Laboratorio de Física Universitaria 2 otoño 1998 Alicia M. Vázquez Soto. Campo Eléctrico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Laboratorio de Física Universitaria 2 otoño 1998 Alicia M. Vázquez Soto. Campo Eléctrico"

Transcripción

1 OBJETIVOS: Campo Eléctrico Entender el concepto de campo eléctrico Aprender como calcular el campo eléctrico asociado con las cargas que se distribuyen a través de un objeto Entender como las líneas de campo eléctrico pueden usarse para describir la magnitud y dirección del campo eléctrico en una pequeña región del espacio. INTRODUCCION: En esta práctica vamos a definir una cantidad llamada campo eléctrico que puede utilizarse para determinar la fuerza en una pequeña carga de prueba como resultado neto de la presencia de otras cargas. También vamos a definir las líneas de campo eléctrico, y la densidad de carga. Aprenderás a graficar líneas de campo eléctrico tomando en cuenta la dirección de las mismas. CAMPO ELÉCTRICO: Hasta ahora las fuerzas que hemos estudiado son el resultado de la acción directa o contacto de una pieza de materia con otra. A partir de tus observaciones directas de las esferas de prueba cargadas, es evidente que los objetos cargados pueden ejercer fuerzas eléctricas unas con otras a una cierta distancia. Por qué sucede esto? La acción a una cierta distancia que caracteriza las fuerzas eléctricas, o en su caso las fuerzas gravitacionales, es de alguna manera inconcebible para nosotros. Cómo puede una carga sentir la presencia de otra y detectar su movimiento con solo espacio vacío entre ellas? Aunque para la mayoría de la gente el hecho de que existan fuerzas que actúan a distancia sea inconcebible, los físicos creen que todas las fuerzas actúan a distancia.. En realidad los fisicos explican todas las fuerzas entre partículas, incluyendo las fuerzas de contacto, en términos de transmisión de ondas electromagnéticas. Por el momento vamos a considerar los intentos que Michael Faraday y otros hicieron en el siglo pasado para explicar como es que actúan las "fuerzas a distancia", ya que al entender estas primeras aproximaciones podremos desarrollas algunos modelos útiles para describir las fuerzas entre cargas en determinadas situaciones.

2 Para describir las acción a distancia, Michael Faraday introdujo la noción de un campo eléctrico que brotaba de un serie de cargas y se extendía hacia el espacio. En términos más formales sería: el campo eléctrico debido a un conjunto conocido de cargas se representa por un vector de campo eléctrico en cada punto en el espacio. Por lo tanto, el vector de campo eléctrico, E, se define como la fuerza, F, que experimenta una pequeña carga positiva que se encuentra en un punto en el espacio, dividido entre la magnitud de la carga q 0. Por lo tanto, el campo eléctrico está en dirección de la fuerza F, en una pequeña carga positiva y tiene la magnitud de F E = (1) En donde q o es la carga de una pequeña partícula de prueba. q o ACTIVIDAD 1. VECTORES DE CAMPO ELÉCTRICO EN UN VARILLAS CARGADAS POSITIVA y NEGATIVAMENTE. Para investigar la naturaleza vectorial de un campo eléctrico podemos usar una esferita de poli estireno, cubierta de papel aluminio y amarrada a un pedazo de hilo, con carga positiva (inducirle una carga positiva con una varilla de vidrio que haya sido frotada con un pedazo de seda o poliéster), como carga de prueba. Material : Esferita de prueba cubierta de papel aluminio. Varilla de vidrio Varilla de plástico Pedazo de seda o poliéster. Pedazo de piel o peluche. 1. Cargar la varilla de vidrio, y sostenerla en posición vertical, La carga en la varilla de vidrio es la fuete del campo eléctrico. 2. Sostén la carga de prueba del hilo y muévela alrededor de la varilla. 3. Fíjate en la dirección y magnitud de la fuerza e varios puntos alrededor de la varilla. 4. Cuál es la dirección y la magnitud relativa del campo eléctrico alrededor de la varilla? NOTA: Por convención los físicos siempre colocan la parte posterior del vector campo E en el punto de interés en el espacio, mas que en la carga que provoca el campo.

