Integración Numérica. Las reglas de Simpson.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integración Numérica. Las reglas de Simpson."

Transcripción

1 Integrción Numéric. Ls regls de Simpson. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: web: Universidd: ITESM CEM

2 Tópicos 1 Introducción 2 Regl de Simpson 1/3 3 Regl de Simpson 3/8 4 Progrms MATLAB

3 Tópicos 1 Introducción 2 Regl de Simpson 1/3 3 Regl de Simpson 3/8 4 Progrms MATLAB

4 Regls de Simpson Pr mejorr l proximción con l regl del trpecio es necesrio hcer un segmentción más fin, Otr form pr obtener un estimción más exct de l integrl consiste en usr polinomios de grdo superior pr unir los puntos f() y f(b), Si hy otro punto l mitd entre f() y f(b), los tres puntos se pueden unir con un prbol (polinomio de segundo grdo), Si hy dos puntos igulmente espcidos entre f() y f(b), los cutro puntos se pueden unir medinte un polinomio de tercer grdo,

5 Regls de Simpson Pr mejorr l proximción con l regl del trpecio es necesrio hcer un segmentción más fin, Otr form pr obtener un estimción más exct de l integrl consiste en usr polinomios de grdo superior pr unir los puntos f() y f(b), Si hy otro punto l mitd entre f() y f(b), los tres puntos se pueden unir con un prbol (polinomio de segundo grdo), Si hy dos puntos igulmente espcidos entre f() y f(b), los cutro puntos se pueden unir medinte un polinomio de tercer grdo,

6 Regls de Simpson Pr mejorr l proximción con l regl del trpecio es necesrio hcer un segmentción más fin, Otr form pr obtener un estimción más exct de l integrl consiste en usr polinomios de grdo superior pr unir los puntos f() y f(b), Si hy otro punto l mitd entre f() y f(b), los tres puntos se pueden unir con un prbol (polinomio de segundo grdo), Si hy dos puntos igulmente espcidos entre f() y f(b), los cutro puntos se pueden unir medinte un polinomio de tercer grdo,

7 Regls de Simpson Pr mejorr l proximción con l regl del trpecio es necesrio hcer un segmentción más fin, Otr form pr obtener un estimción más exct de l integrl consiste en usr polinomios de grdo superior pr unir los puntos f() y f(b), Si hy otro punto l mitd entre f() y f(b), los tres puntos se pueden unir con un prbol (polinomio de segundo grdo), Si hy dos puntos igulmente espcidos entre f() y f(b), los cutro puntos se pueden unir medinte un polinomio de tercer grdo,

8 Integrl

9 Regls de Simpson Ls fórmuls que resultn de proximr l función integrndo por polinomios de orden superior se conocen como regls de Simpson.

10 Tópicos 1 Introducción 2 Regl de Simpson 1/3 3 Regl de Simpson 3/8 4 Progrms MATLAB

11 Regl de Simpson 1/3 L regl de Simpson 1/3 result de proximr l función integrndo por un polinomio de segundo grdo, I = f (x) dx f 2 (x) dx donde f 2 (x) es un polinomio de Lgrnge de segundo orden: f 2 (x) = (x x 1 )(x x 2 ) (x 0 x 1 )(x 0 x 2 ) f(x 0) + (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ) f(x 1) + (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) f(x 2) donde x 0 =, x 2 = b y x 1 = b+ 2 (punto l mitd entre y b)

12 Regl de Simpson 1/3 L regl de Simpson 1/3 result de proximr l función integrndo por un polinomio de segundo grdo, I = f (x) dx f 2 (x) dx donde f 2 (x) es un polinomio de Lgrnge de segundo orden: f 2 (x) = (x x 1 )(x x 2 ) (x 0 x 1 )(x 0 x 2 ) f(x 0) + (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ) f(x 1) + (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) f(x 2) donde x 0 =, x 2 = b y x 1 = b+ 2 (punto l mitd entre y b)

