INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA"

Transcripción

1 INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar y aplicar ecuaciones con dos incógnitas de primer grado en la solución de ejercicios y de problemas del entorno. INDICADORES DE LOGROS Interpreta adecuadamente ecuaciones lineales con dos incógnitas. Construye ecuaciones lineales con dos incógnitas a partir de una situación problema. Esta siempre atento y dispuesto en clase. CONTENIDOS: La línea recta. Interpretación de ecuaciones lineales con dos incógnitas. Rectas paralelas y perpendiculares Formas de la ecuación de la recta LA LINEA RECTA Es posible calcular el peso esperado (W) en toneladas de una ballena jorobada a partir de su longitud (L) en pies, mediante la fórmula W = 1,7L - 42,8 para valores de L entre 30 y 50 pies. Un modelo gráfico de esta situación se muestra en la siguiente figura. Debido a que el peso depende de la longitud, entonces el eje de abscisas representa la variable L (longitud), y el eje de ordenadas la variable W (peso). Gracias a esta relación lineal es posible encontrar cualquier valor de W conociendo el valor de la longitud, siempre y cuando ésta esté entre 30 y 50 pie s.

2 Esta y muchas otras situaciones se pueden modelar a través de funciones lineales, las cuales vamos a ver con más profundidad en esta lección. Una expresión de la forma AX + BY + C = 0 con A, B, C R, A 0 ó B 0, X e Y variables independiente y dependiente respectivamente se denomina ecuación general de la línea recta. Al despejar la variable y tenemos una función lineal afín: Se identifican los coeficientes: Luego la función lineal en forma canónica o afín se puede representar como: y = mx + b X: Es la variable independiente y se ubica en el eje x (abscisa). Y: Es la variable dependiente y se ubica en el eje y (ordenada); también se denota por f(x). m: Es la pendiente de la recta e indica el grado de inclinación de la recta con respecto al eje positivo de las x (abscisas). b: Es el intercepto o punto de corte con el eje y (ordenadas). La representación gráfica de la función lineal es una línea recta. INTERPRETACION DE ECUACIONES LINEALES CON DOS INCÓGNITAS ECUACIONES CON DOS INCÓGNITAS Existen muchos problemas que pueden plantearse a través de ecuaciones con más de una incógnita. Veamos el siguiente ejemplo: María recorrió 10 Km siempre en la misma dirección, una parte del recorrido lo hizo a pie y el resto en camión. Cuántos kilómetros caminó y cuántos recorrió en camión? Es claro que la pregunta anterior da lugar a muchas respuestas. Podríamos decir por ejemplo, que María recorrió:

3 5 Km a pie y 5 Km en camión, porque = 10 1 Km a pie y 9 Km en camión, porque = Km a pie y 7.5 Km en camión, porque = Km a pie y 9.2 Km en camión, porque = 10 Usted puede encontrar otras parejas de números que pueden ser solución del problema. Pero no cualquier pareja de números es solución del problema. Por ejemplo: Los números 3 y 8 no son solución, porque = Los números 1 y 11 tampoco son solución, porque aunque = 10, María siempre caminó en la misma dirección y entonces no pudo recorrer 1 Km a pie. Si llamamos x a la cantidad de kilómetros que María caminó y si llamamos y a la can tidad de kilómetros recorridos en camión, podemos describir el problema anterior del siguiente modo: x + y = 10 A expresiones de este estilo se las denomina ecuaciones de primer grado con dos incógnitas o ecuaciones lineales con dos incógnitas. Ya dijimos que este problema tiene muchísimas soluciones de las que hemos encontrado sólo algunas. Las soluciones que hemos encontrado: x = 5, y = 5 x =1, y = 9 x = 2.5, y = 7.5 x = 0.8, y = 9.2 Pueden ser expresadas como parejas ordenadas: (5, 5); (1, 9); (2.5, 7.5); (0.8, 9.2) y estas parejas ordenadas nos pueden servir para representar gráficamente las soluciones que hemos encontrado. Para ello consideramos los valores de x como abscisa, y los de y como ordenadas. Así, las primeras soluciones quedarán representadas por los siguientes puntos.