3 5. Realiza un diagrama cualitativo de algunos de los vectores del campo eléctrico que rodean la parte izquierda de la varilla, utiliza los puntos marcados. La longitud del vector debe indicar, aproximadamente, la magnitud relativa del campo y por supuesto la dirección del vector debe indicar la dirección del campo, por ejemplo; si el campo E es mas fuerte en un punto que en otro haz el vector más largo. No olvides poner el final del vector en el punto de interés, no en la varilla de vidrio. 6. Utiliza ahora una varilla de plástico para crear un campo eléctrico como resultado de la distribución de una carga negativa. Dibuja los vectores del campo eléctrico con magnitud y dirección. Superposición de Vectores del Campo Eléctrico: El hecho de que los campos eléctricos de cargas distribuidas en diferentes lugares actúan a lo largo de una línea entre la carga y el punto, de interés, en el espacio se conoce como linearidad. El hecho de que los vectores de campo debido a cargas en diferentes puntos en el espacio se puedan sumar se conoce como superposición. Estas dos propiedades: la fuerza de Coulomb y la de campo eléctrico, que se deriva de ella, son muy útiles para calcular el valor de campos eléctricos debidos a un conjunto de cargas puntuales en diferentes sitios. Esto puede lograrse encontrando el valor del vector campo E para cada carga puntual y utilizando el principio de superposición para determinar la suma vectorial de los vectores individuales del campo eléctrico. Líneas de Campo Eléctrico: Hasta ahora, hemos representado al campo eléctrico debido a la configuración de cargas eléctricas con una flecha con magnitud y dirección usando los principios de superposición y linearidad para determinar la longitud y dirección de la flecha para cada punto en el espacio. Esta es una representación convencional del "vector campo". Una representación alternativa involucra definir las lineas de Campo Eléctrico. A diferencia del vector de campo eléctrico que es una flecha con magnitud y dirección, las líneas de campo eléctrico son continuas. ACTIVIDAD 2: En esta actividad vamos a estudiar la formación de las líneas de Campo Eléctrico en diferentes situaciones. El campo eléctrico lo vamos a inducir por medio de la Máquina de Whimhurst en cuatro placas diferentes. En cada caso vamos a contar con una carga positiva y una negativa. Lo importante para cada caso es conocer el arreglo que adquieren las líneas de Campo Eléctrico y lo que sucede en las cercanías de las cargas.

4 Investigación previa: En un libro de texto investiga cual es la dirección de las líneas de campo eléctrico, que se conoce como densidad de carga, y cual es la dirección del campo en un punto dado. Material: Máquina de Whimhurst Soporte de acrílico Cuatro Placas diferentes. Varillas de latón (electrodos). Caimanes Aceite Semillas de Pasto 1. Coloca una placa en el soporte de acrílico. Coloca un poco de aceite suficiente para cubrir la placa. Cuál es la función del aceite? Explica 2. Coloca los electrodos en los orificios del soporte de acrilico y asegúrate de que estén bien colocados en el centro marcado de las placas. 3. Esparce un poco de semillas sobre el aceite de la placa. Precaución: Es importante que no sean muchas semillas, porque sino se dificulta ver la formación del Campo Eléctrico. Sin embargo debe haber suficientes semillas en toda la placa. 4. Conecta los electrodos con los caimanes a los electrodos de la máquina de Whimhurst. 5. Lentamente empieza a girar la palanca de la máquina de Whimhurst y observa lo que sucede. 6. Cambia la placa. Antes de quitar la placa desconecta los caimanes. 7. Realiza un diagrama para cada placa en el que se muestre el acomodo de las líneas de Campo Eléctrico. Dibuja cual sería la dirección de las líneas en cada caso (Arbitrariamente escoge una carga positiva y una negativa, pero respeta la dirección en el diagrama.) Explica que sucede en las cercanías de los electrodos, y señala la dirección del campo en un punto dado. Placa 1 Placa 2