13 Regl de Simpson 1/3 L regl de Simpson 1/3 result de proximr l función integrndo por un polinomio de segundo grdo, I = f (x) dx f 2 (x) dx donde f 2 (x) es un polinomio de Lgrnge de segundo orden: f 2 (x) = (x x 1 )(x x 2 ) (x 0 x 1 )(x 0 x 2 ) f(x 0) + (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ) f(x 1) + (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) f(x 2) donde x 0 =, x 2 = b y x 1 = b+ 2 (punto l mitd entre y b)

14 Regl de Simpson 1/3 L regl de Simpson 1/3 result de proximr l función integrndo por un polinomio de segundo grdo, I = f (x) dx f 2 (x) dx donde f 2 (x) es un polinomio de Lgrnge de segundo orden: f 2 (x) = (x x 1 )(x x 2 ) (x 0 x 1 )(x 0 x 2 ) f(x 0) + (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ) f(x 1) + (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) f(x 2) donde x 0 =, x 2 = b y x 1 = b+ 2 (punto l mitd entre y b)

15 Regl de Simpson 1/3 L regl de Simpson 1/3 result de proximr l función integrndo por un polinomio de segundo grdo, I = f (x) dx f 2 (x) dx donde f 2 (x) es un polinomio de Lgrnge de segundo orden: f 2 (x) = (x x 1 )(x x 2 ) (x 0 x 1 )(x 0 x 2 ) f(x 0) + (x x 0)(x x 2 ) (x 1 x 0 )(x 1 x 2 ) f(x 1) + (x x 0)(x x 1 ) (x 2 x 0 )(x 2 x 1 ) f(x 2) donde x 0 =, x 2 = b y x 1 = b+ 2 (punto l mitd entre y b)

16 Regl de Simpson 1/3 I = 1 3 h [f(x 0) + 4f(x 1 ) + f(x 2 )] donde h = b 2. L regl de Simpson 1/3, es l segund fórmul de Newton-Cortes, L especificción 1/3 se origin del hecho de que h est multiplicd por 1/3.

17 Regl de Simpson 1/3 I = 1 3 h [f(x 0) + 4f(x 1 ) + f(x 2 )] donde h = b 2. L regl de Simpson 1/3, es l segund fórmul de Newton-Cortes, L especificción 1/3 se origin del hecho de que h est multiplicd por 1/3.

18 Regl de Simpson 1/3 I = 1 3 h [f(x 0) + 4f(x 1 ) + f(x 2 )] donde h = b 2. L regl de Simpson 1/3, es l segund fórmul de Newton-Cortes, L especificción 1/3 se origin del hecho de que h est multiplicd por 1/3.

19 Regl de Simpson 1/3 I = 1 3 h [f(x 0) + 4f(x 1 ) + f(x 2 )] donde h = b 2. L regl de Simpson 1/3, es l segund fórmul de Newton-Cortes, L especificción 1/3 se origin del hecho de que h est multiplicd por 1/3.

20 Regl de Simpson 1/3 I = (b ) }{{} Ancho f(x 0 ) + 4f(x 1 ) + f(x 2 ) } {{ 6 } Altur promedio

21 Regl de Simpson 1/3 I = (b ) }{{} Ancho f(x 0 ) + 4f(x 1 ) + f(x 2 ) } {{ 6 } Altur promedio

22 Regl de Simpson 1/3 multiple I = f (x) dx = x 2 x 0 f (x) dx + x 4 x 2 f (x) dx + + x n x n 2 f (x) dx I 2h f(x 0) + 4f(x 1 ) + f(x 2 ) + 2h f(x 2) + 4f(x 3 ) + f(x 4 ) h f(x n 2) + 4f(x n 1 ) + f(x n ) 6 +

23 Regl de Simpson 1/3 multiple I = f (x) dx = x 2 x 0 f (x) dx + x 4 x 2 f (x) dx + + x n x n 2 f (x) dx I 2h f(x 0) + 4f(x 1 ) + f(x 2 ) + 2h f(x 2) + 4f(x 3 ) + f(x 4 ) h f(x n 2) + 4f(x n 1 ) + f(x n ) 6 +

