPLE

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Ing. Mario R. Modesti

Ing. Mario R. Modesti UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

CÁLCULO DE LÍNEAS ELÉCTRICAS

CÁLCULO DE LÍNEAS ELÉCTRICAS El cálculo d línas consis n drminar la scción mínima normalizada qu saisfac las siguins condicions: a) Capacidad érmica: Innsidad máxima admisibl. Vin drminada n ablas dl Rglamno Elcroécnico para Baja

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. Cmbio d vribl.. Por prs.. Funcions rcionls Cono

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilacions (9 hs). Moiino Arónico Sipl (MAS). Oscilacions Aoriguadas 3. Oscilacions forzadas y rsonancia 4. Suprposición d MAS. Furza d fricción iscosa. Oscilacions arónicas aoriguadas.3 Tipos

Más detalles

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f) 80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.

Más detalles

EJERCICIOS CÁLCULO DEL RANGO

EJERCICIOS CÁLCULO DEL RANGO elblogdeedeid: repso rices y deeries pág. curso - EJERCICIOS CÁLCULO DEL RNGO.- Clcul el rgo de ls siguiees rices: 9 b c d e Solució: ; b ; c ; d.- Clcul el rgo de ls siguiees rices: b c 9 d e f g h i

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD DE INGENIEÍA MECÁNICA Y EÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONO M.C. EIZABEH GPE. AA HDZ. M.C. OSÉ MANUE OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD

Más detalles

El problema que trata de resolver el agente que actúa sobre el capital humano, puede expresarse:

El problema que trata de resolver el agente que actúa sobre el capital humano, puede expresarse: CAPITAL FÍSICO CAPITAL HUMANO: UN JUEGO DIFERENCIAL Mª Dolors Soo Torrs Dprno d Econoí Aplicd Máics Univrsidd d lldolid -il: lolsoo@couvs Rón Frnánd Lchón Dprno d Econoí Aplicd Máics Univrsidd d lldolid

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D

Más detalles

REGIMEN PERMENENTE SENOIDAL

REGIMEN PERMENENTE SENOIDAL A.4. TEOÍA DE UTOS APÍTUO 8: EGEN PEENENTE SENODA ádra d Toría d ircuios Edición 05 8. Snoids y fasors. éodo sibólico. Esudiaros ahora l coporaino n régin prann snoidal, s dcir cuando sán alinados por

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FACULAD DE INGENIEÍA MECÁNICA Y ELÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONOL M.C. ELIZABEH GPE. LAA HDZ. M.C. OSÉ MANUEL OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO LEÓN

Más detalles

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

INTEGRAL DE RIEMANN-STIELTJES

INTEGRAL DE RIEMANN-STIELTJES Prof. Enrique Meus Nieves Docorndo en Educción Memáic. INTEGRAL DE RIEMANN-STIELTJES L inegrl de Riemnn-Sieljes es un exensión del concepo de Inegrl de Riemnn que permie mplir el poencil de es herrmien.

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

CLIMA CONFORT HIGROTÉRMICO MATERIALIDAD II TALLER DI BERNARDO

CLIMA CONFORT HIGROTÉRMICO MATERIALIDAD II TALLER DI BERNARDO CLIMA CONFORT HIGROTÉRMICO MATERIALIDAD II TALLER DI BERNARDO CONCEPTO DE CLIMA: CLIMA Y CONFORT HIGROTÉRMICO El stilo d ls dificcions db sr distinto n Egipto qu n Espñ, n Pontus, o n Rom, y n divrsos

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils

Más detalles

ANEXO 10 - Ejercicio de Planificación

ANEXO 10 - Ejercicio de Planificación ANEXO 10 - Ejrcicio Plnificción En l Mr Mium s sá rlizno un jrcicio plnificción con l fin sgurr un mnjo susnbl los rcursos y l consrvción los srvicios cológicos involucros. Pr llo s h runio l mjor informción

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

U.N.S.L Facultad de Ciencias Físico-Matemáticas y Naturales Carrera: INGENIERÍA EN SISTEMAS DIGITALES Materia: CONTROL I Abril 2007

U.N.S.L Facultad de Ciencias Físico-Matemáticas y Naturales Carrera: INGENIERÍA EN SISTEMAS DIGITALES Materia: CONTROL I Abril 2007 UNSL Fculd de Cienci Fíico-Meáic y Nurle Crrer: INGENIEÍA EN SISTEMAS DIGITALES Meri: CONTOL I Aril 2007 Prácico 2 Modeldo de Sie Fíico y Función de Trnferenci Pre 3: Modeldo en Frecuenci de Sie Elecroecánico