5 Placa 3 Placa 4. NOTA: Al cambiar las placas límpialas bien, así como el soporte de acrílico.

PRÁCTICA NÚMERO 9 CAMPO ELÉCTRICO

PRÁCTICA NÚMERO 9 CAMPO ELÉCTRICO PRÁCTICA NÚMERO 9 CAMPO ELÉCTRICO I. Objetivos. 1. Investigar cómo son las líneas de fuerza para las siguientes configuraciones de carga: a) Una carga puntual b) Dos cargas puntuales de igual signo c)

Más detalles

PRÁCTICA NÚMERO 2 CAMPO ELÉCTRICO

PRÁCTICA NÚMERO 2 CAMPO ELÉCTRICO PRÁCTICA NÚMERO 2 CAMPO ELÉCTRICO I. Objetivos. 1.-Investigar cómo son las líneas de fuerza para las siguientes configuraciones de carga: a).-una carga puntual b).-dos cargas puntuales de igual signo c).-dos

Más detalles

Práctica 2 Distribución de carga eléctrica y campo eléctrico

Práctica 2 Distribución de carga eléctrica y campo eléctrico Página 11/105 Práctica 2 Distribución de carga eléctrica y campo eléctrico 11 Página 12/105 1. Seguridad en la ejecución Peligro o fuente de energía Riesgo asociado 1 Diferencia de potencial alterna. Descarga

Más detalles

CÓMO DETECTAR UN CAMPO ELÉCTRICO?

CÓMO DETECTAR UN CAMPO ELÉCTRICO? CAMPO ELÉCTRICO! E Es aquella región de espacio que rodea a una carga eléctrica. Este campo funciona como transmisor mediante el cual una carga interactúa con otra que está a su alrededor CÓMO DETECTAR

Más detalles

PRÁCTICA NÚMERO 7 CARGAS ELÉCTRICAS

PRÁCTICA NÚMERO 7 CARGAS ELÉCTRICAS PRÁCTICA NÚMERO 7 CARGAS ELÉCTRICAS I. Objetivos. 1. Investigar cuántos tipos de cargas existen y la forma de interactuar entre sí. 2. Determinar el tipo de carga que posee un cuerpo cargado. II. Material.

Más detalles

PRÁCTICA NÚMERO 1 CARGAS ELÉCTRICAS

PRÁCTICA NÚMERO 1 CARGAS ELÉCTRICAS PRÁCTICA NÚMERO 1 CARGAS ELÉCTRICAS I. Objetivos. 1. Investigar cuántos tipos de cargas existen y la forma de interactuar entre sí. 2. Determinar el tipo de carga que posee un cuerpo cargado. II. Material.

Más detalles

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica GUIA DE FÍSICA Campo Eléctrico Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor CAMPO ELECTRICO Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física III

INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física III INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física III Alumno Grupo Equipo Profesor de teoría Profesor de laboratorio Fecha / / Calificación

Más detalles

TEMA 3:ELECTROSTATICA

TEMA 3:ELECTROSTATICA TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

Laboratorio de Física Universitaria 2: Carga Eléctrica y Ley de Coulomb otoño 1998 Alicia Vázquez Soto, Gustavo E. Soto de la Vega

Laboratorio de Física Universitaria 2: Carga Eléctrica y Ley de Coulomb otoño 1998 Alicia Vázquez Soto, Gustavo E. Soto de la Vega OBJETIVO Descubrir algunas de las propiedades básicas de las partículas que transportan cargas eléctricas. Entender como la Ley de Coulomb describe las fuerzas entre cargas. INTRODUCION. Para estudiar

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA II. CUESTIONARIO GENERAL DE RECUEPERACION OPTICA-ELECTROSTATICA

INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA II. CUESTIONARIO GENERAL DE RECUEPERACION OPTICA-ELECTROSTATICA INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA II. CUESTIONARIO GENERAL DE RECUEPERACION OPTICA-ELECTROSTATICA. Enero 08 de 2015. NOTA: Es importante que cada una de

Más detalles

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría Experimento 1. Líneas de fuerza y líneas equipotenciales Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

