FISICA 2º BACHILLERATO CAMPO ELECTRICO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FISICA 2º BACHILLERATO CAMPO ELECTRICO"

Transcripción

1 ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará sometida a una acción debida a la deformación producida por la primera. El Campo electrico es un campo vectorial de fuerzas cuya magnitud activa es la carga. ) Concepto de carga eléctrica Es una magnitud escalar. En los problemas de interacción electrostática suponemos que la carga de un cuerpo está concentrada en el centro de éste, por lo que hablaremos de cargas puntuales. La unidad de carga es el Culombio [C] y como es una unidad muy grande se suelen utilizar submúltiplos. C) Ley de Coulomb La ley de Coulomb, nos indica que la fuerza de atracción o repulsión entre dos cargas puntuales Q 1 y Q 2 separadas una distancia r, es directamente proporcional al producto de sus cargas e inversamente proporcional al cuadrado de la distancia que las separa. Esta fuerza es un vector que tiene como dirección la recta que une el centro de cada una de las cargas y se calcula mediante la expresión:

2 F e = k Q 1 Q 2 r (1) r 2 Donde el vector r es un vector unitario en la dirección de la recta que une las dos cargas, y k es una constante que depende del medio eléctrico interpuesto entre las cargas, soliendo expresarse de la siguiente forma: k = (2) Con lo que la Ley de Coulomb queda: Ɛ 0 es la constante dieléctrica del vacío y se verifica que su valor es: Ɛ 0 = 8.85 x C 2 m -2 N -1 y la constante k valdrá: k = 9.0 x 10 9 C -2 m 2 N. Sustituyendo este valor en la expresión general de Coulomb (1), tendremos: F e = Q 1 Q 2 r r 2 El signo de la fuerza, depende del signo de las cargas eléctricas. Si las cargas son del mismo signo la fuerza es positiva (repulsiva) y si tienen signos opuestos es negativa (atractiva).

3 - Campo eléctrico creado por una carga puntual en un punto. El campo eléctrico creado por una carga puntual en un punto es la fuerza que actuaría sobre una unidad de carga situada en ese punto. Por tanto el campo eléctrico es directamente proporcional a la carga eléctrica que crea el campo e inversamente proporcional al cuadrado de la distancia que separa el centro de la carga del punto donde se calcula el campo eléctrico. Es una magnitud vectorial que se mide en [N/C] y se calcula mediante la expresión: El campo eléctrico es un vector que tiene como dirección la recta que une el centro de la carga con el punto donde se calcula y el sentido depende del signo de la carga que crea el campo; si ésta es positiva el sentido del campo se aleja de la carga y si ésta es negativa va dirigida hacia la carga. La fuerza eléctrica que actúa sobre una carga situada en un punto en el que la intensidad de campo eléctrico es E, se expresa como: - Campo eléctrico creado por una distribución de cargas. (Principio de superposición). l igual que ocurría en el campo gravitatorio, cuando el campo eléctrico en un punto se debe a un conjunto de cargas, el campo total en dicho punto se obtiene sumando vectorialmente las intensidades de los campos creados individualmente por cada carga por separado. E = E i

4 - Líneas de fuerza eléctrica Son líneas imaginarias que sirven para representar los campos eléctricos. Estas líneas coinciden con las trayectorias que sigue una carga abandonada en reposo en el interior del campo El vector campo eléctrico es tangente a las líneas de fuerza en cada punto. Como existen infinitos puntos en el campo, tan sólo se dibujan algunas líneas que tienen las siguientes propiedades: a) Las líneas de fuerza salen de las cargas positivas y entran en las cargas negativas b) El número de líneas que entran o salen de una carga puntual es proporcional al valor de la carga. c) Las líneas de fuerza no pueden cortarse. De lo contrario, en el punto de corte existirían dos vectores de campo eléctrico distintos. d) En el caso de las cargas eléctricas positivas, el sentido del vector campo eléctrico va en sentido de los potenciales decrecientes. e) En el caso de las cargas eléctricas negativas, el sentido del vector campo eléctrico va en sentido de los potenciales crecientes. - Superficies equipotenciales Otro modo de representar gráficamente el campo es mediante las superficies equipotenciales, que son aquellas superficies que contienen puntos con el mismo potencial. partir de esta definición se pueden deducir las siguientes conclusiones: Cuando una carga se mueve sobre una superficie equipotencial no se realiza trabajo, ya que la diferencia de potencial es cero. Las líneas de fuerza son perpendiculares a las superficies equipotenciales. Es decir que la intensidad de campo en un punto es perpendicular a la superficie equipotencial que pasa por dicho punto. En efecto, si el trabajo realizado al mover una carga sobre la superficie equipotencial vale cero, significa que F y dr son perpendiculares, por lo que también lo son E y dr.

5 Dos superficies equipotenciales nunca pueden cortarse. Si lo hicieran, en todos los puntos de la línea de corte habría dos vectores campo eléctrico, cada uno perpendicular a una de las superficies, lo cual no es posible. - Diferencia de energía potencial eléctrica El campo eléctrico es un campo de fuerzas conservativos, al igual que el campo gravitatorio, por esta razón es posible describir los fenómenos electrostáticos en función de una magnitud escalar llamada energía potencial eléctrica, que varía con la posición. Si un campo de fuerzas es conservativo, el trabajo realizado por las fuerzas del campo es independiente del camino seguido y sólo depende de la posición inicial y final. Se define la diferencia de energía potencial eléctrica entre dos puntos y, de un campo eléctrico, como el trabajo realizado por las fuerzas del campo para trasladar una carga q entre esos puntos. Donde: W F dr ( E E ) E P P P Como origen de energías potenciales se toma el infinito al que se le asigna el valor cero: E P ( ) = 0. Según esto la energía potencial eléctrica en un punto de un campo eléctrico se puede definir como el trabajo realizado por las fuerzas del campo para trasladar una carga q desde dicho punto al infinito. W E ( E E ) E P P( ) P( ) P( ) l igual que en el campo gravitatorio, siempre que el trabajo lo realice el campo, podremos decir que el proceso ocurre de forma espontánea, lo que ocurre es que en el caso del campo eléctrico tenderá a aumentar la energía potencial si la carga que se desplaza es negativa o tenderá a disminuir la energía potencial si la carga que se desplaza es positiva; y en cualquiera de los dos casos el trabajo será positivo.

6 - Diferencia de potencial y potencial eléctrico Se define diferencia de potencial eléctrico entre dos puntos y de un campo eléctrico como el trabajo realizado por las fuerzas del campo para trasladar la unidad de carga positiva entre dichos puntos. Si el campo eléctrico es debido a una carga Q, la diferencia de potencial será: W q = F dr E dr E dr E dr K Q dr q cos0 2 r K = Q K Q = (V -V ) r r Donde V (r) = K Q es el potencial eléctrico en un punto a una distancia r de la carga Q. r Como origen de potenciales se toma el infinito al que se le asigna el valor cero: V ( r= ) = 0 El potencial eléctrico en un punto se puede definir como el trabajo realizado por las fuerzas del campo para trasladar la unidad de carga positiva desde ese punto al infinito. Características del potencial: Q V K r a) El potencial es una magnitud escalar que sirve para caracterizar un campo eléctrico, ya que el valor del mismo sólo depende de la carga que crea el campo y de la distancia del punto a la carga. b) En el caso de una carga puntual el potencial es el mismo en todos los puntos que equidistan de la carga que lo crea. c) El signo del potencial coincide con el signo de la carga que lo crea, es decir positivo si la carga es positiva y negativo si la carga es negativa.

7 d) El potencial en un punto es la energía potencial que posee la unidad de carga EP( ) positiva colocada en ese punto. V( ) EP( ) V( ) q q La unidad de potencial en el S.I. es J/C = V (voltio). e) Conocida la diferencia de potencial eléctrica entre dos puntos de un campo eléctrico, se puede calcular el trabajo realizado por las fuerzas del campo para trasladar una carga q entre eso dos puntos: W E E E ) ( qv qv ) qv P ( P( ) P( ) ( ) ( ) W = q ( V V ) 1) Si la carga q es positiva el trabajo será realizado por las fuerzas del campo (espontaneo y positivo) si la carga se desplaza de potenciales mayores a potenciales menores ( V > V ) justo en sentido contrario que en el campo gravitatorio. 2) Si la carga q es negativa el trabajo será realizado por las fuerzas del campo (espontaneo y positivo) si la carga se desplaza de potenciales menores a potenciales mayores ( V < V ) justo en el mismo sentido que en el campo gravitatorio. f) l ser el potencial una magnitud escalar, el potencial total en un punto debido a un conjunto de cargas será la suma algebraica de los potenciales creados por cada carga en ese punto. V T n V K n i i1 i1 qi r i

8 D) Campo eléctrico uniforme Se llama así a un campo que tiene el mismo módulo, dirección y sentido en todos sus puntos. Sus líneas de fuerza son líneas rectas, cuyo sentido señalan hacia potenciales decrecientes. Sus superficies equipotenciales son planos perpendiculares a la dirección del campo. Un campo eléctrico uniforme es el que existe en la región comprendida entre dos láminas conductoras paralelas, con cargas iguales de signo opuesto (condensador plano) La relación entre la intensidad de campo y el potencial viene dada por la expresión: V E dr ; Si E Cte V E dr E d ; E distancia entre las placas. V d ; siendo d la Expresión que indica que, en un campo eléctrico uniforme, la diferencia potencial varía linealmente con la distancia, decreciendo en el sentido del campo: V V E d E) Movimiento de una carga en un campo eléctrico uniforme 1) Partícula en reposo o en movimiento con una velocidad inicial, v 0 en un campo eléctrico uniforme

9 Sea una partícula de masa m y carga q positiva en reposo o en movimiento con una velocidad inicial en un campo eléctrico uniforme con una intensidad E que actúa verticalmente: Sobre la carga actuará debido al campo eléctrico una fuerza constante: F q E F q E que le comunicará un MRU con una aceleración a en la misma m m dirección que el campo eléctrico; para ello conviene recordar las ecuaciones: (1) d = d 0 + v 0 t + ½ at 2 ; (2) v 2 = v a d; (3) v = v 0 + a t. En el caso de que la partícula de masa m y carga q sea negativa en las mismas condiciones, dicha partícula experimentará un MRUR con la misma aceleración F q E a y en la misma dirección que el campo eléctrico; utilizaremos las mismas m m ecuaciones (1), (2) y (3) pero con signo negativo. 2) MOVIMIENTO DE UN CRG QUE SE MUEVE CON VELOCIDD CONSTNTE EN UN DIRECCIÓN PERPENDICULR L CMPO ELÉCTRICO. l entrar en el campo eléctrico, la partícula se encuentra sometida simultáneamente a la acción de dos movimientos: un movimiento rectilíneo y uniforme a lo largo del eje X debido a la velocidad inicial, y a otro movimiento uniformemente acelerado debido a la fuerza que ejerce el campo eléctrico. Como resultado de la composición de estos dos movimientos, que actúan a la vez, se obtiene una trayectoria parabólica: La ecuación de cada parábola se obtendrá teniendo en cuenta las siguientes ecuaciones: En el eje X: a x = 0; v x = v 0 ; x = v 0 t F q E (1) En el eje Y: v 0y = 0; a y = a ; v y = v 0 + q E t / m (2); y = + ½ a t 2 (3) m m

10 La ecuación de la trayectoria de la parábola se obtiene al despejar el tiempo t en (1) y sustituirlo en (3): y = ½ (q E / m v 0 2 ) x 2 (4) F) Ley de Gauss: Concepto de Flujo eléctrico y aplicaciones - Flujo eléctrico, ᶲ: El flujo eléctrico a través de una superficie es una magnitud escalar que mide el número de líneas de campo que atraviesan dicha superficie. El flujo eléctrico se calcula como el producto escalar del vector intensidad de campo eléctrico E y el vector superficie S. ᶲ = E S = E S cos α

11 - Ley de Gauss : Hasta ahora hemos considerado los cuerpos cargados como si fueran cargas puntuales, sin embargo en la realidad eso no es así. El flujo eléctrico a través de una superficie cerrada S es directamente proporcional a la carga neta Q que encierra la superficie. La superficie cerrada empleada para calcular el flujo del campo eléctrico se denomina superficie Gaussiana. Demostración: Supongamos una carga eléctrica puntual positiva Q de radio R que se encuentra encerrada en una superficie, S tal y como muestra la figura:

12 - plicaciones de la Ley de Gauss a) Campo creado por un placa conductora. El campo eléctrico creado por una placa conductora puede ser calculado utilizando la ley de Gauss. En la siguiente figura se ha representado un plano infinito cargado con una densidad superficial de carga σ (= q/s) uniforme y positiva. Las líneas de campo siempre salen de las cargas positivas, por lo que el campo creado por el plano será uniforme (ya que la densidad de carga lo es) y sus líneas irán hacia afuera de ambos lados del plano. El flujo del campo eléctrico a través de cualquier superficie cerrada es siempre el mismo (ley de Gauss); en este caso, por simplicidad de cálculo, se ha elegido una superficie Gaussiana cilíndrica (representada en rojo en la figura). El flujo a través de la superficie lateral del cilindro es nulo (ninguna línea de campo la atraviesa). Las únicas contribuciones no nulas al flujo son las que se producen a través de sus dos bases. El flujo del campo eléctrico a través del cilindro es entonces:

13 Como las dos bases del cilindro son iguales y el módulo del campo es el mismo en todos los puntos de su superficie, la integral anterior se simplifica, quedando: El valor del flujo viene dado por la ley de Gauss: Y q /S es la densidad superficial de carga σ: b) Campo creado por un conductor esférico. El campo eléctrico creado por un conductor esférico puede ser calculado utilizando la ley de Gauss. En este caso, por simplicidad de cálculo, se ha elegido una superficie Gaussiana esférica, S G (representada en verde en la figura).

14 En consecuencia, el campo eléctrico creado por un conductor esférico en un punto exterior es el mismo que crearía una carga puntual Q situada en el centro de la esfera. c) Campo creado por un hilo conductor. Imagina un hilo uniformemente cargado cuya densidad lineal de carga es λ (λ=q/l). Si utilizamos la ley de Gauss para determinar el valor de E, es común seguir los siguientes pasos: 1. Se escoge una superficie cerrada que envuelva al objeto que crea el campo eléctrico. Dicha superficie denominada superficie gaussiana debe poseer un área fácil de obtener y debe ser perpendicular a dicho campo eléctrico. En nuestro caso, parece evidente que la superficie gaussiana debería ser el cilindro "virtual". 2. Se aplica la expresión general del flujo eléctrico para cualquier tipo de superficie. quí tendremos en cuenta que el flujo total que atraviesa el cilindro es la suma de los flujos que

15 atraviesan todas sus caras. Sin embargo, dado que las líneas de campo solo atraviesan los laterales, el flujo eléctrico por las bases es nulo. Φ E = Φ + Φ L + Φ Φ = 0 Φ E = Φ L En nuestro caso como en el el lateral son paralelos, su producto escalar Teniendo en cuenta que la superficie lateral de un cilindro es S L =2 π R h 3. El valor obtenido en el punto anterior se iguala a la expresión del teorema de Gauss. En nuestro caso, tendremos en cuenta que λ=q/l.

16 Por tanto, si consideramos que d es la distancia al punto donde medimos la intensidad del campo eléctrico d = R:

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Tema 3 : Campo Eléctrico

Tema 3 : Campo Eléctrico Tema 3 : Campo Eléctrico Esquema de trabajo: 1.- Carga eléctrica 2.- Ley de Colulomb 3.- Campo eléctrico. Intensidad de campo eléctrico. 4.- Energía potencial eléctrica. 5.- Potencial eléctrico. Superficies

Más detalles

TEMA 3: CAMPO ELÉCTRICO

TEMA 3: CAMPO ELÉCTRICO TEMA 3: CAMPO ELÉCTRICO o Naturaleza electrica de la materia. o Ley de Coulomb. o Principio de superposicion. o Intensidad del campo eléctrico. o Lineas del campo electrico. o Potencial eléctrico. o Energia

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C Fuerza entre dos Cargas (Ley de Coulomb) Fuerza total sobre una determinada carga Intensidad de campo eléctrico creado por una carga puntual en un punto F= K Q. q /r 2. Ko = 1/(4πε o )= = 9. 10 9 N. m

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Interacción electrostática 2. Campo eléctrico 3. Enfoque dinámico 4. Enfoque energético 5. Movimiento de

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

PROBLEMAS CAMPO ELÉCTRICO

PROBLEMAS CAMPO ELÉCTRICO PROBLEMAS CAMPO ELÉCTRICO 1. Explica las semejanzas y las diferencias entre los campos gravitatorio y eléctrico 2. En una región del espacio, la intensidad del campo eléctrico es nula. Debe ser nulo también

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

Introducción histórica

Introducción histórica Introducción histórica Tales de Mileto (600 a.c.) observó la propiedad del ámbar de atraer pequeños cuerpos cuando se frotaba. Ámbar en griego es electron ELECTRICIDAD. En Magnesia existía un mineral que

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Calcula la distancia entre las cargas = µc y = 8 µc para ue se repelan con F = 0,6 N: a) Si están en el vacío. b) Si el medio entre ellas es agua (e r = 80). a) Si las

Más detalles

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1 ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación

Más detalles

El Campo Eléctrico. Distribuciones discretas de carga

El Campo Eléctrico. Distribuciones discretas de carga El Campo Eléctrico. Distribuciones discretas de carga 1. A qué distancia deben encontrarse dos cargas de 1 nc para que la fuerza de repulsión entre ellas sea de 0 1 N? DATO: K = 9 10 9 N m 2 /C 2 2. Dos

Más detalles

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1).

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1). 1 Se tienen dos cargas puntuales sobre el eje X: 1 = 0,2 μc está situada a la derecha del origen y dista de él 1 m; 2 = +0,4 μc está a la izuierda del origen y dista de él 2 m. a) En ué puntos del eje

Más detalles

ACTIVIDADES RECAPITULACIÓN 4: INTERACCIÓN ELÉCTRICA

ACTIVIDADES RECAPITULACIÓN 4: INTERACCIÓN ELÉCTRICA ACTIVIDADES RECAPITULACIÓN 4: INTERACCIÓN ELÉCTRICA A-1. F q1,q Fq1,q F q1,q F q,q F q,q q q 1 q q q F q,q Para que q esté en equilibrio se tiene que cumplir que: F = 0, por tanto, la carga debe encontrarse

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas.

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas. Tema 9 Campo eléctrico 1. Fuerza eléctrica Ley de Coulomb La fuerza con la que se atraen o repelen dos cargas es directamente proporcional al producto de la de ambas cargas e inversamente proporcional

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

INTENSIDAD DE CAMPO ELECTRICO (E)

INTENSIDAD DE CAMPO ELECTRICO (E) CAMPO ELECTRICO Región donde se produce un campo de fuerzas. Se representa con líneas que indican la dirección de la fuerza eléctrica en cada punto. Una carga de prueba observa la aparición de fuerzas

Más detalles

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica GUIA DE FÍSICA Campo Eléctrico Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor CAMPO ELECTRICO Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

Más detalles

Módulo 1: Electrostática Potencial eléctrico

Módulo 1: Electrostática Potencial eléctrico Módulo 1: Electrostática Potencial eléctrico 1 Energía potencial electrostática Se tiene una analogía entre la energía potencial gravitatoria (debida a la fuerza de la gravedad) y la energía potencial

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Física 2º Bach. Campo eléctrico 11/02/09

Física 2º Bach. Campo eléctrico 11/02/09 Física 2º ach ampo eléctrico 11/02/09 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTO /UNO] 1 Una partícula de 2,00 µg y 5,00 p entra perpendicularmente a un campo eléctrico constante producido por

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y

Más detalles

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral Fundamentos Físicos de la Informática Capítulo 1 Campos electrostáticos Margarita Bachiller Mayoral Campos electrostáticos Tipos de carga Fuerza eléctrica Principio de superposición Margarita Bachiller

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 2. Campo Eléctrico. A) Interacción Electrostática: Principio de Superposición de campos eléctricos.

Seminario de Física. 2º bachillerato LOGSE. Unidad 2. Campo Eléctrico. A) Interacción Electrostática: Principio de Superposición de campos eléctricos. A) Interacción Electrostática: Principio de Superposición de campos eléctricos. 1.- La distancia entre el electrón y el protón en el átomo de hidrógeno es 5,3 10-11 m. Compara los módulos de las fuerzas

Más detalles

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D. Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-

Más detalles

CAMPO ELÉCTRICO. JUNIO

CAMPO ELÉCTRICO. JUNIO CAMPO ELÉCTRICO. JUNIO 1997: 1.- Se sitúan tres cargas eléctricas q 1, q 2 y q 3, en los puntos A (0,0,0); B (0,4,0) y C (0,4,3), respectivamente, donde las coordenadas vienen dadas en metros. Se pide:

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

Física 2º Bach. Campo eléctrico 19/02/10

Física 2º Bach. Campo eléctrico 19/02/10 Física 2º ach. ampo eléctrico 19/02/10 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTOS /UNO] 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos.

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos. 1999. Un protón con una energía cinética de 1 ev se mueve perpendicularmente a un campo magnético de 1,5 T. a) Calcula la fuerza que actúa sobre esta partícula, sabiendo que su masa es de 1,67.10-27 kg.

Más detalles

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO PROBLEMAS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2010) DOMINGO

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

7 Campo magnético. Actividades del interior de la unidad

7 Campo magnético. Actividades del interior de la unidad 7 Campo magnético Actividades del interior de la unidad 1. Dibuja las líneas del campo magnético de un imán recto y de un imán de herradura. En ambos casos, las líneas salen del polo norte y regresan al

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA 1.- Un hilo recto, de longitud 0,2 m y masa 8 10-3 kg, está situado a lo largo del eje OX en presencia de un campo magnético uniforme = 0,5 j a) Razone el sentido que debe tener la corriente para que la

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

CÓMO DETECTAR UN CAMPO ELÉCTRICO?

CÓMO DETECTAR UN CAMPO ELÉCTRICO? CAMPO ELÉCTRICO! E Es aquella región de espacio que rodea a una carga eléctrica. Este campo funciona como transmisor mediante el cual una carga interactúa con otra que está a su alrededor CÓMO DETECTAR

Más detalles

CAMPO ELÉCTRICO 1.- FENÓMENOS ELECTROSTÁTICOS. CARGA ELÉCTRICA.

CAMPO ELÉCTRICO 1.- FENÓMENOS ELECTROSTÁTICOS. CARGA ELÉCTRICA. CAMPO ELÉCTRICO CAMPO ELÉCTRICO 1.- 2.- 3.- 4.- 5.- 6.- 7.- 8.- FENÓMENOS ELECTROSTÁTICOS. CARGA ELÉCTRICA. LEY DE COULOMB. CAMPO ELECTROSTÁTICO. ENERGÍA POTENCIAL ELECTROSTÁTICA. POTENCIAL ELECTROSTÁTICO.

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Electricidad y Magnetismo. Ley de Coulomb.

Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es

Más detalles

Principios de Termodinámica y Electromagnetismo

Principios de Termodinámica y Electromagnetismo Facultad de Ingeniería Principios de Termodinámica y Electromagnetismo Proyecto de Investigación Alumnos: CAMPO ELÉCTRICO. Arias Vázquez Margarita Isabel Arroyo Ramírez Rogelio Beltrán Gómez Selvin Eduardo

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice (I) Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Interacción electromagnética

Interacción electromagnética Unidad 4 Interacción electromagnética chenalc@gmail.com Tales de Mileto (600 a.c.) observó la propiedad del ámbar de atraer pequeños cuerpos cuando se frotaba. Ámbar en griego es electron ELECTRICIDAD.

Más detalles

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA A) Trabajo de fuerzas constantes y trayectoria rectilínea. Cuando sobre una partícula actúa una fuerza constante, y esta partícula describe una trayectoria rectilínea, definimos trabajo realizado por la

Más detalles

CAMPO ELECTROMAGNÉTICO

CAMPO ELECTROMAGNÉTICO CAMPO ELECTROMAGNÉTICO 1. Qué diferencia de potencial se crea entre los extremos de las alas de un avión que vuela horizontalmente a una velocidad de 900 km/h en un lugar donde la componente vertical del

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá

I. T. Telecomunicaciones Universidad de Alcalá I. T. Telecomunicaciones Universidad de Alcalá Soluciones al Examen de Física Septiembre 2006 Departamento de Física P1) La figura muestra una región limitada por los planos x = 0, y = 0, x = 10 cm, y

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com ELECTROSTÁTICA 1- Dos cargas eléctricas puntuales q 1 =-5µC y q 2 =2 µc están separadas una distancia de 10 cm. Calcule: a) El valor del campo y del potencial eléctricos en un punto B, situado en la línea

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Potencial Eléctrico Preguntas de Multiopción

Potencial Eléctrico Preguntas de Multiopción Slide 1 / 72 Potencial Eléctrico Preguntas de Multiopción Slide 2 / 72 1 Una carga negativa se coloca en una esfera de conducción. Cual de las afirmaciones es verdadera acerca a la distribución de carga?

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

Unidad I: Electrostática (2da parte)

Unidad I: Electrostática (2da parte) Unidad I: Electrostática (2da parte) Potencial electrostático. a) Trabajo de la fuerza electrostática. Considere el sistema de dos cargas formado por las cargas puntuales Q y q, mostrado en la Figura 2.1.

Más detalles

E 1.3. LA LEY DE GAUSS

E 1.3. LA LEY DE GAUSS E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero. Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc

Más detalles

2. Una carga eléctrica positiva se mueve en un campo eléctrico uniforme. Razone cómo varía su energía potencial electrostática si la carga se mueve:

2. Una carga eléctrica positiva se mueve en un campo eléctrico uniforme. Razone cómo varía su energía potencial electrostática si la carga se mueve: ELECTROSTÁTICA 2001 1. El campo eléctrico en un punto P, creado por una carga q situada en el origen, es de 2000 N C - 1 y el potencial eléctrico en P es de 6000 V. a) Determine el valor de q y la distancia

Más detalles

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética 70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial

Más detalles

El campo de las cargas en reposo. El campo electrostático.

El campo de las cargas en reposo. El campo electrostático. El campo de las cargas en reposo. El campo electrostático. Introducción. Propiedades diferenciales del campo electrostático. Propiedades integrales del campo electromagnético. Teorema de Gauss. El potencial

Más detalles

Interaccio n electromagne tica.

Interaccio n electromagne tica. Interaccio n electromagne tica. Introducción. Ciertos minerales de hierro, como la magnetita, tienen la propiedad de atraer pequeños trozos de hierro. A esta propiedad física se le conoce como magnetismo

Más detalles

Problema 16: Condensador Plano

Problema 16: Condensador Plano UNIVERSIDAD DE MURCIA Miguel Albaladejo Serrano Licenciatura en Física mas4@alu.um.es Problema 6: Condensador Plano Miguel Albaladejo Serrano. Enunciado Dos placas infinitas, paralelas, conductoras, están

Más detalles

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg MAGNETISMO 2001 1. Un protón se mueve en el sentido positivo del eje OY en una región donde existe un campo eléctrico de 3 10 5 N C - 1 en el sentido positivo del eje OZ y un campo magnetico de 0,6 T en

Más detalles

Tema 4* Dinámica de la partícula

Tema 4* Dinámica de la partícula Tema 4* Dinámica de la partícula Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dra. Ana Mª Marco Ramírez 1 Índice Introducción. Primer principio de la dinámica:

Más detalles