4 TALLER 1 1. Para cada una de las siguientes ecuaciones, trace la recta que representa a todas las soluciones. a. x + y = 4 Ecuación Canónica: X y b. x + y = 2 Ecuación Canónica: X y 2. Considere la ecuación x y = 3. Complete las siguientes parejas de números para que sean soluciones de la ecuación. 3. Un terreno rectangular tiene un perímetro de 74m, y se quiere conocer su largo y su ancho. a. Encuentre una ecuación que corresponda al enunciado del problema, en la que x sea el largo del terreno e y sea su ancho. b. Trace la gráfica de soluciones de la ecuación. c. A partir de la gráfica, encuentre tres parejas de números que sean solución del problema y dos parejas que sean solución de la ecuación pero no del problema. INCLINACIÓN Y PENDIENTE DE UNA RECTA EN EL PLANO CARTESIANO La siguiente figura muestra el ángulo formado por una recta y el semieje positivo de las abscisas. Este ángulo recibe el nombre de inclinación de la recta.

5 Recta u: Recta l En el caso de la recta u, la inclinación es un ángulo agudo, es decir, menor que 90. En el caso de la recta t, la inclinación es un ángulo obtuso, es decir, mayor de 90 y menor de 180. Cuando la recta es paralela al eje vertical la inclinación es de 90, y cuando la recta es paralela al eje horizontal, la inclinación es de 0. La inclinación de una recta en el plano de sistemas rectangulares, está dada por la medida del ángulo positivo que forma la recta con el semieje positivo de las abscisas. La inclinación de una recta paralela al eje de abscisas es O. Consideremos ahora los puntos P1 (x1, y1) y P2 (x2, y2) tomados en la recta de la figura siguiente. Conforme nos desplazamos en forma creciente, a lo largo de dicha recta, un incremento de (y2 - y1) unidades en la dirección vertical, genera un incremento de (x2 - x1) unidades en dirección horizontal. La razón entre estos dos incrementos recibe el nombre de pendiente, la cual simbolizamos con la letra m. Es decir: El valor de m es independiente de la escogencia de los puntos P1 y P2 sobre la recta, ya que como se muestra en la figura siguiente, las razones entre los incrementos son constantes debido a que se forman triángulos semejantes.

6 El concepto de pendiente se relaciona con el concepto de inclinación, ya que la pendiente no es más que la tangente del ángulo de inclinación. La pendiente de una recta es la tangente del ángulo de inclinación, es decir, m = tan θ, donde m es la pendiente y θ es el ángulo de inclinación de la recta. De acuerdo con lo anterior, se pueden deducir las siguientes propiedades: Si una recta es horizontal, entonces su inclinación es 0, y por tanto, su pendiente también, ya que tan 0 = 0. Si una recta es vertical, entonces su inclinación es 90, y por tanto, su pendiente no está definida, ya que, la tangente de 90 tampoco lo está. Si una recta tiene como inclinación un ángulo agudo, entonces su pendiente es positiva, ya que la tangente de un ángulo del primer cuadrante es positiva.

7 Si una recta tiene como inclinación un ángulo obtuso, entonces su pendiente es negativa, ya que la tangente de un ángulo entre 90 y 180 es negativa. Halla la pendiente y el ángulo de inclinación de la recta que pasa por los puntos A (- 8, - 2) y B (5, 7). Remplazando los valores de las coordenadas de los dos puntos en la expresión: TALLER 2 a.) Determinar la pendiente de la recta que pasa por cada par de puntos.

8 b.) Determina la pendiente de cada recta. RECTAS PARALELAS Y RECTAS PERPENDICULARES RECTAS PARALELAS Al trazar dos rectas paralelas en el plano cartesiano, los ángulos de inclinación son siempre iguales por ser correspondientes entre paralelas. Por tanto, las pendientes deben ser iguales por cuanto las tangentes de ángulos iguales también son iguales. En el único caso en que esta propiedad no se cumple, es cuando las pendientes no existen, es decir, cuando las rectas son verticales. De igual manera, se puede deducir que si dos rectas tienen la misma pendiente, entonces son paralelas, es decir m1 = m2 Dos rectas son paralelas si y sólo si sus pendientes son iguales o si ninguna de ellas tiene pendiente. RECTAS PERPENDICULARES Supongamos ahora que las rectas u y t, con inclinaciones α y β, respectivamente, son perpendiculares.

9 Donde m1 es la pendiente de la recta u y m2 es la pendiente de la recta t. Dos rectas son perpendiculares si y sólo si el producto de sus pendientes es -1 siempre que éstas estén definidas. Es decir m1 = -1/ m2 o m1m2 = -1, Esta afirmación no incluye las rectas perpendiculares cuando una de ellas es vertical, ya, que su pendiente no está definida. Ejemplo En la figura la recta t contiene los puntos A (1, 3) y B (4, 6), y la recta u contiene los puntos C (5, 8) y D (- 2, 1). Determina si t y u son paralelas. Solución La pendiente de la recta t es: La pendiente de la recta u es: Como las dos pendientes son iguales, entonces las rectas son paralelas. Ejercicio La recta s contiene los puntos A (-2,5) y B (-4, 6), y la recta p contiene a C (-1, 4) y D (3, 12). Comprueba que s y p son perpendiculares. EJEMPLO Utilizando el concepto de pendiente, demuestra que los puntos A (4,1),B (5,-2) y C (6,-5) son colineales. Solución Para que tres puntos sean colíneales la pendiente del segmento AB debe ser igual a la pendiente del segmento BC.

10 Hallamos la pendiente del segmento AB: La pendiente del segmento BC es: Por tanto los tres puntos son colíneales. FORMAS DE LA ECUACIÓN DE LA RECTA Recordemos que por geometría euclidiana básica, una línea recta queda determinada por dos puntos. Analíticamente esto significa que dadas dos variables que estén relacionadas en forma lineal, es posible encontrar una ecuación que describa esta relación conociendo solamente dos puntos de la misma. Sabemos que por un punto pasan infinita cantidad de rectas. Sin embargo, una recta t queda determinada si, además de un punto, se conoce su inclinación. Dado que al conocer la inclinación se conoce la pendiente, entonces es posible construir la ecuación de dicha re cta. ECUACION CONOCIDA LA PENDIENTE E INTERSECTO CON LA ORDENADA (b) Se reemplaza el valor de m y b en la expresión explicita de la recta. y = mx + b, así se obtiene la ecuación

11 EJEMPLO: Si m = ¾ y b = -2, hallar la ecuación de la recta y representarla gráficamente. SOLUCION: Al remplazar los valores dados, se tiene que la ecuación explicita es: Para la representación grafica se ubica el intersecto en y, a partir de él se realizan los desplazamientos vertical y horizontal. Así se determina que el punto A = (4,1), también pertenece a la recta. ECUACION CONOCIDA UN PUNTO Y L A PENDIENTE Para hallar la ecuación de una recta, dados P = (s, t) y el valor de m se deben seguir los siguientes pasos. Se halla el valor del intersecto (b). Para esto, se remplazan s y t por x y y en la expresión y = mx + b. Se remplazan m y b en la ecuación y = mx + b. EJEMPLO: Hallar la ecuación explicita de la recta que pasa por P = (-1, -2) y cuya pendiente es -3. Luego, represéntala gráficamente.

12 TALLER 3 1. Determinar la pendiente y el intercepto con el eje y de cada una de las siguientes rectas. a) b) c) d) 2. Completa la siguiente tabla

13 ECUACION CONOCIDOS DOS PUNTOS Para hallar la ecuación de la recta, dados los puntos A = (x1, y1) y B = (x2, y2) se procede así: 1. Con la formula se halla la pendiente. 2. Se sustituyen los valores de x y y para hallar el intercecto (b). 3. Se remplazan m y b en la ecuación y = mx + b. EJEMPLO 1: Hallar la ecuación de la recta que pasa por los puntos A = (-1, -2) y B = (4, 2). Luego, representarla gráficamente. SOLUCION Primero se halla la pendiente. Así, Luego se halla b. -2 = 4/5 (-1) + b se reemplaza el punto A -2 = - 4/5 + b despejando b se tiene b = - 6/5 Finalmente se halla la ecuación de la recta. Así, Sustituyendo los valores de m y b EJEMPLO 2: Hallar la pendiente, el intersecto en y y el intersecto en x de la recta dada a continuación: -3x + 6y -12 = 0

14 SOLUCION ECUACION GENERAL DE LA RECTA La expresión Ax + By + C = 0, donde A, B, C ϵ R y A y B no son ceros simultáneamente es llamada ecuación general de la recta. EJEMPLO: Dada la ecuación explicita Y = 5/3 X -- 1/4 obtener la ecuación general de la recta. SOLUCION TALLER 4 Hallar la ecuación de la recta que pasa por los puntos dados.

15 Relacionar cada ecuación con su respectiva grafica. TALLER 5 1. Determinar la posición relativa de cada par de rectas y graficarlas en el plano cartesiano. a) b) c) d) 2. Hallar la ecuación de la recta que pasa por el punto dado y cumple la condición. Luego, graficarla en el mismo plano con la recta dada. a) Pasa por (-2, 4) y es paralela a y = 13x 6. b) Pasa por (0, -6) y es perpendicular a y = -5x. c) Pasa por (-8, 8) y es perpendicular a y = 2x d) Pasa por (-1, 6) y es paralela a y = 2/5x 6.

16 3. Escribir la ecuación de todas las rectas que forman cada polígono. a) b) 4. Completar la siguiente tabla

17 5. Resolver 6. Resolver DIEGO ALONSO CASTAÑO ALZATE DOCENTE DE MATEMÁTICAS

Lección 11: Ecuaciones lineales con dos incógnitas

Lección 11: Ecuaciones lineales con dos incógnitas Lección : Ecuaciones lineales con dos incógnitas Ecuaciones con dos incógnitas Eisten muchos problemas que pueden plantearse a través de ecuaciones con más de una incógnita. Veamos el siguiente ejemplo:

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED Fecha: febrero GUIA DE APRENDIZAJE

Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED Fecha: febrero GUIA DE APRENDIZAJE Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED Fecha: febrero Guía No: 1 Docente: NANCY GONZALEZ GUIA DE APRENDIZAJE Pensamiento: Lógico matemático Asignatura:

Más detalles

Lección 51. Funciones III. Funciones lineales

Lección 51. Funciones III. Funciones lineales Lección 51 Funciones III Funciones lineales Una función lineal es una función de la forma f (x) = mx + b, donde m y b son constantes. Se llama lineal porque su gráfica es una línea recta, en el plano R

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Geometría Analítica. GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS

Geometría Analítica.  GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS Geometría Analítica GEOMETRÍA ANALÍTICA PLANA René Descartes, matemático francés, en 67 define una ecuación algebraica para cada figura geométrica; es decir, un conjunto de pares ordenados de números reales

Más detalles

INSTITUTO UNIVERSITARIO DE CALDAS GUÍA TALLER GEOMETRÍA ANALÍTICA. GRADO 11-4 DOCENTE: CRISTINA CANO.

INSTITUTO UNIVERSITARIO DE CALDAS GUÍA TALLER GEOMETRÍA ANALÍTICA. GRADO 11-4 DOCENTE: CRISTINA CANO. Distancia entre dos puntos del plano INSTITUTO UNIVERSITARIO DE CALDAS Dados dos puntos cualesquiera A(1,y1), B(,y), definimos la distancia entre ellos, d(a,b), como la longitud del segmento que los separa.

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Bloque 2. Geometría. 3. La recta. 1. Definición de recta Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de

Más detalles

Elementos de geometría analítica

Elementos de geometría analítica UNIDAD 7: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA. Introducción Elementos de geometría analítica En esta unidad última nos ocuparemos del estudio de los conceptos más fundamentales de la geometría

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

MUNICIPIO DE MEDELLÍN GEOMETRÍA ANALÍTICA. 1. Hallar la dirección, la pendiente y los interceptos de una línea recta.

MUNICIPIO DE MEDELLÍN GEOMETRÍA ANALÍTICA. 1. Hallar la dirección, la pendiente y los interceptos de una línea recta. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES PERÍODO II ÁREA MATEMÁTICAS FECHA: Septiembre 26 de 2013 MUNICIPIO DE MEDELLÍN GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la pendiente y los

Más detalles

Sistema de coordenadas. Plano cartesiano

Sistema de coordenadas. Plano cartesiano Geometría analítica La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas.. Actualmente la geometría

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

Instituto de Matemática y Física 1 Universidad de Talca

Instituto de Matemática y Física 1 Universidad de Talca Instituto de Matemática y Física 1 Universidad de Talca 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Repaso de Matemática I Profesora: Alicia Herrera Ruiz

Repaso de Matemática I Profesora: Alicia Herrera Ruiz Repaso de Matemática I Profesora: Alicia Herrera Ruiz ESTIMADOS ALUMNOS LES HE PREPARADO ESTE MATERIAL CON EL ÚNICO FIN DE AYUDARLES A AFIANZAR LO QUE UDS. YA HAN VENIDO ESTUDIANDO. RECUERDEN QUE LA PRÁCTICA

Más detalles

GUIA Nº3. FUNCIONES 2º MEDIO A) 30 B) 20 C) 10 D) 0 E) -10. A) sólo I B) sólo III C) I y II D) II y III E) I, II y III

GUIA Nº3. FUNCIONES 2º MEDIO A) 30 B) 20 C) 10 D) 0 E) -10. A) sólo I B) sólo III C) I y II D) II y III E) I, II y III Colegio Raimapu Departamento de Matemática GUIA Nº. FUNCIONES º MEDIO 1. Si f(x)= x + 10 y f(b)= 0, entonces b es igual a: A) 0 B) 0 C) 10 D) 0 E) -10. Si f(x) = x ; Cuál(es) de las siguientes afirmaciones

Más detalles

Ejercicio 7: Hallar las coordenadas del punto B sabiendo que M es el punto medio del segmento [AB], A(7,8), M(3,-2).

Ejercicio 7: Hallar las coordenadas del punto B sabiendo que M es el punto medio del segmento [AB], A(7,8), M(3,-2). Geometría Analítica Investiga 1- Qué significa geometría analítica? Cómo surge? Quién es considerado el padre de la geometría analítica? Por qué? Qué otros matemáticos puedes encontrar en su historia?

Más detalles

Lección 2.4. El Sistema de Coordenadas y La Ecuación de la Recta. 21/02/2017 Prof. José G. Rodríguez Ahumada. 1 de 24

Lección 2.4. El Sistema de Coordenadas y La Ecuación de la Recta. 21/02/2017 Prof. José G. Rodríguez Ahumada. 1 de 24 Lección.4 El Sistema de Coordenadas La Ecuación de la Recta /0/07 Prof. José G. Rodríguez Ahumada de 4 Referencia: Actividades.4 Seccíón. Sistema de Coordenadas Cartesianas. Ejercicios de Práctica: 5-8.

Más detalles

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano).

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). GEOMETRÍA ANALÍTICA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). LA RECTA.- La recta es un conjunto infinito de puntos alineados en

Más detalles

open green road Guía Matemática FUNCIÓN LINEAL profesor: Nicolás Melgarejo .co

open green road Guía Matemática FUNCIÓN LINEAL profesor: Nicolás Melgarejo .co Guía Matemática FUNCIÓN LINEAL profesor: Nicolás Melgarejo.co . Función lineal Es una función de la forma f(x) = mx con m constante real no nula Dicha función determina una proporción directa entre la

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d

Dos pares ordenados seran iguales si cada una de sus componentes son respectivamente iguales, es decir: (a, b) = (c, d) a = c y b = d El Plano Cartesiano EDUCACIÓN MATEMATICA 1/10 El plano cartesiano o sistema de ejes coordenados debe su nombre al matemático francés Rene Descartes, es utilizado principalmente en la Geometría Analítica

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

CASOS DE LA FUNCIÓN AFÍN

CASOS DE LA FUNCIÓN AFÍN CASOS DE LA FUNCIÓN AFÍN Considera que el precio de un artículo es de Bs 80. Conocido el precio unitario (precio por unidad) es posible calcular fácilmente el precio de varios artículos con solo multiplicar

Más detalles

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada.

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. LA RECTA Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. En geometría euclidiana, la recta o la línea recta, se extiende en una misma dirección, existe

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Función lineal Ecuación de la recta

Función lineal Ecuación de la recta Función lineal Ecuación de la recta Función constante Una función constante toma siempre el mismo valor. Su fórmula tiene la forma f()=c donde c es un número dado. El valor de f() en este caso no depende

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

Matemáticas III. Geometría analítica

Matemáticas III. Geometría analítica Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...

Más detalles

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u ) 1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto

Más detalles

CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS FUNCIÓN Y RELACIÓN

CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS FUNCIÓN Y RELACIÓN CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA FUNCIÓN Y RELACIÓN RELACION Dados los conjuntos A =

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

MATEMÁTICA - 4TO... - Prof. Sandra Corti

MATEMÁTICA - 4TO... - Prof. Sandra Corti FUNCIÓN POLINÓMICA DE PRIMER GRADO o LINEAL o AFÍN Se llama función lineal porque la potencia de la es 1.Su gráfico es una recta. Y en general decimos que es de la forma: = m. + b donde m R b R Se denomina

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

LECCIÓN Nº 02 LA LINEA RECTA

LECCIÓN Nº 02 LA LINEA RECTA LECCIÓN Nº 02 LA LINEA RECTA Definición En estudios anteriores de geometría plata se menciona que una recta es un conjunto de puntos del plano. En el estudio del álgebra se menciona que un conjunto tal

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Lo peor no es cometer un error, sino tratar de justificarlo, en vez de aprovecharlo como aviso providencial de nuestra ligereza

Más detalles

Unidad 5: Geometría analítica del plano.

Unidad 5: Geometría analítica del plano. Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 6. Geometria analítica en el plano

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 6. Geometria analítica en el plano Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 Dados los vectores: u (, ) v, w (4, 6) z (/, ) x (, ) Cuáles de las siguientes afirmaciones son ciertas? a) Los vectores u y v son paralelos.

Más detalles

Universidad Tecnológica Nacional Facultad Regional Reconquista. Carrera: Técnico Superior en Programación. Recta en el Plano

Universidad Tecnológica Nacional Facultad Regional Reconquista. Carrera: Técnico Superior en Programación. Recta en el Plano Recta en el Plano ) Ecuación explícita de la recta:.) Cuando la recta pasa por el origen de coordenadas: Consideremos el sistema de coordenadas una recta R, que pase por el origen de coordenadas que no

Más detalles

MATEMÁTICAS III CUADERNILLO DE ACTIVIDADES Y TAREAS. Bachillerato General, Modalidad Mixta

MATEMÁTICAS III CUADERNILLO DE ACTIVIDADES Y TAREAS. Bachillerato General, Modalidad Mixta Bachillerato General, Modalidad Mixta MATEMÁTICAS III CUADERNILLO DE ACTIVIDADES Y TAREAS. Nombre del Alumn@ Día de la clase de matemáticas Hora de la clase de matemáticas Maestra: María Luisa Rubalcava

Más detalles

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

Lección 50. Funciones II. Plano cartesiano

Lección 50. Funciones II. Plano cartesiano Lección 50 Funciones II Plano cartesiano Un sistema de coordenadas rectangulares o cartesianas, llamado también plano cartesiano o plano xy, está formado por dos rectas coordenadas perpendiculares (rectas

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

1. EL SISTEMA POLAR 2. ECUACIONES EN COORDENADAS POLARES 3. GRÁFICAS DE ECUACIONES EN

1. EL SISTEMA POLAR 2. ECUACIONES EN COORDENADAS POLARES 3. GRÁFICAS DE ECUACIONES EN 1. EL SISTEMA POLAR. ECUACIONES EN COORDENADAS POLARES 3. GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto

Más detalles

SOLUCIONARIO Posiciones relativas de rectas en el plano

SOLUCIONARIO Posiciones relativas de rectas en el plano SOLUCIONARIO Posiciones relativas de rectas en el plano SGUICES0MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA Posiciones relativas de rectas en el plano Ítem Alternativa B C Comprensión B 4 E 5 D 6 E 7 A 8

Más detalles

INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO

INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: SEPTIEMBRE DE 2016 UNIDAD DE APRENDIZAJE

Más detalles

Curso: 3 E.M. ALGEBRA

Curso: 3 E.M. ALGEBRA Colegio SSCC Concepción - Depto. de Matemáticas Eje Tematico: SECCIONES CONICAS Unidad de Aprendizaje: ECUACION DE LA RECTA Capacidades/Destreza/Habilidades: Resolver/Construir/ Decidir/Analizar/ Identificar/

Más detalles

UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta

UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta UNIDAD XVII LA LINEA RECTA Modulo 4 Ecuación de la recta OBJETIVO Encontrar y determinar la ecuación de una recta, conocidos los puntos de intersección con los ejes coordenados. 4. 1. LINEA RECTA. Lugar

Más detalles

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

1. El plano cartesiano

1. El plano cartesiano 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de coordenadas rectangulares, que se caracteriza por: Estar

Más detalles

Representación gráfica de lugares geométricos

Representación gráfica de lugares geométricos Representación gráfica de lugares geométricos Representará gráficamente ecuaciones de las rectas y de espacios geométricos poligonales, considerando principios, leyes y procedimientos de trazo, aplicables

Más detalles

CARÁCTER DE LA GEOMETRÍA ANALÍTICA

CARÁCTER DE LA GEOMETRÍA ANALÍTICA CARÁCTER DE LA GEOMETRÍA ANALÍTICA La Geometría Elemental, conocida a por el estudiante, se denomina también Geometría PURA para distinguirla del presente estudio. Recordaremos que por medio de un sistema

Más detalles

UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas

UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas 009 UNIDAD 3: GEOMETRÍA ANALÍTICA Nociones preliminares, línea recta, estudio de las cónicas Se hace referencia a las definiciones, fórmulas y algunos ejemplos sobre los temas indicados Iván Moyota Ch.

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual

PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual Programa PREPAES, Universidad Francisco Gavidia015 PROGRAMA PRE-PAES 015 Asignatura: Matemática Contenido Virtual TEMA: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA Profesor: Luis Roberto Padilla R. e-mail:

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

es el lugar geométrico de los puntos p tales que ; R (1)

es el lugar geométrico de los puntos p tales que ; R (1) LA RECTA DEL PLANO ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS La recta en el plano como lugar geométrico Dados un punto p un vector no nulo u, la recta T paralela a u que pasa por p es el lugar geométrico

Más detalles

Geometría analítica del plano

Geometría analítica del plano 8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto

Más detalles

OBJETIVO 1 CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA:

OBJETIVO 1 CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA: OBJETIVO CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA: FUNCIÓN LINEAL Una función de proporcionalidad directa o función lineal se expresa de la forma: y = m? x, siendo m un número

Más detalles

TEMA 2: EL PLANO AFÍN

TEMA 2: EL PLANO AFÍN TEMA : EL PLANO AFÍN En la primera mitad del siglo XVIII nació una rama completamente nuea de la Matemática que surge por la necesidad de relacionar las curas del plano con las ecuaciones algebraicas de

Más detalles

Docente Matemáticas. Marzo 11 de 2013

Docente Matemáticas. Marzo 11 de 2013 Geometría Analítica Ana María Beltrán Docente Matemáticas Marzo 11 de 2013 1 Geometría Analítica Definición 1. Un lugar geométrico es el conjunto de todos los puntos del plano que tienen una característica

Más detalles

- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.

- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta. º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente

Más detalles

Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento.

Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. . RECTAS y FUNCIONES AFINES Indica si las funciones son lineales y, en ese caso, determina su pendiente y su crecimiento o decrecimiento. a) y = c) y = e) y = b) y = d) y = + f) y = a) No es lineal. c)

Más detalles

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se

Más detalles

PROBLEMARIO DE GEOMETRÍA ANALÍTICA

PROBLEMARIO DE GEOMETRÍA ANALÍTICA PROBLEMARIO DE GEOMETRÍA ANALÍTICA Problemario de Geometría Analítica PROBLEMARIO DE GEOMETRIA ANALITICA COORDENADAS RECTANGULARES d = ( x y Distancia entre dos puntos x1) + ( y 1) x1 + rx x p = 1 + r

Más detalles

Dibuja dos vectores diferentes que tengan el mismo módulo, distinta dirección y diferente sentido.

Dibuja dos vectores diferentes que tengan el mismo módulo, distinta dirección y diferente sentido. Vectores y rectas EJERCICIOS 00 Cuáles son las coordenadas de los vectores? = (, ) CD = (, ) EF = (, ) C E D F 00 Dibuja dos vectores diferentes que tengan el mismo módulo, distinta dirección y diferente

Más detalles

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín

La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín La ecuación lineal de primer grado con dos incógnitas. La recta en el plano afín Una ecuación lineal es una ecuación polinómica de grado uno con una o varias incógnitas. Si la ecuación solamente tiene

Más detalles

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2 MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 4 1. Simplificar potencias: a) 4 ( ) 5 5 81 9 ; b) 4 0 5 9 5 4 ; c) 4 0 15 5 5 4 ; d) 9000 0'000000006 6000000 0'0007. Calcular el resultado de las

Más detalles

MECU 3031 ECUACIONES DE RECTAS

MECU 3031 ECUACIONES DE RECTAS MECU 3031 ECUACIONES DE RECTAS Diferentes formas de una ecuación Una ecuación en dos variables se puede expresar en más de una forma equivalente utilizando correctamente operaciones inversas para despejar

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

La gráfica de la ecuación y = x 2

La gráfica de la ecuación y = x 2 INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación y = x 2 Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a

Más detalles