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionrio Deerminnes CTIVIDDES INICILES.I. usc ls relciones de dependenci linel enre ls fils columns de ls siguienes mrices e indic el vlor de su rngo. rg() F F Como C C C rg().ii. Comprue que ls siguienes

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_02. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CAPITULO º FUNCIONES DE VECTORES Y MATRICES_ Ing. Dgo Aljandro Paño G. M.Sc, Ph.D. Funcons d Marcs Torma: Sa f( una funcón arbrara dl scalar y sa A una marz con polnomo caracrísco: S dfn g( un polnomo

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

EXAMEN DE MATEMÁTICAS II (Recuperación)

EXAMEN DE MATEMÁTICAS II (Recuperación) º Bchillero Ciencis XN D TÁTICS II Recuperción) ÁLGBR. ), punos) Clsific en función del práero R, el sise de ecuciones: b) puno) Resuélvelo pr, si es posible.. Se un ri cudrd de orden. Si el deerinne de

Más detalles

Respuesta en régimen permanente a una entrada senoidal, resonancia y frecuencia natural de oscilación

Respuesta en régimen permanente a una entrada senoidal, resonancia y frecuencia natural de oscilación ur: Ig. Jrg lg - JTP Má zd Pág d 6 Fuld d Igrí Ursdd Nl d Mr dl Pl - rg spus rég pr u rd sdl, rs fru url d sló Supgs qu s u ss ll, r l p sl, rrzd pr su fuó prl, l uál grss u sñl.. s µ E grl, l sld dl ss

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS Unidd. Ingrls Indfinids TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. mbio d vribl.. Por prs..

Más detalles

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.-

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.- Vectores. dij so los sigietes ectores Si ) Ejercicio º.- ( ) : Oté ls coordeds de Ls coordeds de dos ectores so ). ; ; los qe estr l figr: siedo Dij los ectores ) Ejercicio º.- ( ) : oté ls coordeds de

Más detalles

Clase-11. Raíces: Sea n número natural mayor que 1 con a, números reales. Si n =a, se tiene

Clase-11. Raíces: Sea n número natural mayor que 1 con a, números reales. Si n =a, se tiene Ríces: Clse- Se úero turl or que co, úeros reles. Si =, se tiee que es l ríz eési de l que se deot ; es decir: dode es el ídice; l ctidd surdicl es l ríz; es decir l ríz es quel rel tl que elevdo l ídice,

Más detalles

Revisión: 0 Referencia a la Norma ISO 9001:2008 7.5.1 Página 1 de 19

Revisión: 0 Referencia a la Norma ISO 9001:2008 7.5.1 Página 1 de 19 Referencia a la Norma ISO 9001:2008 7.5.1 Página 1 de 19 Referencia a la Norma ISO 9001:2008 7.5.1 Página 2 de 19 Referencia a la Norma ISO 9001:2008 7.5.1 Página 3 de 19 Referencia a la Norma ISO 9001:2008

Más detalles

CAPITULO 7. de ejes y elementos accesorios. División 1. Generalidades. Revisión de métodos estáticos Métodos Dinámicos y por Fatiga

CAPITULO 7. de ejes y elementos accesorios. División 1. Generalidades. Revisión de métodos estáticos Métodos Dinámicos y por Fatiga CAPITULO 7 Proyecto y cálculo de ejes y eleentos ccesorios División 1 Generliddes. Revisión de étodos estáticos Métodos Dináicos y por Ftig Descripción En este cpítulo se drán herrients pr el cálculo de

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

Vc D 40 N = N = RPM N = 130 RPM. = 0,3(130) a m = 39 mm/min. = = = 2 n = 2 pasadas 2p 2(3)

Vc D 40 N = N = RPM N = 130 RPM. = 0,3(130) a m = 39 mm/min. = = = 2 n = 2 pasadas 2p 2(3) TORNOS TIEMPOS DE MAQUINADO PROBLEMAS SOBRE TIEMPOS DE MECANIZADO EN EL TORNEADO ) Se dese cilidrr u iez de 00 00 de logiud (ver figur), r dejrl 88 ilíeros de diáero. L 00 Uilizdo u oro cuy g de velociddes

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

Cátdr Mtátic II Espcilidds Mcáic - Quíic Ejrcicios d Aplicció d l drivd co rcts tgts orls ϕ Dds ls ucios ϕ S Hllr ϕ cos ϕ ϕ cos ϕ cos ϕ Qué águlo or co l j o ls tgts l curv puto cu scis s? θ θ. pr θ θ

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años).