24 Regl de Simpson 1/3 multiple I = f (x) dx = x 2 x 0 f (x) dx + x 4 x 2 f (x) dx + + x n x n 2 f (x) dx I 2h f(x 0) + 4f(x 1 ) + f(x 2 ) + 2h f(x 2) + 4f(x 3 ) + f(x 4 ) h f(x n 2) + 4f(x n 1 ) + f(x n ) 6 +

25 Regl de Simpson 1/3 multiple I (b ) }{{} Ancho f (x 0 ) + 4 n 1 i=1,3,5,... f (x i ) + 2 n 2 j=2,4,6,... f (x j ) + f (x n ) } 3n {{ } Altur promedio

26 Tópicos 1 Introducción 2 Regl de Simpson 1/3 3 Regl de Simpson 3/8 4 Progrms MATLAB

27 Regl de Simpson 3/8 L regl de Simpson 3/8 result de proximr l función integrndo por un polinomio de tercer grdo, I = f (x) dx f 3 (x) dx I = 3 8 h [f(x 0) + 3f(x 1 ) + 3f(x 2 ) + f(x 3 )] donde h = b 3. L regl de Simpson 3/8, es l tercer fórmul de Newton-Cortes, L especificción 3/8 se origin del hecho de que h est multiplicd por 3/8.

28 Regl de Simpson 3/8 L regl de Simpson 3/8 result de proximr l función integrndo por un polinomio de tercer grdo, I = f (x) dx f 3 (x) dx I = 3 8 h [f(x 0) + 3f(x 1 ) + 3f(x 2 ) + f(x 3 )] donde h = b 3. L regl de Simpson 3/8, es l tercer fórmul de Newton-Cortes, L especificción 3/8 se origin del hecho de que h est multiplicd por 3/8.

29 Regl de Simpson 3/8 L regl de Simpson 3/8 result de proximr l función integrndo por un polinomio de tercer grdo, I = f (x) dx f 3 (x) dx I = 3 8 h [f(x 0) + 3f(x 1 ) + 3f(x 2 ) + f(x 3 )] donde h = b 3. L regl de Simpson 3/8, es l tercer fórmul de Newton-Cortes, L especificción 3/8 se origin del hecho de que h est multiplicd por 3/8.

30 Regl de Simpson 3/8 L regl de Simpson 3/8 result de proximr l función integrndo por un polinomio de tercer grdo, I = f (x) dx f 3 (x) dx I = 3 8 h [f(x 0) + 3f(x 1 ) + 3f(x 2 ) + f(x 3 )] donde h = b 3. L regl de Simpson 3/8, es l tercer fórmul de Newton-Cortes, L especificción 3/8 se origin del hecho de que h est multiplicd por 3/8.

31 Regl de Simpson 3/8 L regl de Simpson 3/8 result de proximr l función integrndo por un polinomio de tercer grdo, I = f (x) dx f 3 (x) dx I = 3 8 h [f(x 0) + 3f(x 1 ) + 3f(x 2 ) + f(x 3 )] donde h = b 3. L regl de Simpson 3/8, es l tercer fórmul de Newton-Cortes, L especificción 3/8 se origin del hecho de que h est multiplicd por 3/8.

32 Regl de Simpson 3/8 L regl de Simpson 3/8 result de proximr l función integrndo por un polinomio de tercer grdo, I = f (x) dx f 3 (x) dx I = 3 8 h [f(x 0) + 3f(x 1 ) + 3f(x 2 ) + f(x 3 )] donde h = b 3. L regl de Simpson 3/8, es l tercer fórmul de Newton-Cortes, L especificción 3/8 se origin del hecho de que h est multiplicd por 3/8.

33 Regl de Simpson 3/8 I = (b ) }{{} Ancho f(x 0 ) + 3f(x 1 ) + 3f(x 2 ) + f(x 3 ) } {{ 8 } Altur promedio

34 Regl de Simpson 3/8 I = (b ) }{{} Ancho f(x 0 ) + 3f(x 1 ) + 3f(x 2 ) + f(x 3 ) } {{ 8 } Altur promedio

35 Tópicos 1 Introducción 2 Regl de Simpson 1/3 3 Regl de Simpson 3/8 4 Progrms MATLAB

36 Progrm MATLAB: Regl de Simpson 1/3 function int simpson13 v1 ( F, xi, xf, np ) % int simpson13 v1 Nombre de l funcion % F f u n c i o n mtemtic de entrd % [ x i x f] I n t e r v l o de i n t e g r c i o n % np Numero de p r t i c i o n e s h=( xf x i ) / ( 2 np ) ; x =[ x i : h : x f ] ; n=size ( x, 2 ) ; I n t =0; j =0; for i =1:2: n 1 j = j +1; I ( j ) =1/3 h (F ( x ( i ) ) +4 F ( x ( i +1) ) +F ( x ( i +2) ) ) ; I n t = I n t + I ( j ) ; s l i d 1 =[ P r t i c i o n, num2str ( j ),, num2str ( I ( j ) ) ] ; disp ( s l i d 1 ) end Slid2 =[ I n t e g r l T o t l,, num2str ( I n t ) ] ; disp ( Slid2 ) end

37 Progrm MATLAB: Regl de Simpson 3/8 function int simpson38 v1 ( F, xi, xf, np ) % int simpson38 v1 Nombre de l funcion % F f u n c i o n mtemtic de entrd % [ x i x f] I n t e r v l o de i n t e g r c i o n % np Numero de p r t i c i o n e s h=( xf x i ) / ( 3 np ) ; x =[ x i : h : x f ] ; n=size ( x, 2 ) ; I n t =0; j =0; for i =1:3: n 1 j = j +1; I ( j ) =3/8 h (F ( x ( i ) ) +3 F ( x ( i +1) ) +3 F ( x ( i +2) ) +F ( x ( i +3) ) ) ; I n t = I n t + I ( j ) ; s l i d 1 =[ P r t i c i o n, num2str ( j ),, num2str ( I ( j ) ) ] ; disp ( s l i d 1 ) end Slid2 =[ I n t e g r l T o t l,, num2str ( I n t ) ] ; disp ( Slid2 ) end

38 Problem Clculr l integrl de l función: f (x) = 400x 5 900x x 3 200x x desde = 0 hst b = 0.8. Considere el vlor excto de l integrl igul :

Integración Numérica. La regla del trapecio.

Integración Numérica. La regla del trapecio. Integrción Numéric. L regl del trpecio. Curso: Métodos Numéricos en Ingenierí Profesor: Dr. José A. Otero Hernández Correo: j..otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidd: ITESM

Más detalles

Curso de Métodos Numéricos. Derivada Numérica

Curso de Métodos Numéricos. Derivada Numérica Curso de Métodos Numéricos. Derivada Numérica Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Jueves, 01 de octubre de 2014 Tópicos 1 Definición

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.

Más detalles

Aplicaciones del Cálculo diferencial e integral

Aplicaciones del Cálculo diferencial e integral Aplicciones del Cálculo diferencil e integrl Integrción numéric con Mxim http://euler.us.es/~rento/ Rento Álvrez-Nodrse Universidd de Sevill Rento Álvrez-Nodrse Universidd de Sevill Aplicciones del Cálculo

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: MAT 251 Integrción numéric: Regl del trpecio Método de Romberg Joquín Peñ (CIMAT) Métodos Numéricos (MAT 251) 19.10.2011 1 / 14 Integrción numéric Dd un función f : [, b] R continu, queremos

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA El principio de los métodos de integrción numeric, bsdos en ls fórmuls de Newton- Cotes, consiste en justr un un polinomio un conjunto de puntos y luego integrrlo. Al relizr dichs

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica Métodos Numéricos: Resumen y ejemplos em 3: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Mrzo 8, versión.4 Contenido. Fórmuls de cudrtur.

Más detalles

1. Fórmulas Básicas de Newton-Cotes

1. Fórmulas Básicas de Newton-Cotes Práctic # 6 MAT-122: Cálculo Diferencil e Integrl II, Dr. Porfirio Suñgu S. 1. Fórmuls Básics de Newton-Cotes Considere f : [, b] R diferencible ls veces que se necesri según cd método. Ddo el número de

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo: METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Complementos de Mtemátics, ITT Telemátic Tem 3. Deprtmento de Mtemátics, Universidd de Alclá Índice 1 básic 2 Obtención de ls regls de cudrtur 3 Error de cudrtur 4 Regls compuests Introducción Integrl

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

PRACTICA 7 Integración Numérica

PRACTICA 7 Integración Numérica PRACTICA 7 Integrción Numéric Fórmuls de tipo interpoltorio ) Tommos n+ puntos distintos, x i, i = 0,,..., n, del intervlo [,] ) Clculmos el polinomio de interpolción de l función f en los puntos x i 3)

Más detalles

Derivación e integración numéricas

Derivación e integración numéricas Cpítulo 4 Derivción e integrción numérics 4.1 Introducción A veces es necesrio clculr el vlor, L(f, que el funcionl L sign l función f perteneciente un conjunto F. Algunos ejemplos son los siguientes:

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

Cap ıtulo 4 Integraci on num erica

Cap ıtulo 4 Integraci on num erica Cpítulo 4 Integrción numéric Cpítulo 4 Integrción numéric Comenzremos por recordr lguns coss fundmentles sobre ls integrles. Si f(x) es un función continu en el intervlo finito I = [, b] entonces podemos

Más detalles

Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias

Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias Curso de Métodos Numéricos. Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Lunes, 11 de noviembre de 2014

Más detalles

En este capítulo estudiaremos algunos métodos numéricos para estimar el valor de una integral definida b I =

En este capítulo estudiaremos algunos métodos numéricos para estimar el valor de una integral definida b I = CAPÍTULO. INTEGRACIÓN NUMÉRICA INTRODUCCIÓN En este cpítulo estudiremos lgunos métodos numéricos pr estimr el vlor de un integrl definid I fd () Integrl en l cul el intervlo de integrción [, ] es finito,

Más detalles

Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 12/13. Problemas. Hoja 3

Dpto. de Matemáticas. CÁLCULO NUMÉRICO. Curso 12/13. Problemas. Hoja 3 Dpto. de Mtemátics. CÁLCULO NUMÉRICO. Curso 12/13 Problems. Hoj 3 Problem 1. Escrib explícitmente l mtriz de iterción M del método de Jcobi. Acotndo el rdio espectrl de M por l norm infinito dé un condición

Más detalles

Programación MATLAB: Programas y Funciones.

Programación MATLAB: Programas y Funciones. Programación MATLAB: Programas y Funciones. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

2. LAS INTEGRALES DEFINIDA E INDEFINIDA

2. LAS INTEGRALES DEFINIDA E INDEFINIDA 2. LAS INTEGRALES DEFINIDA E INDEFINIDA Ojetivo: El lumno identificrá los conceptos de ls integrles definid e indefinid y los plicrá en el cálculo y otención de integrles Notción sum Se k un numero rel

Más detalles

Regla del Trapecio Para comenzar, sólo dos puntos (a, f(a)) y (b, f(b)) e interpolación lineal resulta

Regla del Trapecio Para comenzar, sólo dos puntos (a, f(a)) y (b, f(b)) e interpolación lineal resulta Cpítulo IV Integrción Numéric IV.1. Cudrturs: Regls Simples L fórmuls de cudrtur o regls simples se obtienen por medio de interpolción polinomil: l función integrr se muestre, es decir, se tomn puntos

Más detalles

Sistema de ecuaciones algebraicas. Eliminación de Gauss.

Sistema de ecuaciones algebraicas. Eliminación de Gauss. Sistema de ecuaciones algebraicas. Eliminación de Gauss. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

15.1 Introducción 115

15.1 Introducción 115 Cpítulo 15 Integrción Numéric Resumen 15.0.3 En este cpítulo veremos un serie de técnics que se llmn métodos de cudrtur que permiten clculr integrles descomponiendo l integrl en l cudrtur numéric ms el

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

Programación MATLAB: Derivación e integración.

Programación MATLAB: Derivación e integración. Programación MATLAB: Derivación e integración. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

1 Aproximación de funciones por polinomios.

1 Aproximación de funciones por polinomios. GEODESIA Y FUNCIONES OTOGONALES Enrique Clero Curso GPS en Geodesi y Crtogrfí Crtgen de Indis Aproximción de funciones por polinomios. Consideremos el conjunto de funciones S = ; x; x ; x 3 ; x ; :::::

Más detalles

SEMANA 8: INTEGRAL DE RIEMANN

SEMANA 8: INTEGRAL DE RIEMANN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Introducción a la interpolación y a la integración numérica

Introducción a la interpolación y a la integración numérica Tem 3 Introducción l interpolción y l integrción numéric 3.1. Introducción l interpolción Un problem que se present con frecuenci en ls ciencis experimentles y en ingenierí es trtr de construir un función

Más detalles

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real.

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real. 7.. Clculr el desrrollo de Tylor de grdo en = de l función f () = te t dt, y utilizrlo pr clculr proimdmente, te t dt. Dr un estimción del error cometido. ( 997). 7.. Clculr el siguiente ite funcionl cos

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias

Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias Programación MATLAB: Derivación e integración. Ecuaciones diferenciales ordinarias Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

4.6. Teorema Fundamental del Cálculo

4.6. Teorema Fundamental del Cálculo Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un

Más detalles

Series de Taylor. Antes de comenzar con la series de Taylor, repasemos algunas propiedades importantes de las series infinitas.

Series de Taylor. Antes de comenzar con la series de Taylor, repasemos algunas propiedades importantes de las series infinitas. Semn 2 - Clse 5 15/1/1 Tem 1: Series Series de Tylor Antes de comenzr con l series de Tylor, repsemos lguns propieddes importntes de ls series infinits. 1. Algebr de series de potencis El álgebr elementl

Más detalles

LaCàN. Integración numérica. Laboratori de Càlcul Numèric (LaCàN) Versión de julio de 2011

LaCàN. Integración numérica. Laboratori de Càlcul Numèric (LaCàN) Versión de julio de 2011 Integrción numéric Lbortori de Càlcul Numèric (LCàN Versión 1. 8 de julio de 11 LCàN Índice 1. Conceptos generles 3 1.1. Introducción............................ 3 1.. Plntemiento generl......................

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

Curso de Métodos Numéricos. Ajuste de curvas. Regresión.

Curso de Métodos Numéricos. Ajuste de curvas. Regresión. Curso de Métodos Numéricos. Ajuste de curvas. Regresión. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Lunes, 20 de octubre de 2014 Tópicos

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 203-204 Contents

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Integración de funciones racionales

Integración de funciones racionales Integrción de funciones rcionles P() Se l integrl d donde P() y Q() son funciones polinómics. Si el grdo P() Q() se Q() divide P() entre Q() medinte el método de l cj y se otiene un cociente () y un resto

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

Métodos Numéricos con Calc y OpenOffice.org Basic (OOoBasic).

Métodos Numéricos con Calc y OpenOffice.org Basic (OOoBasic). Sección Tecnologís de Internet Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 9, N o. 009 Métodos Numéricos con Clc y OpenOffice.org Bsic (OOoBsic). Wlter Mor F. wmor@yhoo.com.mx

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

Curso de Métodos Numéricos. Introducción.

Curso de Métodos Numéricos. Introducción. Curso de Métodos Numéricos. Introducción. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad:

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación.

Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación. Programación MATLAB: Ecuaciones, polinomios, regresión e interpolación. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com

Más detalles

Así, integrando la fórmula de interpolación de Lagrange, que viene dada por : x x i. donde W K = l K ( x)dx con k A.

Así, integrando la fórmula de interpolación de Lagrange, que viene dada por : x x i. donde W K = l K ( x)dx con k A. . Introducción.. Integrción con ciss dds... Fóruls de integrción interpoltori.. Error de ls fóruls de integrción interpoltori..3. Fórul de Sipson.4. Error de l Fórul de Sipson.5. Fórul del Rectángulo o

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

PROGRAMA. a) Presentar en forma secuencialmente lógica las materias del Cálculo Integral y el estudio de Series.

PROGRAMA. a) Presentar en forma secuencialmente lógica las materias del Cálculo Integral y el estudio de Series. PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO INSTITUTO DE MATEMATICAS LUISA ABURTO HAGEMAN, Secretri Acdémic del Instituto de Mtemátics Certific este, PROGRAMA Asigntur MAT 223 CALCULO 2 I DATOS GENERALES

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

Práctica 12. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 12. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA APLICACIONES DE LA INTEGRAL Práctics Mtlb Práctic Objetivos Profundizr en l comprensión del concepto de integrción. Aplicr l integrl l cálculo de áres y volúmenes Comndos de Mtlb int Clcul de

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A Cálculo II Volúmenes de Sólidos M. en C. Ricrdo Romero Deprtmento de Ciencis Básics, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Progrm 1 Cálculo de volúmenes prtir de secciones trnsversles

Más detalles

Cambio de Variables en las Integrales Dobles

Cambio de Variables en las Integrales Dobles E.E.I. CÁLCULO II Y ECUACIONES DIFEENCIALES Curso 20-2 Clse 3 (7 fe. 202) Cmio de Vriles en ls Integrles Doles. Ejemplo: Áre de l elipse. 2. Cmio de Vriles I. Punto de ist de l trnsformción. 3. Cmio de

Más detalles

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos

2. Estimar el área debajo de la gráfica de f(x) = cosx desde x = 0 hasta x = π/2, usando cuatro rectángulos 1. Estimr el áre debjo de l gráfic de f(x) = cosx desde x = hst x = π/2, usndo cutro rectángulos de proximción y como puntos muestr, los extremos derechos de los intervlos. Dibuje l curv y los rectángulos

Más detalles

Raíces de ecuaciones no lineales

Raíces de ecuaciones no lineales Raíces de ecuaciones no lineales Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

TEMA 3. Integración de funciones reales de variable real.

TEMA 3. Integración de funciones reales de variable real. TEMA 3 Integrción de funciones reles de vrible rel. Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

RESOLUCIÓN MCD (A; B) = C A dq 1

RESOLUCIÓN MCD (A; B) = C A dq 1 SEMANA MCD - MCM. L sum de dos números A y B es 65, el cociente entre su MCM y su MCD es 8. Hlle (A - B). A) 8 B) 6 C) 7 D) 48 E) 48 MCD (A; B) = C A dq B dq Donde q y q son números primos entre sí. Luego:

Más detalles

1. La derivada del producto de funciones derivables

1. La derivada del producto de funciones derivables Cátedr de Mtemátic Mtemátic Fcultd de Arquitectur Universidd de l Repúblic 3 Segundo semestre Hoj 5 Derivd del producto e integrción por prtes Ddo que l derivción y l integrción pueden verse como operciones

Más detalles

Polinomios ortogonales

Polinomios ortogonales Lección 7 Polinomios ortogonles 7.1 Funciones peso Si (, b) es un intervlo de l rect rel, cotdo o no, un función peso w en (, b) es, por definición, un función rel definid en (, b), continu, positiv excepto

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Series de Fourier CAPITULO Funciones Seccionalmente Continuas 1.1. Preliminares sobre funciones continuas.

Series de Fourier CAPITULO Funciones Seccionalmente Continuas 1.1. Preliminares sobre funciones continuas. Contenidos Cpitulo. Series de Fourier 3. Funciones Seccionlmente Continus 3. Extensiones de Funciones Seccionlmente Continus 6 3. Cmbio de Intervlo 3 CAPITULO Series de Fourier. Funciones Seccionlmente

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Z b. f(x) dx calculando una primitiva de f(x) yluegoaplicando

Z b. f(x) dx calculando una primitiva de f(x) yluegoaplicando Tem 4 Métodos numéricos Versión: 9 de septiemre de 016 L mor prte de ls mtemátics estudids hst hor se hn dedicdo desrrollr métodos que nos proporcionen l solución ect de un prolem. Por ejemplo, clculr

Más detalles