A.- Carga eléctrica. B.- Carga neta: Qn

A.- Carga eléctrica. B.- Carga neta: Qn 1 A.- Carga eléctrica Todos los cuerpos están formados por átomos que, a su vez, están formados por partículas con carga eléctrica, esta es una propiedad intrínseca de las partículas elementales, así como

Más detalles

Escuela Técnica ORT Sede Almagro Física 4º LEY DE COULOMB

Escuela Técnica ORT Sede Almagro Física 4º LEY DE COULOMB LEY DE COULOMB Parte 1 Introducción El físico Charles Agustín Coulomb (1736 1806) fue un estudioso de los fenómenos eléctricos, estuvo interesado en cuantificar la magnitud de la fuerza de atracción y

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

FÍSICA. Resolución 1. Parte 1- Múltiple opción.

FÍSICA. Resolución 1. Parte 1- Múltiple opción. Resolución 1. Parte 1- Múltiple opción. 1- Las cargas eléctricas A y B se atraen entre sí. Las cargas eléctricas B y C se repelen una a otra. Si se mantienen juntas A y C, a- se atraerán. b- se repelerán.

Más detalles

Principios de Termodinámica y Electromagnetismo

Principios de Termodinámica y Electromagnetismo Facultad de Ingeniería Principios de Termodinámica y Electromagnetismo Proyecto de Investigación Alumnos: CAMPO ELÉCTRICO. Arias Vázquez Margarita Isabel Arroyo Ramírez Rogelio Beltrán Gómez Selvin Eduardo

Más detalles

Universidad Nacional Autónoma de México Colegio de Ciencias y Humanidades CCH-Oriente Laboratorio Asistido por Computadora

Universidad Nacional Autónoma de México Colegio de Ciencias y Humanidades CCH-Oriente Laboratorio Asistido por Computadora Universidad Nacional Autónoma de México Colegio de Ciencias y Humanidades CCH-Oriente Laboratorio Asistido por Computadora Campo eléctrico de objetos electrizados (Líneas de fuerza eléctrica) Integrantes

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

1997 DEPARTAMENTO DE FÍSICA.

1997 DEPARTAMENTO DE FÍSICA. LEY DE OHM OBJETIVOS : Explorar la relación entre corriente, voltaje y resistencia. Deducir la Ley de Ohm. Justificar el uso de resistencias de carbón contra focos, en un circuito eléctrico. Distinguir

Más detalles

PRÁCTICA NÚMERO 1 ELECTRIZACIÓN Y LEY DE COULOMB

PRÁCTICA NÚMERO 1 ELECTRIZACIÓN Y LEY DE COULOMB INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR CENTRO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS No. 8 NARCISO BASSOLS ACADEMIA DE FÍSICA LABORATORIO DE FÍSICA III

Más detalles

Dinámica del movimiento rotacional

Dinámica del movimiento rotacional Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

Principio de conservación de la carga. Cuantización de la carga. Medición de la carga eléctrica

Principio de conservación de la carga. Cuantización de la carga. Medición de la carga eléctrica Principio de conservación de la carga En concordancia con los resultados experimentales, el principio de conservación de la carga establece que no hay destrucción ni creación neta de carga eléctrica, y

Más detalles

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 20 Carga Eléctrica, Fuerza, y Campo PowerPoint Lecture prepared by Richard Wolfson Slide 20-1 En esta exposición usted aprenderá Como la materia y muchas de

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

2.- A continuación se presentan 5 afirmaciones referentes a atracciones y repulsiones eléctricas entre cuerpos. Indica la única verdadera:

2.- A continuación se presentan 5 afirmaciones referentes a atracciones y repulsiones eléctricas entre cuerpos. Indica la única verdadera: 1.- Un campo eléctrico ejerce sobre un protón una fuerza F. El mismo campo eléctrico ejercerá sobre una partícula alfa (constituida por dos protones y dos neutrones) una fuerza igual a: A) F/4 B) F/ C)

Más detalles

CAMPO ELECTRICO. Campo Eléctrico. Introducción.

CAMPO ELECTRICO. Campo Eléctrico. Introducción. CAMPO ELECTRICO Introducción. El campo eléctrico es la zona del espacio donde cargas eléctricas ejercen su influencia. Es decir que cada carga eléctrica con su presencia modifica las propiedades del espacio

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA. Nombre: Grupo Calif

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA. Nombre: Grupo Calif INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II ELECTROSTÁTICA Práctica N º 11 Nombre: Grupo Calif OBJETIVO El alumno realizara experimentos sencillos para

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación

Más detalles

Campo Eléctrico. Es el portador de la fuerza eléctrica. q 2. q 1

Campo Eléctrico. Es el portador de la fuerza eléctrica. q 2. q 1 Campo Eléctrico Es el portador de la fuerza eléctrica. q 1 q 2 E1 E2 Por qué se usa el campo eléctrico? Porque es útil simplificar el problema separándolo en partes. Porque nos permite pensar en una situación

Más detalles

EJERCICIOS CONCEPTUALES

EJERCICIOS CONCEPTUALES ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: CAMPOS ELÉCTRICOS GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: 2 EJERCICIOS CONCEPTUALES 1. Suponiendo que el valor de la carga del protón fuera un poco diferente de la

Más detalles

Carrera: GCM Participantes. Representantes de las Academias de Ingeniería en Geociencias. Academia de Ingeniería en Geociencias

Carrera: GCM Participantes. Representantes de las Academias de Ingeniería en Geociencias. Academia de Ingeniería en Geociencias 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Métodos Eléctricos I Ingeniería en Geociencias GCM-0519 3-2-8 2.- HISTORIA DEL

Más detalles

Cálculo de campos eléctricos por medio del principio de superposición.

Cálculo de campos eléctricos por medio del principio de superposición. Cálculo de campos eléctricos por medio del principio de superposición. En la clase anterior hemos introducido varios conceptos: Carga. Interacción entre cargas (Ley de Coulomb). Campo campo eléctrico.

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la

Más detalles

GUIA # INTRACCIONES PARTE ( II ) LEY DE COULOMB

GUIA # INTRACCIONES PARTE ( II ) LEY DE COULOMB REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: Teudis Navas 4to Año GUIA # 13-14-15 INTRACCIONES

Más detalles

FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico

FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico FÍSICA II PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico 1. Dos esferas conductoras sin carga con sus superficies en contacto están apoyadas sobre una tabla de madera bien aislada. Una barra cargada

Más detalles

Tema 5: Electromagnetismo

Tema 5: Electromagnetismo Tema 5: Electromagnetismo Objetivo: El alumno conocerá los conceptos y leyes que le permitan comprender algunos de los fenómenos eléctricos y magnéticos, haciendo énfasis en los antecedentes necesarios

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

28.1. Los campos. Capítulo 28

28.1. Los campos. Capítulo 28 28 El campo eléctrico El 25 de agosto de 1989, doce años después de su lanzamiento, la nave espacial Voyager 2 pasó cerca del planeta Neptuno, a una distancia de 4.4 10 9 km. de la Tierra. Entre otros

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Carga eléctrica y construcción de un electroscopio

Carga eléctrica y construcción de un electroscopio 6 Carga eléctrica y construcción de un electroscopio Objetivo Cargar eléctricamente un cuerpo, mediante experimentos que involucren los dos tipos de carga (positiva y negativa), para observar los efectos

Más detalles

II. ELECTROSTÁTICA. Carga eléctrica:

II. ELECTROSTÁTICA. Carga eléctrica: FÍSICA II TELECOM Profesor BRUNO MAGALHAES II. ELECTROSTÁTICA La electrostática es la rama de la física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica.

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Forma vectiorial de un campo eléctrico

Más detalles

Qué es la electricidad? Circuitos eléctricos. La electricidad en el hogar

Qué es la electricidad? Circuitos eléctricos. La electricidad en el hogar ENERGÍA ELÉCTRICA Circuitos eléctricos La electricidad en el hogar Fernández Monroy, Mª Ernestina; Gutiérrez Múzquiz, Félix A. y Marco Viñes, José Manuel Física y Química: guía interactiva para la resolución

Más detalles

TEMA 8:ELECTROSTATICA

TEMA 8:ELECTROSTATICA TEMA 8:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO 26-9-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA DOS ING. SANTIAGO GONZÁLEZ LÓPEZ CAPITULO DOS CAPACITORES Un capacitor es un elemento que almacena carga y capacitancia la propiedad que la determina cuanta

Más detalles

PRÁCTICA DE LABORATORIO II-02 CAMPOS ELÉCTRICOS. Verificar la uniformidad del campo eléctrico entre electrodos de placas paralelas.

PRÁCTICA DE LABORATORIO II-02 CAMPOS ELÉCTRICOS. Verificar la uniformidad del campo eléctrico entre electrodos de placas paralelas. PRÁCTICA DE LABORATORIO II-02 CAMPOS ELÉCTRICOS OBJETIVOS Verificar la uniformidad del campo eléctrico entre electrodos de placas paralelas. Determinar epresiones matemáticas empíricas que relacionan el

Más detalles

Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros.

Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Fuerza eléctrica. Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos de la electricidad estática,

Más detalles

ELECTROMAGNÉTISMO: (Cargas puntuales, campo eléctrico, potencial eléctrico, fuerza eléctrica)

ELECTROMAGNÉTISMO: (Cargas puntuales, campo eléctrico, potencial eléctrico, fuerza eléctrica) VECTRES, MAGNITUD, SENTID Y DIRECCIÓN. (Introducción) 1. Qué entiende por base canónica? 2. Describa los vectores Z, X y Y empleando ángulos θ y Φ para un vector con magnitud V. 3. Realice las siguientes

Más detalles

Laboratorio de Optica

Laboratorio de Optica Laboratorio de Optica 8. Interferómetro de Michelson Neil Bruce Laboratorio de Optica Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, U.N.A.M., Objetivos A.P. 70-186, México, 04510, D.F.

Más detalles

MATERIA: ELECTRICIDAD Y MAGNETISMO.

MATERIA: ELECTRICIDAD Y MAGNETISMO. MATERIA: ELECTRICIDAD Y MAGNETISMO. ÁREA: INGENIERÍA. CUATRIMESTRE: CUARTO NOMBRE DEL ALUMNO: FECHA DE REALIZACIÓN: Página 1 de 8 PRÁCTICA No. 1 Electrostática OBJETIVO: Observará el proceso de carga y

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO CAMPO ELÉCTRICO REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO El concepto físico de campo El concepto campo surge ante la

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

MÉTODOS DE ELECTRIZACIÓN

MÉTODOS DE ELECTRIZACIÓN MÉTODOS DE ELECTRIZACIÓN Existen tres métodos fundamentales para electrizar la materia: por frotamiento, por contacto y por inducción. ELECTRIZACIÓN POR FROTAMIENTO 1. Una forma sería usando una regla

Más detalles

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de

Más detalles

Práctica: El campo eléctrico y las superficies equipotenciales

Práctica: El campo eléctrico y las superficies equipotenciales Práctica: El campo eléctrico y las superficies equipotenciales Objetivo Representar el campo eléctrico y las superficies equipotenciales. Relacionar campo eléctrico y potencial en un punto del espacio.

Más detalles

Guía de Ejercicios Electroestática y Ley de Coulomb

Guía de Ejercicios Electroestática y Ley de Coulomb Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS MISS YORMA RIVERA. PROF. JONATHAN CASTRO. Guía de Ejercicios Electroestática y Ley de Coulomb Nombre

Más detalles

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica.

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física III Ingeniería Mecánica MCT - 0514 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

CONDICIONES DE EQUILIBRIO ESTATICO

CONDICIONES DE EQUILIBRIO ESTATICO 1 CONDICIONES DE EQUILIBRIO ESTATICO Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física Objetivos específicos Analizar gráficamente y comprender las relaciones: a). El momento

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Universidad El Bosque Facultad de Ingeniería Ingeniería Ambiental Física II

Universidad El Bosque Facultad de Ingeniería Ingeniería Ambiental Física II Universidad El Bosque Facultad de Ingeniería Ingeniería Ambiental Física II Sofia Quiroga Hernández Alejandro Guzmán Pérez Natalia Sabogal Romero Natalia Jiménez Santafe Mariana Ramírez Gómez Laboratorio

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Campo eléctrico, definición Se dice que

Más detalles

ELABORAS UN ELECTROSCOPIO

ELABORAS UN ELECTROSCOPIO ELABORAS UN ELECTROSCOPIO Nombre del alumno: Profesor: Fecha: 2. Espacio sugerido: Laboratorio polifuncional. 3. Desempeños y habilidades Obtiene, registra y sistematiza la información para responder a

Más detalles

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero. Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc

Más detalles

MAGNETISMO. MsC Alexander Pérez García Video 1

MAGNETISMO. MsC Alexander Pérez García Video 1 MAGNETISMO MsC Alexander Pérez García Video 1 http://www.dailymotion.com/video/xqqir9_campomagnetico-terrestre-inversion-de-los-polos_school FUERZA MAGNÉTICA SOBRE UNA CARGA EN MOVIMIENTO LA SEGUNDA

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

CONSTRUYES UN PÉNDULO ÉLECTRICO

CONSTRUYES UN PÉNDULO ÉLECTRICO CONSTRUYES UN PÉNDULO ÉLECTRICO Nombre del alumno: Profesor: Fecha: 2. Espacio sugerido: Laboratorio polifuncional. 3. Desempeños y habilidades Obtiene, registra y sistematiza la información para responder

Más detalles

DESCRIPTORES PARA LAS INSTITUCIONES IPEC, Y CINDEA DE LA EDUCACIÓN DE PERSONAS JÓVENES Y ADULTAS

DESCRIPTORES PARA LAS INSTITUCIONES IPEC, Y CINDEA DE LA EDUCACIÓN DE PERSONAS JÓVENES Y ADULTAS Ministerio de Educación Pública Dirección de Desarrollo Curricular DESCRIPTORES PARA LAS INSTITUCIONES IPEC, Y CINDEA DE LA EDUCACIÓN DE PERSONAS JÓVENES Y ADULTAS San José, Costa Rica 2017 PRESENTACIÓN

Más detalles

CONSULTA NACIONAL Distribución de ítems para la prueba nacional Convocatoria 2015 FÍSICA

CONSULTA NACIONAL Distribución de ítems para la prueba nacional Convocatoria 2015 FÍSICA MINISTERIO DE EDUCACIÓN PÚBLICA DIRECCIÓN DE GESTIÓN Y EVALUACIÓN DE LA CALIDAD Departamento de Evaluación Académica y Certificación CONSULTA NACIONAL Distribución de para la prueba nacional Convocatoria

Más detalles

ANALIZAS EL CALOR CEDIDO Y ABSORBIDO POR LOS CUERPOS

ANALIZAS EL CALOR CEDIDO Y ABSORBIDO POR LOS CUERPOS ANALIZAS EL CALOR CEDIDO Y ABSORBIDO POR LOS CUERPOS Nombre del alumno: Profesor: Fecha: 2. Espacio sugerido: Laboratorio polifuncional. 3. Desempeños y habilidades Demuestra de forma práctica que el calor

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

Diseño y Construcción de un Electroscopio

Diseño y Construcción de un Electroscopio ASIGNATURA: Física Electromagnética TEMA DEL PROYECTO: Electrostática Diseño y Construcción de un Electroscopio OBJETIVOS Con ayuda de un electroscopio observar la existencia de dos clases distintas de

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

Colegio Madre del Divino Pastor Departamento de Ciencias Física XI Año Prof. Fernando Álvarez Molina

Colegio Madre del Divino Pastor Departamento de Ciencias Física XI Año Prof. Fernando Álvarez Molina 1 Colegio Madre del Divino Pastor Departamento de Ciencias Física XI Año Prof. Fernando Álvarez Molina Capítulo III. Campo Eléctrico y Potencial Eléctrico Def. Espacio físico que rodea una carga donde

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

Ley de Coulomb y Campo Eléctrico

Ley de Coulomb y Campo Eléctrico Ley de Coulomb y Campo Eléctrico OBJETIVOS: Determinar la fuerza eléctrica entre cargas aplicando la Ley de Coulomb. Determinar el campo eléctrico para diferentes configuraciones de cargas en diferentes

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

3. Dos dipolos se orientan como se muestra en la Figura. Calcule y dibuje el campo total en el punto de observación A debido a los dipolos.

3. Dos dipolos se orientan como se muestra en la Figura. Calcule y dibuje el campo total en el punto de observación A debido a los dipolos. 1. Un protón y un átomo neutro de carbono están inicialmente separados una distancia de 2.0 10 6 m, como se muestra en la Figura. No hay otras partículas cargadas alrededor. Si la polarizabilidad, α, del

Más detalles

Instituto Nacional Dpto. de Física Prof: Aldo Scapini

Instituto Nacional Dpto. de Física Prof: Aldo Scapini Nombre:...curso:... LEY DE COULOMB Los experimentos de algunos científicos como Bernoulli, Priestley y Cavendish habían demostrado de un modo indirecto la probable la validez de una ley inversa al cuadrado

Más detalles

Actividad experimental No. 5. Carga eléctrica y construcción de un electroscopio

Actividad experimental No. 5. Carga eléctrica y construcción de un electroscopio SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/1 MAESTRO MOISÉS SAÉNZ GARZA Área de Ciencia Naturales LABORATORIO DE FÍSICA Física II

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

MATERIA: ELECTRICIDAD Y MAGNETISMO.

MATERIA: ELECTRICIDAD Y MAGNETISMO. MATERIA: ELECTRICIDAD Y MAGNETISMO. ÁREA: INGENIERÍA. CUATRIMESTRE: CUARTO NOMBRE DEL ALUMNO: FECHA DE REALIZACIÓN: Página 1 de 8 PRÁCTICA No. 1 Electrostática OBJETIVO: Observará el proceso de carga y

Más detalles

TEMA 3: CAMPO ELÉCTRICO

TEMA 3: CAMPO ELÉCTRICO TEMA 3: CAMPO ELÉCTRICO o Naturaleza electrica de la materia. o Ley de Coulomb. o Principio de superposicion. o Intensidad del campo eléctrico. o Lineas del campo electrico. o Potencial eléctrico. o Energia

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

Electricidad y Magnetismo.

Electricidad y Magnetismo. Electricidad y Magnetismo. Objetivo (s) del curso: El alumno analizará los conceptos, principios y leyes fundamentales del electromagnetismo y desarrollará su capacidad de observación y su habilidad en

Más detalles

Problemas de Potencial Eléctrico

Problemas de Potencial Eléctrico Problemas de Potencial Eléctrico Física de PSI Nombre Multiopción 1. Una carga negativa se coloca en una esfera de conducción. Cual de las afirmaciones es verdadera acerca a la distribución de la carga?

Más detalles

Descripción de los Datos

Descripción de los Datos Descripción de los Datos Esta parte se orienta al tratamiento de datos estadísticos, esto es, al análisis estadísticos de poblaciones finitas. Para estas poblaciones, analiza una o más características,

Más detalles

- ELECTROSTÁTICA - Objetivos: A).- Construcción y/o manejo de los detectores de efectos (péndulo, electroscopio, y bombilla piloto de neón ).

- ELECTROSTÁTICA - Objetivos: A).- Construcción y/o manejo de los detectores de efectos (péndulo, electroscopio, y bombilla piloto de neón ). - ELECTROSTÁTICA - Objetivos: A).- Construcción y/o manejo de los detectores de efectos (péndulo, electroscopio, y bombilla piloto de neón ). B).- Asimilar y entender los aspectos más elementales de la

Más detalles

LABORATORIO DE ELECTROMAGNETISMO FENÓMENOS ELECTROSTÁTICOS

LABORATORIO DE ELECTROMAGNETISMO FENÓMENOS ELECTROSTÁTICOS No 1 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar la naturaleza de la fuerza eléctrica 2. Estudiar los diferentes

Más detalles