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años). IES Mditáo d Málg Ju los loso Giotti DISTRITO UNIVERSITRIO DE Mdid MTEMÁTIS (Mos d ños. OPIÓN Ejcicio.- (. tos. S id l cució ticil do ls tics:. tos. Idic ls dios qu d t l ti.. tos. lcul l is -. c. tos.

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4

( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4 MATEMÁTICAS DE CÁLCULO BÁSICO OPERACIONES CON POTENCIAS. Coplet ls csills vcís. ( ) ( b) 8 8 8 ( ) ( ) ( : ) : ( ) 9 : : : (: ) ( : ) : 8 : : 0 : : ( ) ( ) ( ) ( ) : ( ) ( ) ( ) ( ) : ) ( ) 0 ( ) 0 ( :

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1 RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..

Más detalles

TEMA 4 ESTUDIO DE ONDAS PLANAS HOMOGÉNEAS

TEMA 4 ESTUDIO DE ONDAS PLANAS HOMOGÉNEAS Tm 4: Onds plns lcrodinámic TMA 4 STUDIO D ONDAS PLANAS OMOGÉNAS Migul Ángl Solno Vér lcrodinámic Tm 4: onds plns TMA 4: STUDIO D ONDAS PLANAS OMOGÉNAS 4. Inroducción n l cpíulo 3 s hn dsrrolldo l cucions

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO CSTILL Y LEÓN / JUNIO. LOGSE / MTEMÁTICS II / EXMEN COMPLETO Se proponen dos pruebs, B. Cd un de ells const de dos problems, PR- PR-, de cutro cuestiones, C-, C-, C- C-4. Cd problem tendrá un puntución

Más detalles

Jefe de Servicio de Estadística Económica y Sociodemográfica del Instituto Cantabro de Estadística. Doctor en Ciencias Económicas UNED

Jefe de Servicio de Estadística Económica y Sociodemográfica del Instituto Cantabro de Estadística. Doctor en Ciencias Económicas UNED Disño d filros linls pr nálisis conómico Disño d filros linls pr nálisis conómico bfrncisco Prr Rodrígu is licnsd undr Criv Commons Rconocimino-oComrcil Unpord Licns Frncisco Prr Rodrígu Jf d Srvicio d

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

- 2,5% de cargas verticales

- 2,5% de cargas verticales Drminación d la slz d las pards Espsor d las pards 11 cm (sin conar rvoqus) Eslz gomérica = λ g 27 Dond: Con: c λg = = disancia lir nr apoyos orizonals d la pard (nrpisos, ord suprior d la fundación) =

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real.

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real. 7.. Clculr el desrrollo de Tylor de grdo en = de l función f () = te t dt, y utilizrlo pr clculr proimdmente, te t dt. Dr un estimción del error cometido. ( 997). 7.. Clculr el siguiente ite funcionl cos

Más detalles

Introducción a la modelización con Bond Graphs

Introducción a la modelización con Bond Graphs Inroducción a la odlización con Bond Grahs Cádra d Dináica d los Sisas Físicos Do. d Elcrónica, FCEIA, UN Inroducción a la odlización con Bond Grahs -Cádra DSF - FCEIA - UN Caracrísicas Gnrals Los Bond

Más detalles

(periódica) Características: valor máximo (amplitud), frecuencia (50 Hz), fase,... Ventajas: producción, transmisión, transformadores,...

(periódica) Características: valor máximo (amplitud), frecuencia (50 Hz), fase,... Ventajas: producción, transmisión, transformadores,... 3..- orrene lern. Te 3.- - orrene orrenee lern () ( ) con ( ) ( + T) snusodl (rónc): (peródc) π sen( ω+ ϕ) con ω πν T w rceríscs: lor o (plud), frecuenc (5 Hz), fse,... enjs: produccón, rnssón, rnsfordores,...

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

Clase-09 Potencias: Una potencia es el producto de un número "a" por si mismo "n" veces lo que se denota por a n ; con a IR y n Z ; luego: n veces a

Clase-09 Potencias: Una potencia es el producto de un número a por si mismo n veces lo que se denota por a n ; con a IR y n Z ; luego: n veces a Clse-9 Potecis: U poteci es el producto de u úero "" por si iso "" veces lo que se deot por ; co IR y Z ; luego: dode "" se ll se, "" es el expoete y el producto oteer es l poteci.... veces Clculr plicdo

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA Nº SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. TEOREMA PRELIMINAR INTRODUCCIÓN.- Sism d cucios dircils lils co icógis d l orm P D P D P D P D P P D D... P... P... P D D D b b b dod ls P

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles