INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA"

Transcripción

1 INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar y aplicar ecuaciones con dos incógnitas de primer grado en la solución de ejercicios y de problemas del entorno. INDICADORES DE LOGROS Interpreta adecuadamente ecuaciones lineales con dos incógnitas. Construye ecuaciones lineales con dos incógnitas a partir de una situación problema. Esta siempre atento y dispuesto en clase. CONTENIDOS: La línea recta. Interpretación de ecuaciones lineales con dos incógnitas. Rectas paralelas y perpendiculares Formas de la ecuación de la recta LA LINEA RECTA Es posible calcular el peso esperado (W) en toneladas de una ballena jorobada a partir de su longitud (L) en pies, mediante la fórmula W = 1,7L - 42,8 para valores de L entre 30 y 50 pies. Un modelo gráfico de esta situación se muestra en la siguiente figura. Debido a que el peso depende de la longitud, entonces el eje de abscisas representa la variable L (longitud), y el eje de ordenadas la variable W (peso). Gracias a esta relación lineal es posible encontrar cualquier valor de W conociendo el valor de la longitud, siempre y cuando ésta esté entre 30 y 50 pie s.

2 Esta y muchas otras situaciones se pueden modelar a través de funciones lineales, las cuales vamos a ver con más profundidad en esta lección. Una expresión de la forma AX + BY + C = 0 con A, B, C R, A 0 ó B 0, X e Y variables independiente y dependiente respectivamente se denomina ecuación general de la línea recta. Al despejar la variable y tenemos una función lineal afín: Se identifican los coeficientes: Luego la función lineal en forma canónica o afín se puede representar como: y = mx + b X: Es la variable independiente y se ubica en el eje x (abscisa). Y: Es la variable dependiente y se ubica en el eje y (ordenada); también se denota por f(x). m: Es la pendiente de la recta e indica el grado de inclinación de la recta con respecto al eje positivo de las x (abscisas). b: Es el intercepto o punto de corte con el eje y (ordenadas). La representación gráfica de la función lineal es una línea recta. INTERPRETACION DE ECUACIONES LINEALES CON DOS INCÓGNITAS ECUACIONES CON DOS INCÓGNITAS Existen muchos problemas que pueden plantearse a través de ecuaciones con más de una incógnita. Veamos el siguiente ejemplo: María recorrió 10 Km siempre en la misma dirección, una parte del recorrido lo hizo a pie y el resto en camión. Cuántos kilómetros caminó y cuántos recorrió en camión? Es claro que la pregunta anterior da lugar a muchas respuestas. Podríamos decir por ejemplo, que María recorrió:

3 5 Km a pie y 5 Km en camión, porque = 10 1 Km a pie y 9 Km en camión, porque = Km a pie y 7.5 Km en camión, porque = Km a pie y 9.2 Km en camión, porque = 10 Usted puede encontrar otras parejas de números que pueden ser solución del problema. Pero no cualquier pareja de números es solución del problema. Por ejemplo: Los números 3 y 8 no son solución, porque = Los números 1 y 11 tampoco son solución, porque aunque = 10, María siempre caminó en la misma dirección y entonces no pudo recorrer 1 Km a pie. Si llamamos x a la cantidad de kilómetros que María caminó y si llamamos y a la can tidad de kilómetros recorridos en camión, podemos describir el problema anterior del siguiente modo: x + y = 10 A expresiones de este estilo se las denomina ecuaciones de primer grado con dos incógnitas o ecuaciones lineales con dos incógnitas. Ya dijimos que este problema tiene muchísimas soluciones de las que hemos encontrado sólo algunas. Las soluciones que hemos encontrado: x = 5, y = 5 x =1, y = 9 x = 2.5, y = 7.5 x = 0.8, y = 9.2 Pueden ser expresadas como parejas ordenadas: (5, 5); (1, 9); (2.5, 7.5); (0.8, 9.2) y estas parejas ordenadas nos pueden servir para representar gráficamente las soluciones que hemos encontrado. Para ello consideramos los valores de x como abscisa, y los de y como ordenadas. Así, las primeras soluciones quedarán representadas por los siguientes puntos.

4 TALLER 1 1. Para cada una de las siguientes ecuaciones, trace la recta que representa a todas las soluciones. a. x + y = 4 Ecuación Canónica: X y b. x + y = 2 Ecuación Canónica: X y 2. Considere la ecuación x y = 3. Complete las siguientes parejas de números para que sean soluciones de la ecuación. 3. Un terreno rectangular tiene un perímetro de 74m, y se quiere conocer su largo y su ancho. a. Encuentre una ecuación que corresponda al enunciado del problema, en la que x sea el largo del terreno e y sea su ancho. b. Trace la gráfica de soluciones de la ecuación. c. A partir de la gráfica, encuentre tres parejas de números que sean solución del problema y dos parejas que sean solución de la ecuación pero no del problema. INCLINACIÓN Y PENDIENTE DE UNA RECTA EN EL PLANO CARTESIANO La siguiente figura muestra el ángulo formado por una recta y el semieje positivo de las abscisas. Este ángulo recibe el nombre de inclinación de la recta.

5 Recta u: Recta l En el caso de la recta u, la inclinación es un ángulo agudo, es decir, menor que 90. En el caso de la recta t, la inclinación es un ángulo obtuso, es decir, mayor de 90 y menor de 180. Cuando la recta es paralela al eje vertical la inclinación es de 90, y cuando la recta es paralela al eje horizontal, la inclinación es de 0. La inclinación de una recta en el plano de sistemas rectangulares, está dada por la medida del ángulo positivo que forma la recta con el semieje positivo de las abscisas. La inclinación de una recta paralela al eje de abscisas es O. Consideremos ahora los puntos P1 (x1, y1) y P2 (x2, y2) tomados en la recta de la figura siguiente. Conforme nos desplazamos en forma creciente, a lo largo de dicha recta, un incremento de (y2 - y1) unidades en la dirección vertical, genera un incremento de (x2 - x1) unidades en dirección horizontal. La razón entre estos dos incrementos recibe el nombre de pendiente, la cual simbolizamos con la letra m. Es decir: El valor de m es independiente de la escogencia de los puntos P1 y P2 sobre la recta, ya que como se muestra en la figura siguiente, las razones entre los incrementos son constantes debido a que se forman triángulos semejantes.

6 El concepto de pendiente se relaciona con el concepto de inclinación, ya que la pendiente no es más que la tangente del ángulo de inclinación. La pendiente de una recta es la tangente del ángulo de inclinación, es decir, m = tan θ, donde m es la pendiente y θ es el ángulo de inclinación de la recta. De acuerdo con lo anterior, se pueden deducir las siguientes propiedades: Si una recta es horizontal, entonces su inclinación es 0, y por tanto, su pendiente también, ya que tan 0 = 0. Si una recta es vertical, entonces su inclinación es 90, y por tanto, su pendiente no está definida, ya que, la tangente de 90 tampoco lo está. Si una recta tiene como inclinación un ángulo agudo, entonces su pendiente es positiva, ya que la tangente de un ángulo del primer cuadrante es positiva.

7 Si una recta tiene como inclinación un ángulo obtuso, entonces su pendiente es negativa, ya que la tangente de un ángulo entre 90 y 180 es negativa. Halla la pendiente y el ángulo de inclinación de la recta que pasa por los puntos A (- 8, - 2) y B (5, 7). Remplazando los valores de las coordenadas de los dos puntos en la expresión: TALLER 2 a.) Determinar la pendiente de la recta que pasa por cada par de puntos.

8 b.) Determina la pendiente de cada recta. RECTAS PARALELAS Y RECTAS PERPENDICULARES RECTAS PARALELAS Al trazar dos rectas paralelas en el plano cartesiano, los ángulos de inclinación son siempre iguales por ser correspondientes entre paralelas. Por tanto, las pendientes deben ser iguales por cuanto las tangentes de ángulos iguales también son iguales. En el único caso en que esta propiedad no se cumple, es cuando las pendientes no existen, es decir, cuando las rectas son verticales. De igual manera, se puede deducir que si dos rectas tienen la misma pendiente, entonces son paralelas, es decir m1 = m2 Dos rectas son paralelas si y sólo si sus pendientes son iguales o si ninguna de ellas tiene pendiente. RECTAS PERPENDICULARES Supongamos ahora que las rectas u y t, con inclinaciones α y β, respectivamente, son perpendiculares.

9 Donde m1 es la pendiente de la recta u y m2 es la pendiente de la recta t. Dos rectas son perpendiculares si y sólo si el producto de sus pendientes es -1 siempre que éstas estén definidas. Es decir m1 = -1/ m2 o m1m2 = -1, Esta afirmación no incluye las rectas perpendiculares cuando una de ellas es vertical, ya, que su pendiente no está definida. Ejemplo En la figura la recta t contiene los puntos A (1, 3) y B (4, 6), y la recta u contiene los puntos C (5, 8) y D (- 2, 1). Determina si t y u son paralelas. Solución La pendiente de la recta t es: La pendiente de la recta u es: Como las dos pendientes son iguales, entonces las rectas son paralelas. Ejercicio La recta s contiene los puntos A (-2,5) y B (-4, 6), y la recta p contiene a C (-1, 4) y D (3, 12). Comprueba que s y p son perpendiculares. EJEMPLO Utilizando el concepto de pendiente, demuestra que los puntos A (4,1),B (5,-2) y C (6,-5) son colineales. Solución Para que tres puntos sean colíneales la pendiente del segmento AB debe ser igual a la pendiente del segmento BC.

10 Hallamos la pendiente del segmento AB: La pendiente del segmento BC es: Por tanto los tres puntos son colíneales. FORMAS DE LA ECUACIÓN DE LA RECTA Recordemos que por geometría euclidiana básica, una línea recta queda determinada por dos puntos. Analíticamente esto significa que dadas dos variables que estén relacionadas en forma lineal, es posible encontrar una ecuación que describa esta relación conociendo solamente dos puntos de la misma. Sabemos que por un punto pasan infinita cantidad de rectas. Sin embargo, una recta t queda determinada si, además de un punto, se conoce su inclinación. Dado que al conocer la inclinación se conoce la pendiente, entonces es posible construir la ecuación de dicha re cta. ECUACION CONOCIDA LA PENDIENTE E INTERSECTO CON LA ORDENADA (b) Se reemplaza el valor de m y b en la expresión explicita de la recta. y = mx + b, así se obtiene la ecuación

11 EJEMPLO: Si m = ¾ y b = -2, hallar la ecuación de la recta y representarla gráficamente. SOLUCION: Al remplazar los valores dados, se tiene que la ecuación explicita es: Para la representación grafica se ubica el intersecto en y, a partir de él se realizan los desplazamientos vertical y horizontal. Así se determina que el punto A = (4,1), también pertenece a la recta. ECUACION CONOCIDA UN PUNTO Y L A PENDIENTE Para hallar la ecuación de una recta, dados P = (s, t) y el valor de m se deben seguir los siguientes pasos. Se halla el valor del intersecto (b). Para esto, se remplazan s y t por x y y en la expresión y = mx + b. Se remplazan m y b en la ecuación y = mx + b. EJEMPLO: Hallar la ecuación explicita de la recta que pasa por P = (-1, -2) y cuya pendiente es -3. Luego, represéntala gráficamente.

12 TALLER 3 1. Determinar la pendiente y el intercepto con el eje y de cada una de las siguientes rectas. a) b) c) d) 2. Completa la siguiente tabla

13 ECUACION CONOCIDOS DOS PUNTOS Para hallar la ecuación de la recta, dados los puntos A = (x1, y1) y B = (x2, y2) se procede así: 1. Con la formula se halla la pendiente. 2. Se sustituyen los valores de x y y para hallar el intercecto (b). 3. Se remplazan m y b en la ecuación y = mx + b. EJEMPLO 1: Hallar la ecuación de la recta que pasa por los puntos A = (-1, -2) y B = (4, 2). Luego, representarla gráficamente. SOLUCION Primero se halla la pendiente. Así, Luego se halla b. -2 = 4/5 (-1) + b se reemplaza el punto A -2 = - 4/5 + b despejando b se tiene b = - 6/5 Finalmente se halla la ecuación de la recta. Así, Sustituyendo los valores de m y b EJEMPLO 2: Hallar la pendiente, el intersecto en y y el intersecto en x de la recta dada a continuación: -3x + 6y -12 = 0

14 SOLUCION ECUACION GENERAL DE LA RECTA La expresión Ax + By + C = 0, donde A, B, C ϵ R y A y B no son ceros simultáneamente es llamada ecuación general de la recta. EJEMPLO: Dada la ecuación explicita Y = 5/3 X -- 1/4 obtener la ecuación general de la recta. SOLUCION TALLER 4 Hallar la ecuación de la recta que pasa por los puntos dados.

15 Relacionar cada ecuación con su respectiva grafica. TALLER 5 1. Determinar la posición relativa de cada par de rectas y graficarlas en el plano cartesiano. a) b) c) d) 2. Hallar la ecuación de la recta que pasa por el punto dado y cumple la condición. Luego, graficarla en el mismo plano con la recta dada. a) Pasa por (-2, 4) y es paralela a y = 13x 6. b) Pasa por (0, -6) y es perpendicular a y = -5x. c) Pasa por (-8, 8) y es perpendicular a y = 2x d) Pasa por (-1, 6) y es paralela a y = 2/5x 6.

16 3. Escribir la ecuación de todas las rectas que forman cada polígono. a) b) 4. Completar la siguiente tabla

17 5. Resolver 6. Resolver DIEGO ALONSO CASTAÑO ALZATE DOCENTE DE MATEMÁTICAS

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

V FESTIVAL INTERNACIONAL DE MATEMÁTICA SIMETRÍA AXIAL

V FESTIVAL INTERNACIONAL DE MATEMÁTICA SIMETRÍA AXIAL V FESTIVAL INTERNACIONAL DE MATEMÁTICA De costa a costa Matemática como lenguaje para interpretar nuestro entorno 29 al 31 de marzo, 2006 SIMETRÍA AXIAL Teodora Tsijli Angelaki 1 Resumen Se trata de ver

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x.

EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x. 2 FUNCINES EJERCICIS PRPUESTS 2. Representa las siguientes funciones. a) y 6 x b) y 0 x Tienen algún punto en común? Cuál crece más rápidamente? y = 0 x El (0, ) es el único punto que tienen en común.

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS Diseñada por: Esp. María Cristina Marín Valdés INSTITUCIÓN EDUCATIVA EDUARDO FERNÁNDEZ BOTERO Área de Matemáticas Amalfi 2011 ÁREA Y PERÍMETRO

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION.

Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Tema 7 : DATOS BIVARIADOS. CORRELACION Y REGRESION. Distribuciones uni- y pluridimensionales. Hasta ahora se han estudiado los índices y representaciones de una sola variable por individuo. Son las distribuciones

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

- Palabras claves: espacio tridimensional vector polígono prisma cono cilindro esfera traslación rotación generatriz superficie área volumen

- Palabras claves: espacio tridimensional vector polígono prisma cono cilindro esfera traslación rotación generatriz superficie área volumen Descripción curricular: - Nivel: 4º medio - Sector: Matemática - Unidad temática: Geometría. - Palabras claves: espacio tridimensional vector polígono prisma cono cilindro esfera traslación rotación generatriz

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR

DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR a las personas jóvenes y adultas que requieren presentar el examen de OPERACIONES AVANZADAS 1 NÚMEROS CON SIGNO. Los

Más detalles

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta. Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que

Más detalles

UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS

UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS UNIDAD 2: : SSI ISSTEEMASS DEE COORDEENADASS Y LLUGAREESS GEEOMEETRI ICOSS UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS Propósitos: Mostrar una visión global del método de la Geometría Analítica

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

Geometría de las superficies

Geometría de las superficies Geometría de las superficies Klette, schluns, koschan Computer vision: three dimensional data from images Cap 3 1 Representaciones funcionales Representación mediante una ecuación condicional para X e

Más detalles

ANÁLISIS DIMENSIONAL. HOMOGENEIDAD

ANÁLISIS DIMENSIONAL. HOMOGENEIDAD COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA ANÁLISIS DIMENSIONAL. HOMOGENEIDAD TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S MAGNITUDES

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR:

GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR: GEOMETRIA ANALITICA PROBLEMARIO ELABORADO POR: SEMESTRE AGOSTO 13 - ENERO 1 GEOMETRIA ANALITICA CBTis No. 1 SISTEMA UNIDIMENSIONAL 1.- Localizaremos en un eje de coordenadas los puntos que tienen por coordenadas

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

8 GEOMETRÍA ANALÍTICA

8 GEOMETRÍA ANALÍTICA 8 GEOMETRÍA ANALÍTICA EJERCICIOS PROPUESTOS 8. Las coordenadas de los vértices de un rectángulo son A(, ); B(, 5); C(6, 5), y D(6, ). Halla las coordenadas y representa los vectores AB, BC, CD y DA. Qué

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 7 PROBLEMAS MÉTRICOS EJERCICIOS PROPUESTOS 7.1 La hipotenusa y uno de los catetos de un triángulo rectángulo miden 4 y centímetros, respectivamente. Halla las medidas de sus ángulos. cm B 4 cm Cp arc 4

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Aversión al riesgo, equivalente cierto y precios de reserva

Aversión al riesgo, equivalente cierto y precios de reserva Aversión al riesgo, equivalente cierto y precios de reserva Ricard Torres ITAM Economía Financiera, 2015 Ricard Torres (ITAM) Aversión al riesgo, equivalente cierto y precios de reserva Economía Financiera

Más detalles

1. Los calores de combustión del metano y butano son 890 kj/mol y 2876 kj/mol respectivamente

1. Los calores de combustión del metano y butano son 890 kj/mol y 2876 kj/mol respectivamente . Los calores de combustión del metano y butano son 890 kj/mol y 876 kj/mol respectivamente Butano: C 4 H 0 Metano: CH 4 a) Cuando se utiliza como combustible Cual generaría más calor para la misma masa

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid PRUEBA POR EQUIPOS 1º y 2º de E.S.O. (45 minutos) 1. Antonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de Antonio y le añade un 1 a la derecha y obtiene un número de seis

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Sistemas Numéricos y Códigos Binarios

Sistemas Numéricos y Códigos Binarios Sistemas Numéricos y Códigos Binarios Marcelo Guarini Departamento de Ingeniería Eléctrica, 5 de Abril, 5 Sistemas Numéricos en Cualquier Base En el sistema decimal, cualquier número puede representarse

Más detalles

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y) Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como

Más detalles

TEMA 4. Los mercados de bienes y financieros: el modelo IS-LM

TEMA 4. Los mercados de bienes y financieros: el modelo IS-LM TEMA 4 Los mercados de bienes y financieros: el modelo IS-LM Manual: Macroeconomía, Olivier Blanchard Presentaciones: Fernando e Yvonn Quijano 1 de 35 1 El mercado de bienes y la relación IS Hay equilibrio

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010

Funciones. Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 2010 Funciones Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez AFAMaC Residencial Sept. 4 de 010 Introducción Es frecuente que se describa una cantidad en términos de otra; por ejemplo: 1.

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES IX INTEGRACIÓN POR FRACCIONES PARCIALES La integración por fracciones parciales es más un truco o recurso algebraico que algo nuevo que vaya a introducirse en el curso de Cálculo Integral. Es decir, en

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo Eleonora Catsigeras * 17 de Noviembre 2013 Notas para

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA Función Lineal Ecuación de la Recta 4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA El concepto de función es el mejor objeto que los matemáticos han podido inventar para epresar el cambio que se produce en las

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Septiembre 2010. Apellidos Nombre. DNI / NIE Centro de examen

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Septiembre 2010. Apellidos Nombre. DNI / NIE Centro de examen CALIFICACIÓN: Consejería de Educación, Ciencia Cultura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Septiembre 010 Resolución de de maro de 010 (DOCM de de maro) DNI

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006

Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006 Practicas de Fundamentos de Electrotecnia ITI. Curso 005/006 Práctica 4 : Modelo equivalente de un transformador real. Medidas de potencia en vacío y cortocircuito. OBJETIVO En primer lugar, el alumno

Más detalles

ORGANIZACIÓN DE DATOS

ORGANIZACIÓN DE DATOS CAPÍTULO 13 ORGANIZACIÓN DE DATOS Siendo el dato el material que se debe procesar, es decir, la materia prima de la estadística, el primer paso es entonces la recolección de datos, para lo cual se emplean

Más detalles

ASOCIATIVA: La suma no varia si se asocian en diferentes formas los sumandos. NEUTRO: El cero ( 0 ) es le elemento neutro aditivo.

ASOCIATIVA: La suma no varia si se asocian en diferentes formas los sumandos. NEUTRO: El cero ( 0 ) es le elemento neutro aditivo. ARITMETICA I. NÚMEROS NATURALES Ν Es el conjunto de los números positivos desde el cero hasta el infinito ( ). Ejemplo: Ν{0,1,,3,4,, } I.1 PROPIEDADES DEL CONJUNTO DE LOS NÚMEROS NATURALES. Dentro de las

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Diviértete con novedosos juegos matemáticos

Diviértete con novedosos juegos matemáticos Resuelve los siguientes ejercicios ordena y coloca los signos operacionales que corresponden. = 000 = = =0 = 0 + + + + = 000 + - + = + = x - =0 - = 0 Cambie un solo número de lugar, para que los resultados

Más detalles

Partiendo de los criterios de evaluación de cada uno de los cursos se han definido los indicadores de logro para cada uno de ellos.

Partiendo de los criterios de evaluación de cada uno de los cursos se han definido los indicadores de logro para cada uno de ellos. E) IDENTIFICACIÓN DE LOS CONOCIMIENTOS Y APRENDIZAJES NECESARIOS PARA QUE EL ALUMNO ALCANCE UNA EVALUACIÓN POSITIVA AL FINAL DE CADA CURSO DE LA ETAPA. INDICADORES DE LOGRO O DESEMPEÑO. Partiendo de los

Más detalles

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC PATA - 12 EATANA DE UN ONDENSADO Y AATEÍSTAS DE UN UTO SEE - Finalidades 1.- Determinar la reactancia capacitiva (X ) de un condensador. 2.- omprobar la fórmula: X? 1?? 3.- Determinar experimentalmente

Más detalles

Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años

Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años Campo Magnético Los fenómenos magnéticos se observaron por primera vez al menos hace 2,500 años Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético Campo Magnético

Más detalles

En la siguiente gráfica se muestra una función lineal y lo que representa m y b.

En la siguiente gráfica se muestra una función lineal y lo que representa m y b. FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL.

Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. practica2sr.nb 1 Apellidos y Nombre: Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. Operadores lógicos y relacionales

Más detalles

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 0-0 Opción A Ejercicio, Opción A, Modelo 5 de 0 ['5 puntos] Un alambre de longitud metros se divide en dos trozos Con el primero se forma

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 08: FUNCIONES. 1. Correspondencia.. Funciones. 3. Representación

Más detalles

LEYES FUNDAMENTALES DE LA QUÍMICA

LEYES FUNDAMENTALES DE LA QUÍMICA CONTENIDOS LEYES FUNDAMENTALES DE LA QUÍMICA 1.- La Química en la antigüedad. La Alquimia. 2.- Sustancias homogéneas y heterogéneas. Elementos y compuestos. (Repaso)..- Leyes fundamentales de la Química..1.

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 0 Lic. Manuel

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15.

TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15. TERMODINÁMICA 1. En la fermentación de la glucosa (C6H12O6) se obtiene etanol (C2H5OH) y CO2. Si la entalpía de combustión de la glucosa es de 15.63 kj/g y la del etanol es de 29.72 kj/g, a) Calcular la

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de ádiz Departamento de Matemáticas MATEMÁTIAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 5 La circunferencia Elaborado por la Profesora Doctora María Teresa González

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros.

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros. Ejercicios de números enteros con solución 1 Luis debe 5 euros a Ana y 6 euros a Laura. Expresa con números enteros las cantidades que debe Luis. Como Luis debe a Ana 5 euros podemos escribir: 5 euros.

Más detalles

Tema 5: La energía mecánica

Tema 5: La energía mecánica Tema 5: La energía mecánica Introducción En este apartado vamos a recordar la Energía mecánica que vimos al principio del Bloque. 1. Energía Potencial gravitatoria 2. Energía Cinética 3. Principio de conservación

Más detalles

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN

TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL VALLEJO ÁREA DE MATEMÁTICAS CÁLCULO DIFERENCIAL E INTEGRA I TRAZADO DE LA GRÁFICA DE LAS DERIVADA DE UNA FUNCIÓN ELEAZAR

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

LABORATORIO 2: VECTORES. Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares para un sistema de tres fuerzas

LABORATORIO 2: VECTORES. Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares para un sistema de tres fuerzas UNIVERSIDD DON OSO DEPRTMENTO DE IENIS SI LORTORIO DE FISI SIGNTUR: FISI TENI I. OJETIVO GENERL LORTORIO 2: VETORES Encontrar fuerzas desconocidas aplicando el método gráfico y de componentes rectangulares

Más detalles

Principales indicadores relativos al consumo de sustancias psicoactivas. Síntesis nacional por provincias y por conglomerado urbano

Principales indicadores relativos al consumo de sustancias psicoactivas. Síntesis nacional por provincias y por conglomerado urbano Principales indicadores relativos al consumo de sustancias psicoactivas Síntesis nacional por provincias y por conglomerado urbano Presidenta de la Nación Dra. Cristina Fernández de Kirchner Secretario

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A

Bloque II. Actividades de síntesis: Análisis. Solucionario OPCIÓN A Bloque II Actividades de síntes: Anális Solucionario OPCIÓN A A.. a) Escribe la función f(x) x 4 x como una función a trozos y dibuja su gráfica. b) Para cuántos valores de x es f(x) 0? c) Para qué números

Más detalles

USO DE LOS JUEGOS DE MESA EN EL AULA

USO DE LOS JUEGOS DE MESA EN EL AULA USO DE LOS JUEGOS DE MESA EN EL AULA AUTORÍA ANTONIO GARCÍA JIMÉNEZ TEMÁTICA TEMAS TRANSVERSALES ETAPA ESO y BACHILLERATO Resumen En este artículo se ven algunos juegos tradicionales y populares que se

Más detalles

Diálogo entre el alumno y el profesor - Magnitudes físicas

Diálogo entre el alumno y el profesor - Magnitudes físicas Diálogo entre el alumno y el profesor - Magnitudes físicas Un alumno le pregunta al profesor: Alumno: Profe, decir que la balanza de la Farmacia me indica que tengo un peso 54 kg, o compro 2 kg de manzanas

Más detalles

Tema 7. Geometría en plano. Vectores y rectas

Tema 7. Geometría en plano. Vectores y rectas Tema 7. Geometría en plano. Vectores y rectas. Vectores y puntos en el plano. Coordenadas.... Operaciones con vectores... 5.. Suma y resta de vectores... 5.. Producto de un número real por un vector....

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Vectores. a) Para que sean linealmente dependientes, el determinante formado por los tres vectores ha de valer cero.

Vectores. a) Para que sean linealmente dependientes, el determinante formado por los tres vectores ha de valer cero. Vectores. Dados los vectores a y b del espacio. Siempre es posible encontrar otro vector c tal que multiplicado vectorialmente por a nos de el vector b?. Por que?. No siempre será posible. El vector a

Más detalles

8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA

8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA 8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA El proceso de control se fundamenta en el principio de excepción, que determina la imposibilidad

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

5. MODELOS PROBABILISTICOS.

5. MODELOS PROBABILISTICOS. 5. MODELOS PROBABILISTICOS. 5.1 Experimento de Bernoulli Un modelo probabilístico, es la forma que pueden tomar un conjunto de datos obtenidos aleatoriamente. Pueden ser modelos probabilísticos discretos

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

PROCEDIMIENTO DE ACCIONES CORRECTIVAS Y/O PREVENTIVAS

PROCEDIMIENTO DE ACCIONES CORRECTIVAS Y/O PREVENTIVAS Logo CODIGO: P0852 No. REV: 2 PAGINA: 1 PROCEDIMIENTO DE ACCIONES CORRECTIVAS Y/O PREVENTIVAS NOMBRE: NOMBRE: NOMBRE: CARGO: CARGO: CARGO: FECHA: FECHA: FECHA: ELABORO REVISO APROBO Logo CODIGO: P0852

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

Robótica Industrial. Robótica Industrial

Robótica Industrial. Robótica Industrial TEMA 4: CINEMÁTICA DEL ROBOT Ingeniería de Sistemas y Automática Control de Robots y Sistemas Sensoriales Robótica Industrial Robótica Industrial ISA.- Ingeniería de Sistemas y Automática Cinemática del

Más detalles

Planteamiento del problema del servidor de video

Planteamiento del problema del servidor de video Universidad Politécnica de Cartagena Escuela Técnica Superior de IngenieI ería de Telecomunicación PRÁCTICAS DE REDES DE ORDENADORES Propuesta del Trabajo de Prácticas 2011 Evaluación de políticas de admisión

Más detalles